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I. Multiple Scattering Technique

The multiple scattering approach starts from the
well-known formula for the vacuum energy or
Casimir energy (for simplicity here we first restrict
attention to a massless scalar field)(τ is the
“infinite” time that the configuration exists)
[Schwinger, 1975]

E =
i

2τ
Tr ln G → i

2τ
Tr ln GG−1

0 ,

where G (G0) is the Green’s function,

(−∂2 + V )G = 1, +BC, −∂2G0 = 1.
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T -matrix

Now we define the T -matrix,

T = S − 1 = V (1 + G0V )−1.

If the potential has two disjoint parts,
V = V1 + V2 it is easy to derive the interaction
between the two bodies (potentials):

E12 = − i

2τ
Tr ln(1 − G0T1G0T2)

= − i

2τ
Tr ln(1 − V1G1V2G2),

where Gi = (1 + G0Vi)
−1G0, i = 1, 2.
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Multipole expansion

To proceed to apply this method to general
bodies, we use an even older technique, the
multipole expansion. Let’s illustrate this with a
2 + 1 dimensional version, which allows us to
describe cylinders with parallel axes. We seek an
expansion of the free Green’s function

G0(R + r
′ − r) =

ei|ω||r−R−r
′|

4π|r − R − r′|

=

∫

dkz

2π
eikz(z−Z−z′)g0(r⊥ − R⊥ − r

′
⊥),
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Reduced Green’s function

g0(r⊥ − R⊥ − r
′
⊥) =

∫

(d2k⊥)

(2π)2

e−ik⊥·R⊥eik⊥·(r⊥−r
′

⊥
)

k2
⊥ + k2

z + ζ2
.

As long as the two potentials do not overlap, so
that we have r⊥ −R⊥ − r

′
⊥ 6= 0, we can write an

expansion in terms of modified Bessel functions:

g0(r⊥ − R⊥ − r
′
⊥) =

∑

m,m′

Im(κr)eimφI ′m(κr′)e−im′φ′

×g̃0
m,m′(κR), κ2 = k2

z + ζ2.
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Expression for g0
m,m′

By Fourier transforming, and using the definition
of the Bessel function

imJm(kr) =

∫ 2π

0

dφ

2π
e−imφeikr cos φ,

we easily find

g̃0
m,m′(κR) =

1

2π

∫

dk k

k2 + κ2
Jm−m′(kR)

Jm(kr)Jm(kr′)

Im(κr)Im(κr′)

=
(−1)m′

2π
Km−m′(κR).
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Discrete matrix realization

Thus we can derive an expression for the
interaction between two bodies, in terms of
discrete matrices,

E ≡ Eint

L
=

1

8π2

∫

dζ dkz ln det
(

1 − g̃0T̃1g̃
0⊤T̃2

)

,

where the T̃ matrix elements are given by

T̃mm′ =

∫

dr r dφ

∫

dr′ r′ dφ′Im(κr)e−imφIm′(κr′)eim′φ′

×T (r, φ; r′, φ′).
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Interaction between cylinders

θ θ′

d

| |a b

Figure 1: Geometry of two cylinders (or two

spheres) with radii a and b, respectively, and dis-

tances between their centers of R > a + b.Quantum Vacuum Meeting, TAMU, August 2008 – p.9/69



Semitransparent cylinders

Consider two parallel semitransparent cylinders,
of radii a and b, respectively, lying outside each
other, described by the potentials

V1 = λ1δ(r − a), V2 = λ2δ(r
′ − b),

with the separation between the centers R
satisfying R > a + b. It is easy to work out the
scattering matrix in this situation,

(t1)mm′ = 2πλ1aδmm′

I2
m(κa)

1 + λ1aIm(κa)Km(κa)
.
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Cylinder interaction

Thus the Casimir energy per unit length is

E =
1

4π

∫ ∞

0

dκ κ tr ln(1 − A),

where A = B(a)B(b), in terms of the matrices

Bmm′(a) = Km+m′(κR)
λ1aI2

m′(κa)

1 + λ1aIm′(κa)Km′(κa)
.
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Weak-coupling

In weak coupling, the formula for the interaction
energy between two cylinders is

E = −λ1λ2ab

4πR2

∞
∑

m,m′=−∞

∫ ∞

0

dx xK2
m+m′(x)

×I2
m(xa/R)I2

m′(xb/R).
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Power series expansion

One merely exploits the small argument
expansion for the modified Bessel functions
Im(xa/R) and Im′(xb/R):

I2
m(x) =

(x

2

)2|m| ∞
∑

n=0

Z|m|,n
(x

2

)2n

,

where the coefficients Zm,n are

Zm,n =
22(m+n) Γ

(

m + n + 1
2

)

√
π n! (2m + n)! Γ(m + n + 1)

.
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Closed form result

In this case we get an amazingly simple result

E = −λ1aλ2b

4πR2

1

2

∞
∑

n=0

( a

R

)2n

Pn(µ),

where µ = b/a, and where by inspection we
identify the binomial coefficients

Pn(µ) =
n
∑

k=0

(

n

k

)2

µ2k.
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Closed form result (cont.)

