Quantum Chaos: Electron Waves in Nanostructures and Freak Waves in the Ocean

> Lev Kaplan Tulane University

Talk outline:

Chaos: what is it and why should we care? ◆ Classical (ray) chaos ◆ Quantum (wave) chaos Two applications: motion in random potential ◆ Electron flow in nanostructures (10⁻⁷ m) • Freak waves on the ocean (10^5 m)

Classical (ray) chaos

Regular system: perturbation in initial conditions grows at most linearly with t

◆ One-dimensional or separable motion
◆ Fully regular behavior unusual in d ≥ 2
Most systems are *chaotic*

• Perturbations generally grow exponentially with time: $\Delta x(t) \sim e^{\alpha t} \Delta x(0)$

Unpredictable determinism! (no information produced by dynamics)

Quantum (wave) chaos

Replace particle (or ray) bouncing in a box with analogous wave system: vibrating drumhead
 Wave system *not* chaotic
 Exponential sensitivity to infinitesimal change in initial conditions washed out by finite wavelength (uncertainty principle)

 $\int \psi^*(x,0)\psi(x,0)dx = 0.9 \quad \Rightarrow \quad \int \psi^*(x,t)\psi(x,t)dx = 0.9$

But, correspondence principle (short wavelengths)

Quantum (wave) chaos

Definition: "Study of quantum (or classical wave) systems whose classical (or ray) limit is chaotic" Look at spectral, wave function, transport properties In general, no analytic solutions One approach: brute-force numerical calculation ◆ Little insight, need to re-do for new parameters Instead, we can Search for "universal" statistical predictions, valid for all chaotic systems (RMT or random waves) Look for specific correspondence between classical and quantum properties

Quantum (wave) chaos Key tool: semi-classical evolution • Sum over all paths (Feynman) approximated by sum over classical paths with phases Includes interference (double-slit) but not "hard quantum" effects such as tunneling, diffraction ◆ Bridge between QM and our classical intuition

 Bring together insights, methods, examples from AMO, nuclear, nanostructures, microwaves, acoustics, mathematical physics, ...

Aug. 23, 2008

Quantum (wave) chaos: examples Quantum: Conductance through nanodevices Hydrogen in strong magnetic field Highly excited molecules Quantum corrals

Classical waves:
Microwave resonators
Acoustics: long-range sound propagation in ocean
Optics: directed emission from microlasers

Hydrogen atom wave function in strong B field

Wave functions for highly excited H₂ molecule

"Quantum corral": STM image of surface electron density (Crommie et al, Science 1993)

Directional emission from microlaser with dielectric resonator (Gmachl et al, Science 1998)

Numerical calculations for stadium billiard

Application I: Electron Flow in Nanostructures

- Electrons confined to 2-dimensional electron gas (2DEG) inside GaAs-AlGaAs heterostructure
- Gate voltages used to create barriers inside 2DEG and carve out region through which electrons may flow

Application I: Electron Flow in Nanostructures

- Barriers chosen so electrons must pass through narrow quantum point contact (QPC)
- Scanning probe microscope technique used to image electron flow through such a 2DEG device
 - Negatively charged tip reflects current and reduces conductance through device
 - By measuring reduction in conductance as function of tip position, can map out regions of high and low current

Application I: Electron Flow in Nanostructures

- Known: potential V(x,y) away from gates is not zero, but is random due to donor ions and impurities in 3d bulk
- Expected: outgoing flow should exhibit random wave pattern (Gaussian random amplitude fluctuations)
- Instead: observe strong current concentrated in small number of "branches" (Topinka et al, Nature 2001)

- Simplest description of random potential: Gaussian random with rms height V_{RMS} and correlation distance d
 Numerical simulations of the Schrödinger equation show qualitatively similar branching behavior
- Also seen in classical simulation!
 - Semiclassical or ray picture must be applicable
 - Branches do not correspond to "valleys" of the potential

- Consider parallel incoming paths encountering single shallow dip in potential V(x,y)
- Focusing when all paths in a given neighborhood coalesce at a single point (caustic), producing infinite ray density
 Different groups of paths coalesce a different points ("bad lens" analogy)

- Generic result: "cusp" singularity followed by two lines of "fold" caustics
- At each y after cusp singularity, we have infinite density at some values of x
 v=1

- Realistic situation: weak potential V_{RMS} << KE => small angle scattering
- Single bump or dip of size ~d insufficient to produce cusp singularity
- Instead, first singularities formed after typical distance scale $D \sim d (KE/V_{RMS})^{2/3} >> d$
- Further evolution: exponential proliferation of caustics
 - Tendrils decorate original branches

Universal branch statistics with single distance scale *D* Individual branch locations & heights depend on fine details of random potential, but *statistics* depend only on dimensionless parameter KE/V_{RMS}

Understanding branching of electron flowMultiple branching

More artistic visualization of electron flow

National Science Foundation

(Eric Heller)

