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Motivation

1 To extend Hertz Potentials to general curvilinear coordinates.

2 To explore the usefulness of differential forms.
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Differential Forms and the Hodge Star

Why use differential forms?

1 Maxwell’s equations take a more elegant form.

2 Differential forms are intrinsically coordinate-independent.
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Differential Forms and the Hodge Star

Definition

For a pseudo-Riemannian orientable metrizable manifold (M, g),
the Hodge Star is the unique operator ∗ : Ωk(M)→ Ωn−k(M)
such that for ω, η ∈ Ωk(M)

〈ω, η〉 =

∫
ω ∧ ∗η

Definition

For 4-dimensional Minkowski space with positive signature, define
the codifferential δ as

δ = ∗d∗
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Maxwell’s Equations

Let F be the 2-form representing the electromagnetic field in
vacuum.

Theorem

Maxwell’s equations then become

dF = 0

δF = 0
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Electromagnetic Potential

Lemma

For any form ω,
d2ω = 0

Since dF = 0, F is called closed, and for any simply connected
manifold, every closed form is exact.
Thus there exists a 1-form A = Aµdxµ such that F = dA.
Immediately from this it follows

dF = d2A = 0.

It also follows that for F = 1
2Fµνdxµ ∧ dxν ,

Fµν = ∂µAν − ∂νAµ
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Hertz Potentials

Choosing the Lorentz gauge is equivalent to choosing δA = 0.
Since δ2 = ± ∗ d2∗, this means that ∗A is closed and exact.

There exists a 2-form Π = 1
2 Πµνdxµ ∧ dxν such that δΠ = A.

Consequently, F = dA = dδΠ.
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Hertz Potentials (Cont.)

Definition

Define the operator � such that

�ω = dδω + δdω

The condition that F = dδΠ solves both Maxwell equations is
satisfied when

�Π = dδΠ + δdΠ = 0.

Then F = dδΠ = −δdΠ.
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Notation

Choose a particular coordinate system x0, x1, x2, x3.

Definition

Let hµνρσ, hµνρσ, and hµνρσ such that

∗dxµ = hµνρσdxν ∧ dxρ ∧ dxσ

∗(dxµ ∧ dxν) = hµνρσdxρ ∧ dxσ

∗(dxµ ∧ dxν ∧ dxρ) = hµνρσdxσ.

In Cartesian coordinates, these reduce to factors times εµνρσ.
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Potentials

In these arbitrary but fixed coordinates, the 4-potential and Hertz
potential become

Π =
1

2
Πµνdxµ ∧ dxν

A = Aµdxµ =
1

2
∂ν(Πρσh

ρσ
λξ)h

νλξ
µdxµ.
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Field Equations

With the coordinates chosen and the previous definitions, the field
becomes

F =
1

2
∂µ(∂λ(Πξδh

ξδ
ρσ)hλρσν)dxµ ∧ dxν .

The condition �Π = 0 also becomes

�Π =
1

2
[∂µ(hλρσν∂λ(hξδρσΠξδ))+hλσµν∂λ(hρξδσ∂ρΠξδ)]dxµ∧dxν = 0.
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Unidirectional Hertz Potentials

Take Π = Π01dx0 ∧ dx1 + Π23dx2 ∧ dx3.

For �Π = 0, the dx0 ∧ dx1 and dx2 ∧ dx3 components yield the
following equations.

(∂0(h023
1∂0)− ∂1(h123

0∂1))(h01
23Π01) + h23

01(∂2(h201
3∂2)− ∂3(h301

2∂3))Π01 = 0

h01
23(∂0(h023

1∂0)− ∂1(h123
0∂1))Π23 + (∂2(h201

3∂2)− ∂3(h301
2∂3))(h23

01Π23) = 0

To contrast, for a scalar field φ,
�φ = [h0123∂0(h0

123∂0) + h1023∂1(h1
023∂1) + h2013∂2(h2

013∂2) + h3012∂3(h3
012∂3)]φ
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Cartesian Coordinates

Let x0 = t, x1 = x , x2 = y , x3 = z , and let Π01 = φ, Π23 = ψ.

Results

�φ = 0

�ψ = 0
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Cylindrical Coordinates

Let x0 = t, x1 = z , x2 = ρ, x3 = ϕ, and take Π01 = φ,
Π23 = ψ · ρ.

∂2
t Π01 −

1

ρ
∂ρ(ρ∂ρΠ01)− 1

ρ2
∂2
ϕΠ01 − ∂2

z Π23 = 0

∂2
t Π23 − ∂ρ(ρ∂ρ

Π23

ρ
)− 1

ρ2
∂2
ϕΠ23 − ∂2

z Π23 = 0

Results

�φ = 0

�ψ = 0
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Cylindrical Coordinates (Again)

Now take x0 = t, x1 = ρ, x2 = ϕ, x3 = z , and Π01 = φ
ρ , Π23 = ψ.

∂2
t Π01 − ∂ρ(

1

ρ
∂ρ(ρΠ01))− 1

ρ2
∂2
ϕΠ01 − ∂2

z Π01 = 0

∂2
t Π23 − ρ∂ρ(

1

ρ
∂ρΠ23)− 1

ρ2
∂2
ϕΠ23 − ∂2

z Π23 = 0

Results

(�− 2

ρ
∂ρ)φ = 0

(�− 2

ρ
∂ρ)ψ = 0
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Spherical

Let x0 = t, x1 = r , x2 = θ, x3 = ϕ with Π01 = φ,
Π23 = ψ · r2 sin θ.

∂2
t Π01 − ∂r (

1

r2
∂r (r2Π01))−

1

r2 sin θ
∂θ(sin θ∂θΠ01)−

1

r2 sin θ
∂2
ϕΠ01 = 0

∂2
t Π23 − r2∂r (

1

r2
∂r Π23)−

1

r2
∂θ(sin θ∂θ(

Π23

sin θ
)−

1

r2 sin θ
∂2
ϕΠ23 = 0

Results

(�− 2

r2
)φ = 0

(�− 2

r2
)ψ = 0
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