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Introduction Motivation

Differential Forms and the Hodge Star

Motivation

Motivation
© To extend Hertz Potentials to general curvilinear coordinates.

@ To explore the usefulness of differential forms.
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Differential Forms and the Hodge Star

Why use differential forms?
@ Maxwell's equations take a more elegant form.

@ Differential forms are intrinsically coordinate-independent.
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Differential Forms and the Hodge Star

Definition

For a pseudo-Riemannian orientable metrizable manifold (M, g),
the Hodge Star is the unique operator * : QK(M) — Q"~*(M)
such that for w,n € QkK(M)

@i = [wnn

Definition

For 4-dimensional Minkowski space with positive signature, define
the codifferential § as
0 = xdx
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Maxwell’s Equations

M II's E i p
axwell’s Equations Potentials

Maxwell's Equations

Let F be the 2-form representing the electromagnetic field in
vacuum.

Theorem
Maxwell’s equations then become

dFF = 0
0OF = 0
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Maxwell’s Equations Potentials

Electromagnetic Potential

Lemma

For any form w,
d?w =0

Since dF =0, F is called closed, and for any simply connected
manifold, every closed form is exact.

Thus there exists a 1-form A = A, dx* such that F = dA.
Immediately from this it follows

dF = d’A=0.
It also follows that for F = %Fuydx’“‘ A dx",

Fuw = 0,A, — 0,A,
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Maxwell’s Equations Potentials

Hertz Potentials

Choosing the Lorentz gauge is equivalent to choosing A = 0.
Since 02 = 4 % d?x, this means that *A is closed and exact.

There exists a 2-form 1 = %I‘ijdx“ A dx” such that 61 = A.

Consequently, F = dA = doTll.
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Hertz Potentials (Cont.)

Definition
Define the operator [J such that

Ow = déw + ddw

The condition that F = ddl1 solves both Maxwell equations is

satisfied when
OnN = dol + 6dM = 0.

Then F = dol = —4dI1.
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Notation

Choose a particular coordinate system x°, x!, x2, x3.

Definition
Let h*, 0, H* p5, and K*7P; such that

xdxt = A" ,edx” A dxP A dx?
*(dxt Ndx”) = WY ,edx? A dx?
*(dxt Adx” NdxP) = h*P,dxC.

In Cartesian coordinates, these reduce to factors times €,
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Potentials

In these arbitrary but fixed coordinates, the 4-potential and Hertz
potential become

1
n= EI'IWdX“ A dx”

1
A= Audxt = §8V(I_Ip(,hp‘7>\5)h”’\£udx”.
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Field Equations

With the coordinates chosen and the previous definitions, the field
becomes

1 loa v
F= Eaﬂ(aA(n@hﬁépo)hAﬂ L )dxH A dx”.

The condition OINM = 0 also becomes

1
1 = S [0 (P700 (A o Tes) 1 9 (K10, N = 0.
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Unidirectional Hertz Potentials

Take M = Mo1dx% A dx® 4 Mozdx? A dx3.

For 0N = 0, the dx® A dx! and dx? A dx3 components yield the
following equations.

(9o (h0%180) — 01 (h*%2001))(h* 23 Mo1) + K01 (D2(h*382) — 83(h**1205)) Mo

\
o

R 3 (80 (0% 180) — A1 (A123001))Ma3 + (82(h?1382) — B3(h*%1283))(h*301Ma3) = 0

To contrast, for a scalar field ¢,
O = [AO12380(h012300) + h102301(hlo2301) + h?0130(h201302) + h391205(h301203)] @
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Cartesian Coordinates

Let X% = ¢, x1 = x, x2 =y, x3 =2z and let Ng; = ¢, Moz = 1h.

O¢ =0
Oy = 0
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Cylindrical Coordinates

Let xX°=t, x1 =z, x2 = 0, x3 = @, and take lp1 = ¢,
Moz =1 - p.
2 1 1 2
at Mo1 — ;ap(papnm) — ?&pﬂm — az|_|23 = 0

M3

1
8?“23 — ﬁp(p8p7) — ?892DH23 — 85”23 = 0

O =0
Oy =0
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Cylindrical Coordinates (Again)

2

Nowtakexozt, xlzp,x =, X3=Z, and I'I01:%, Moz = 9.

1 1
8?”01 — Bp(;8p(pl‘lm)) — ?83n01 — 83“01 =0

1 1
D%Mp3 — pa,,(;apnm) - ?af;nm — My = 0

2
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Spherical

Let X0 =t, x! = r, x2 =0, x3 = ¢ with My; = ¢,
Mag =1 - r?sind.

1 1 1
Mot — Ay (= 8,(r’Mo1)) — ———y(sin 09Mg1) — ——— 2 = 0
ol (r2 (r"Mo1)) r2sin6 b(sin 690z ) r2sing ¢ O
1 1 . Mos 1
2 2 2 _
%My — r a,(frza,nn)—frzag(s.neag(sine)—m 2My = 0

@-3)=0
2
@- 2y =0
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