FY 2007 BUDGET REQUEST TO CONGRESS

Aug. 23, 2008

Computing statistics of branched flow

- Wave mechanics: caustic singularity washed out on wavelength scale (uncertainty principle)
 - Visible branch only if smeared intensity above background
- At long distances y >> D from QPC:
 - Number of caustics grows exponentially
 - Typical intensity of each caustic decays exponentially due to stretching of phase space manifold
- But not all pieces of manifold stretch at same rate
 - Visible branch occurs only when singularity occurs in piece of manifold that had stretched anomalously little

Computing statistics of branched flow

- When all distances expressed in terms of D, everything governed by 2 dimensionless numbers (describing lognormal distribution of stretching factors)
 - α : average rate of stretching
 - β : variance of stretching rate
- Then # of branches decays exponentially as $exp((\alpha^2 / \beta) y / D)$
- Intensity of strongest branch:
 ln (I^{max}) = (1/2) ln (d / λ) γ (y / D)
 where γ = α (β /2) [sqrt(1+4 α / β) -1]
 and λ is the wavelength

Numerical simulations

Intensity of strongest branch:

Similarly can compute distribution of branch heights, fraction of space covered by branches, etc.

Application II: Freak Waves

Application II: Freak Waves

Aug. 23, 2008

Application II: Freak Waves

- ~ 10 large ships lost per year to presumed rogue waves – usually no communication
- Also major risk for oil platforms in North Sea, etc.
 Probability seems to greatly exceed random wave model predictions
- Large rogue waves have height of 30 m or more, last for minutes or hours
- Long disbelieved by oceanographers, first hard evidence in 1995 (North Sea)
- Tend to form in regions of strong current: Agulhas, Kuroshio, Gulf Stream

- Various explanations: nonlinear instabilities ... Here, focus on refraction of incoming wave (velocity) v) by random current eddies (typical current speed $u_{RMS} \ll v$ For deep water surface gravity waves with current $\frac{dk_x}{dt} = -\frac{\partial \omega}{\partial x} \qquad \frac{dx}{dt} = \frac{\partial \omega}{\partial k_x}$ $\omega(\vec{r},\vec{k}) = \sqrt{gk + \vec{u}(\vec{r}) \cdot \vec{k}}$
- Different dispersion relation:
 Electron waves: E ~ p² => ω ~ k² => v ~ k
 Surface water waves: ω ~ k^{1/2} => v ~ k^{-1/2}

Calculation: Freak Waves

Also, initial spread of wave directions important

• New parameter $\Delta \theta$

 Causes smearing of singularities, on scales
 > wavelength

 "Hot spots" of enhanced average energy density remain

as reminders of where caustics would have been

Calculation: Freak Waves

• Wave height intensity distribution: $P(h) = \int P_{\sigma}(h) f(\sigma) d\sigma$

- Obtained by superposing locally Gaussian wave statistics on pattern of "hot/cold spots" caused by refraction
- $\sigma^2(\vec{r})$ is position-dependent variance of the water elevation (high in focusing regions, low in defocusing regions)
- Probability $f(\sigma)$ can be computed if "freak index" $\gamma = \Delta \theta \quad (v/u_{RMS})^{2/3}$ is known
- $P_{\sigma}(h) = (h / \sigma^2) \exp(-h^2 / 2\sigma^2)$ Rayleigh distribution

Implications for Freak Wave Statistics

Simulations (using Schrodinger equation): long-time average and regions of extreme events

Typical ray calculation for ocean waves $\Delta \theta = 5^{\circ}$ $\Delta \theta = 25^{\circ}$

Aug. 23, 2008

Implications for Freak Wave StatisticsModified distribution of wave heights $\gamma = 3.4$

Dashed = Rayleigh Dotted = Theory based on *locally* Gaussian fluctuations Note: significant deviations from Rayleigh in extreme tail

Aug. 23, 2008

Analytics: limit of small freak index • Rayleigh: $P(h > x \bullet SWH) = \exp((-2x^2/\sigma^2))$ • Average: $P(h > x \bullet SWH) = \int \exp(-2x^2/\sigma^2) f(\sigma) d\sigma$ • $\gamma <<1: g(\sigma)$ Gaussian with mean 1 and small width $\delta \sim \gamma \sim 1/\Delta \theta$ • Stationary phase: $P(h > x \bullet SWH) = \sqrt{\frac{1+\varepsilon}{1+3\varepsilon}} \exp\left[-\varepsilon(1+\frac{3}{2}\varepsilon)/\delta^2\right]$ where $\varepsilon(1+\varepsilon)^2 = 2\delta^2 x^2$ • Perturbative expansion: for $\varepsilon << 1$ $P(h > x \bullet SWH) = [1 + 2\delta^2(x^4 - x^2)] \exp(-2x^2)$

Wave height distribution for ocean waves

Aug. 23, 2008

Summary:

Quantum chaos: study of "generic" quantum (or classical wave) systems (i.e. lacking symmetries that make problem "trivial") Essential tools: Semiclassical methods (ray-wave correspondence) ◆ Statistical approaches **Applications:** Statistics of branched electron flow in 2DEG Probability of freak wave encounters on the ocean