Remarkably, it is possible to perform the sums,
so we obtain the following closed form for the
interaction between two weakly-coupled
cylinders:

E = −λ1aλ2b

8πR2

[(

1 −
(

a + b

R

)2
)(

1 −
(

a − b

R

)2
)]−1/2

.
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PFA

We note that in the limit R − a − b = d → 0, d
being the distance between the closest points on
the two cylinders, we recover the proximity force
theorem in this case

U(d) = −λ1λ2

32π

√

2ab

R

1

d1/2
, d ≪ a, b.

The rate of approach is given by

E

U
≈ 1 − 1 + µ + µ2

4µ

d

R
≈ 1 − R2 − aR + a2

4a(R − a)

d

R
.
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a = b
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Figure 2: Plotted is the ratio of the exact inter-

action energy of two weakly-coupled cylinders to

the proximity force approximation Quantum Vacuum Meeting, TAMU, August 2008 – p.17/69



b/a = 99
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Figure 3: Plotted is the ratio of the exact inter-

action energy of two weakly-coupled cylinders to

the proximity force approximation Quantum Vacuum Meeting, TAMU, August 2008 – p.18/69



Cylinder/plane interaction

By the method of images, we can find the
interaction between semitransparent cylinder and
a Dirichlet plane is

E =
1

4π

∫ ∞

0

κ dκ tr ln(1 − B(a)),

where B(a) is given above. In the
strong-coupling limit this result agrees with that
given by Bordag, because

tr Bs = tr B̃s, B̃mm′ =
1

Km(κa)
Km+m′(κR)Im′(κa).
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Exact cylinder/plane energy

In exactly the same way, we can obtain a
closed-form result for the interaction energy
between a Dirichlet plane and a weakly-coupled
cylinder of radius a separated by a distance R/2.
The result is again quite simple:

E = − λa

4πR2

[

1 −
(

2a

R

)2
]−3/2

.

In the limit as d → 0, this agrees with the PFA:

U(d) = − λ

64π

√
2a

d3/2
.

Note again that this form is ambiguous: the prox-
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Comparison of PFA and exact

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

1.0

a�R

E
�U

Quantum Vacuum Meeting, TAMU, August 2008 – p.21/69



3-dimensional formalism

The three-dimensional formalism is very similar.
In this case, the free Green’s function has the
representation

G0(R + r
′ − r) =

∑

lm,l′m′

jl(i|ζ|r)jl′(i|ζ|r′)Y ∗
lm(r̂)Yl′m′(r̂′)

×glm,l′m′(R).
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Reduced Green’s function

The reduced Green’s function can be written in
the form

g0
lm,l′m′(R) = (4π)2il

′−l

∫

(dk)

(2π)3

eik·R

k2 + ζ2

jl(kr)jl′(kr′)

jl(i|ζ|r)jl′(i|ζ|r′)
×Ylm(k̂)Y ∗

l′m′(k̂).
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Now we use the plane-wave expansion once
again, this time for eik·R,

eik·R = 4π
∑

l′′m′′

il
′′

jl′′(kR)Yl′′m′′(R̂)Y ∗
l′′m′′(k̂),

so now we encounter something new, an
integral over three spherical harmonics,

∫

dk̂Ylm(k̂)Y ∗
l′m′(k̂)Y ∗

l′′m′′(k̂) = Clm,l′m′,l′′m′′,
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Wigner coefficients

where

Clm,l′m′,l′′m′′ = (−1)m′+m′′

√

(2l + 1)(2l′ + 1)(2l′′ + 1)

4π

×
(

l l′ l′′

0 0 0

)(

l l′ l′′

m m′ m′′

)

.

The three-j symbols (Wigner coefficients) here

vanish unless l + l′ + l′′ is even.
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Reduced Green’s function

This fact is crucial, since because of it we can
follow the previous method of writing jl′′(kR) in
terms of Hankel functions of the first and second
kind, using the reflection property of the latter,
h

(2)
l′′ (kR) = (−1)l′′h

(1)
l′′ (−kR), and then extending

the k integral over the entire real axis to a
contour integral closed in the upper half plane.

g0
lm,l′m′(R) = 4πil

′−l

√

2|ζ|
πR

∑

l′′m′′

Clm,l′m′,l′′m′′

×Kl′′+1/2(|ζ|R)Yl′′m′′(R̂).
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Casimir interaction of spheres

For the case of two semitransparent spheres that
are totally outside each other,

V1(r) = λ1δ(r − a), V2(r
′) = λ2δ(r

′ − b),

in terms of spherical coordinates centered on
each sphere, it is again very easy to calculate the
scattering matrices,

T1(r, r
′) =

λ1

a2
δ(r − a)δ(r′ − a)

×
∑

lm

Ylm(r̂)Y ∗
lm(r̂′)

1 + λ1aKl+1/2(|ζ|a)Il+1/2(|ζ|a)
,
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Scattering matrix element

and then the harmonic transform is very similar
to that seen for the cylinder, (k = i|ζ|)

(t1)lm,l′m′ =

∫

(dr)(dr′)jl(kr)Y ∗
lm(r̂)jl′(kr′)Yl′m′(r̂′)T1(r, r

′)

= δll′δmm′(−1)lλ1aπ

2|ζ|
I2
l+1/2(|ζ|a)

1 + λ1aKl+1/2(|ζ|a)Il+1/2(|ζ|a)
.
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Interaction energy

Let us suppose that the two spheres lie along the
z-axis, that is, R = Rẑ. Then we can simplify the
expression for the energy somewhat by using
Ylm(θ = 0) = δm0

√

(2l + 1)/4π. The formula for
the energy of interaction becomes

E =
1

2π

∫ ∞

0

dζ tr ln(1 − A),

where the matrix

Alm,l′m′ = δm,m′

∑

l′′

Bll′′m(a)Bl′′l′m(b)
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Bll′m

Bll′m(a) =

√
π√

2ζR
i−l+l′

√

(2l + 1)(2l′ + 1)
∑

l′′

(2l′′ + 1)

×
(

l l′ l′′

0 0 0

)(

l l′ l′′

m −m 0

)

Kl′′+1/2(ζR)λ1aI2
l′+1/2(ζa)

1 + λ1aIl′+1/2(ζa)Kl′+1/2(ζa)

Note that the phase always cancels in the trace.
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Weak coupling

For weak coupling, a major simplification results
because of the orthogonality property,

l
∑

m=−l

(

l l′ l′′

m −m 0

)(

l l′ l′′′

m −m 0

)

= δl′′l′′′
1

2l′′ + 1
, l ≤ l′.

E = −λ1aλ2b

4R

∫ ∞

0

dx

x

∑

ll′l′′

(2l + 1)(2l′ + 1)(2l′′ + 1)

×
(

l l′ l′′

0 0 0

)2

K2
l′′+1/2(x)I2

l+1/2(xa/R)I2
l′+1/2(xb/R).
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Power series expansion

As with the cylinders, we expand the modified
Bessel functions of the first kind in power series
in a/R, b/R < 1. This expansion yields the infinite
series

E = −λ1aλ2b

4πR

ab

R2

∞
∑

n=0

1

n + 1

n
∑

m=0

Dn,m

( a

R

)2(n−m)
(

b

R

)2m

where by inspection of the first several Dn,m

coefficients we can identify them as

Dn,m =
1

2

(

2n + 2

2m + 1

)

,
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Closed form

and now we can immediately sum the expression
for the Casimir interaction energy to give the
closed form

E =
λ1aλ2b

16πR
ln

(

1 −
(

a+b
R

)2

1 −
(

a−b
R

)2

)

.
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PFA

Again, when d = R − a − b ≪ a, b, the proximity
force theorem is reproduced:

U(d) ∼ λ1λ2ab

16πR
ln(d/R), d ≪ a, b.

However, as the figures demonstrate, the
approach is not very smooth, even for
equal-sized spheres. The ratio of the energy to
the PFA is (b/a = µ)

E

U
= 1 +

ln[(1 + µ)2/2µ]

ln d/R
, d ≪ a, b.
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a = b; truncation at 100 shown
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Figure 4: Plotted is the ratio of the exact interac-

tion energy of two weakly-coupled spheres to the

proximity force approximation Quantum Vacuum Meeting, TAMU, August 2008 – p.35/69



b/a = 49
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Figure 5: Plotted is the ratio of the exact interac-

tion energy of two weakly-coupled spheres to the

proximity force approximation Quantum Vacuum Meeting, TAMU, August 2008 – p.36/69



Exact plane/sphere energy

In just the way indicated above, we can obtain a
closed-form result for the interaction energy
between a weakly-coupled sphere and a Dirichlet
plane. Using the simplification that

l
∑

m=−l

(−1)m

(

l l l′

m −m 0

)(

l l l′

0 0 0

)

= δl′0,

we can write the interaction energy in the form

E = − λa

2πR

∫ ∞

0

dx

∞
∑

l=0

√

π

2x
(2l+1)K1/2(x)I2

l+1/2

(

x
a

R

)

.
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Then in terms of R/2 as the distance between
the center of the sphere and the plane, the exact
interaction energy is

E = − λ

2π

( a

R

)2 1

1 − (2a/R)2
,

which as a → R/2 reproduces the proximity
force limit, contained in the (ambiguously
defined) PFA formula

U = − λ

8π

a

d
.
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Exact energy vs. PFA
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Figure 6: Plotted is the ratio of the exact interac-

tion energy of a weakly-coupled sphere above a

Dirichlet plane to the PFA. Quantum Vacuum Meeting, TAMU, August 2008 – p.39/69



II. Exact Results–Weak Coupling

In weak coupling it is possible to derive the exact
(scalar) interaction between two potentials

2D :
E

Lz
= − 1

32π3

∫

(dr⊥)(dr′⊥)
V1(r⊥)V2(r

′
⊥)

|r − r′|2 ,

3D : E = − 1

64π3

∫

(dr)(dr′)
V1(r)V2(r

′)

|r− r′|3 .
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Exact Results for Finite Plates

Consider two plates of finite length L, offset by
an amount b, separated by a distance a:

V1(r⊥) = λ1δ(y)θ(x)θ(L − x),

V2(r
′
⊥) = λ2δ(y

′ − a)θ(x′ − b)θ(L + b − x′),

b

L

L

a
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Exact Results for Finite Plates (cont.)

This gives an explicit result for the energy
between the plate

E

Lz
= −λ1λ2

32π3
[−2g(b/a) + g((L − b)/a) + g((L + b)/a)] ,

where

g(x) = x tan−1 x−1

2
ln(1+x2) = −Re(1+ix) ln(1+ix).

We can consider arbitrary lengths and orienta-

tions, in 3 dimensions, for the plates. [J. Wagner

et al.]
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Tilted plates

L2

L1

d a

ϕ

Explicit interaction energy can be given in terms
of Ti2, inverse tangent integral. For fixed CM, for
L1 → L, L2 → ∞, d → −∞, and L > 2a,
equilibrium position is at φ = π/2.
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Rectangular Parallel Plates

a

dy

dx

As a → 0,

F

A
= − λ1λ2

32π2a2
(1 + c1a + c2a

2 + . . . )
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Correction to Lifshitz formula

If upper plate is completely above lower plate,
c1 = 0.

If plates are of the same size and aligned,

c1 = −1

π

Perimeter
Area

.
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Coaxial disks

R2

R1

a

If R1 < R2, c1 = 0.

If R1 = R2, c1 = − 1
π

Perimeter
Area .
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Salient Features–two thin plates

Two plates of finite length experience a lateral
force so that they wish to align in the position
of maximum symmetry.

In this symmetric configuration, there is a
torque about the CM of a single plate so that
it tends to seek perpendicular orientation with
respect to the other plate.

First correction to Lifshitz formula is
geometrical.
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Relevance to Casimir Pistol

L

d
a
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III. Summing van der Waals forces

The (retarded dispersion) van der Waals
potential between polarizable molecules is given
by

V = −23

4π

α1α2

r7
, α =

ε − 1

4πN
.

This allows us to consider in the same vein (elec-

tromagnetic) interaction between distinct dilute di-

electric bodies of arbitrary shape.
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Derivation of vdW interaction

This vdW potential may be directly derived from

W = − i

2
Tr ln

Γ

Γ0
≈ − i

2
Tr V1Γ0V2Γ0,

where

Γ0 = ∇ × ∇ × 1
e−|ζ||r−r

′|

4π|r − r′| + 1.
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Force between slab/infinite plate

ε1

ε2

a

z
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—No correction to Lifshitz formula

If the cross sectional area of the finite slab is A,
the force between the slabs is

F

A
= − 23

640π2

1

a4
(ε1 − 1)(ε2 − 1),

the Lifshitz formula for infinite (dilute) slabs.

Note that there is no correction due to the finite

area of the slab.

Quantum Vacuum Meeting, TAMU, August 2008 – p.52/69



Force between sphere and plate

a

R

ε2

ε1

z

E = − 23

640π2
(ε1 − 1)(ε2 − 1)

4πa3/3

R4

1

(1 − a2/R2)2
,
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— comparison with PFA

which agrees with the PFA in the short
separation limit, R − a = δ ≪ a:

FPFA = 2πaE‖(δ) = − 23

640π2
(ε1 − 1)(ε2 − 1)

2πa

3δ3
,

with an exact correction, intermediate between

that for scalar 1/2(Dirichlet+Neumann) and elec-

tromagnetic perfectly-conducting boundaries.
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Energy between slab and plate

ε1

ε2

Z

θ

b

a
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Torque between slab and plate

Generically, the shorter side wants to align with

the plate, which is obvious geometrically, since

that (for fixed center of mass position) minimizes

the energy. However, if the slab has square cross

section, the equilibrium position occurs when a

corner is closest to the plate, also obvious geo-

metrically. But if the two sides are close enough

in length, a nontrivial equilibrium position between

these extremes can occur.
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Nontrivial equilibria
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Stable equilibria

The stable equilibrium angle of a slab above an
infinite plate for given b/a ratios 0.95, 0.9, and
0.7, respectively given by solid, dashed, and
dot-dashed lines. For large enough separation,
the shorter side wants to face the plate, but for

Z < Z0 =
a

2

√

2a2 + 5b2 +
√

9a4 + 20a2b2 + 20b4

5 (a2 − b2)

the equilibrium angle increases, until finally at

Z = D =
√

a2 + b2/2 the slab touches the plate

at an angle θ = arctan b/a.
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Interaction between‖ cylinders

E

L
= − 23

60π
(ε1 − 1)(ε2 − 1)

a2b2

R6

×
1 − 1

2

(

a2+b2

R2

)

− 1
2

(

a2−b2

R2

)2

[(

1 −
(

a+b
R

)2
)(

1 −
(

a−b
R

)2
)]5/2

.
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Interaction between spheres

E = − 23

1920π

(ε1 − 1)(ε2 − 1)

R

{

ln

(

1 −
(

a−b
R

)2

1 −
(

a+b
R

)2

)

+
4ab

R2

a6−a4b2−a2b4+b6

R6 − 3a4−14a2b2+3b4

R4 + 3a2+b2

R2 − 1
[(

1 −
(

a−b
R

)2
)(

1 −
(

a+b
R

)2
)]2

}
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PFA and sphere-plate

This expression, which is rather ugly, may be
verified to yield the proximity force theorem:

E → U = − 23

640π

a(R − a)

Rδ2
, δ = R− a− b ≪ a, b.

It also, in the limit b → ∞, R → ∞ with R− b = Z
held fixed, reduces to the result for the
interaction of a sphere with an infinite plate.
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IV. Noncontact gears

a

y0 d = 2π
k0

h1

h2
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Pertubation theory

Here we compute the lateral force between the
offset corrugated plates. The Dirichlet and
electromagnetic cases were previously
considered by Kardar and Emig, to second order
in corrugation amplitudes. We have carried out
the calculations to fourth order. In weak coupling
we can calculate to all orders, and verify that
fourth order is very accurate, provided k0h ≪ 1.

F =
FLat

|F (0)
Cas|(h1h2/a2)k0a sin(k0y)
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Weak coupling limit
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Concentric corrugated cylinders

θ0

a
a1

a2
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Casimir torque per unit area

For corrugations given by δ-function potentials
with sinusoidal amplitudes:

h1(θ) = h1 sin ν(θ + θ0),

h2(θ) = h2 sin νθ

the torque to lowest order in the corrugations in
strong coupling (Dirichlet limit)
(α = (a2 − a1)/(a2 + a1))

τ (2)D

2πRLz
= ν sin νθ0

π2

240a3

h1

a

h2

a
B(2)D

ν (α).
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Dirichlet limit of cylindrical gears

2 4 6 8 10
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2ν
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ν = 1, 2, 3, 4

A similar result can be found for weak coupling,

which, again, has a closed form.
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V. Comments and Prognosis

The methods proposed are in fact not
particularly novel, and illustrate the ability of
physicists to continually rediscover old
methods.

What is new is the recognition that one can
evaluate continuum determinants (or infinitely
dimensional discrete ones) accurately
numerically, and in some cases even exactly
in closed form.

This is making it possible to compute Casimir
forces for geometries previously inaccessible.
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New results

It is indeed remarkable, if perhaps not
surprising in retrospect, to see that closed
form expressions can be obtained for the
interaction between spheres and between
parallel cylinders in weak coupling.

These results demonstrate most conclusively
the unreliability of the proximity force
approximation (of course, the proximity force
theorem holds true).

This methodology has been used to obtain
new results for non-contact gears. (Two
papers appearing momentarily in PRD.)
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