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Aims

• Calculate cylinder kernels directly (skipping eigen-
value density, heat kernel, etc.).

• Exploit theory of Volterra and Fredholm integral
equations and possibly Padé approximants.

• Use multiple reflection expansion to derive and
improve upon

◦ optical approximation (for smooth boundaries)
◦ geometrical diffraction theory (for nonsmooth

ones).
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Kernels: Their Virtues and Vices

Heat kernel e−tH

• rapid spectral convergence; smooth
• rapid decay & image convergence
• functoriality (product manifolds; mass dependence)
• exact WKB solution in free case
• initial value problem (Volterra)
◦ remote from quantum & wave physics
◦ Gutzwiller & Casimir info exponentially suppressed

3



Quantum kernel e−itH

• analytic continuation of heat kernel
• functoriality (product manifolds; mass dependence)
• exact WKB solution in free case
• initial value problem (Volterra)
◦ remote from wave physics
◦ oscillatory; distributional in general
◦ poor decay & image convergence
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Cylinder kernel e−t
√

H

• Gives vacuum energy directly!
• rapid spectral convergence; smooth
◦ mediocre decay & image convergence
◦ no nice functorial properties
◦ very poor WKB properties
◦ not Volterra
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Resolvent kernel (H − λ)−1

• Gives spectral information directly! “universal”
• one fewer dimension!
◦ remote from physics unless λ > 0
◦ oscillatory (λ > 0)
◦ poor decay & image convergence (λ > 0)
◦ no nice functorial properties
◦ mediocre WKB properties
◦ not Volterra
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Zeta function H−s

• amenable to complex analysis
◦ hard to calculate directly by nonspectral means
◦ Gutzwiller & Casimir info suppressed

(not in residues)
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Wave kernel (d’Alembert) cos(t
√

H)

• initial value problem (Volterra)
• finite range: very fast image convergence (for

fixed t).
◦ always distributional (not smooth)
◦ no nice functorial properties
◦ Casimir info hard to extract
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Wave kernel (Wightman, Feynman, Schwinger)
e−it

√
H

√
H

• analytic continuation of cylinder kernel
• Gives vacuum energy fairly directly.
• central to QFT (2=point function)
◦ oscillatory; distributional in general
◦ not Volterra
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Integral Equations

Volterra

Example:
∫ t

0
λK(t, s)u(s) ds − u(t) = −f(t).

u = (I − λK)−1(f) ∼
∞∑

n=0

(λK)n(f).

‖Kn‖ ≤ 1

n!
‖K‖n ⇒ convergence for all λ.
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Intuitive interpretation: Path integral (perturbative).
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Fredholm

Example:
∫ T

0
λK(t, s)u(s) ds − u(t) = −f(t).

u = (I − λK)−1(f) ∼
∞∑

n=0

(λK)n(f).

‖Kn‖ ≤ ‖K‖n ⇒ convergence for |λ| < ‖K‖−1

(and maybe on circle). But:
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Generalized Cramer rule:

u(t) = f(t) +

∫ T

0
N(t, s, λ)f(s) ds

D(λ)
,

meromorphic for all λ.

Requires finite integration domains (compactness).
Hence useful for cylinder kernel only for finite tempera-
ture?
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Intuitive interpretation: Path integral with vacuum-to-
vacuum terms included but then divided out.
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Padé approximants

Another N/D method, defined from formal power
series.
Truncations of Fredholm formula are not standard
Padé approximants; contain nontrivial information
about terms that Padé sets to 0.
Padé approximants to operator matrix elements are
not bilinear in the state vectors.

15



Multiple reflection expansion
for cylinder kernel

Although its PDE is not Volterra, let us proceed for-
mally with its Balian–Bloch series.

Experience shows that it seems to sit right on the edge
of the circle of convergence. Convergence is improved
slightly by taking derivatives to get 〈Tµν〉 components.
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Starting with quantum, heat, or resolvent kernel does
not help. Indeed,

T (t) =
1

π

∫ ∞

0

e−tkIm G(r, r′, k) d(k2),

T (τ) = − 1√
π

∫ ∞

0

t−1/2e−τ2/4tK(t) dt.

But these formulas involve integration over parameters
in limits where the expansions are not valid.
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What Is the Relation between MRE
and Optical Approximation?

Recall from last year that the optical approximation
fails in higher order and the correct repair is hard to
guess as an ansatz. Can we deduce the truth from the
MRE?

Look at what Balian and Bloch say:

Ann. Phys. 69 (1972) 76 (“Paper III”)
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One-dimensional case: Preliminaries

Green function for Poisson equation in R2 is
(2D Coulomb potential)

G0(t, x; s, y) = − 1

4π
ln[(t − s)2 + (x − y)2] + C.

T (t, x, y) = −2G(t, x; 0, y), T = −2
∂G

∂t
.

∂G0

∂x
(t, x; s, y) = − 1

2π

x − y

(t − s)2 + (x − y)2
, etc.
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Recall

lim
x↓0

1

π

x

(t − s)2 + x2
= δ(t − s).

General ansatz: G = G0 + γ,
γ is an integral over the boundary involving unknown
densities for which one derives integral equations.
Then one hopes to solve those equations by iteration
(Neumann series), even when they are not Volterra.
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Half-line with Neumann endpoint

Try γ(t, x; s0, y0) =

∫ ∞

−∞
ds G0(t, x; s, 0)µ0(s).

As always in the boundary-integral method, we must
make a careful distinction between the value of such an
integral exactly on the boundary (x = 0) and the limit
of the integral as the boundary is approached from the
interior.
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∂γ

∂x
(t, 0; s0, y0)

= −
∫ ∞

−∞
ds

x − y

2π
[(t − s)2 + (x − y)2]−1

∣∣
x=y=0

µ0(s)

= 0,

but
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∂γ

∂x
(t, x; s0, y0) = −

∫ ∞

−∞
ds

x

2π
[(t − s)2 + x2]−1µ0(s)

→ − 1

2
µ0(t) as x ↓ 0,

and the latter must be chosen to satisfy the Neumann
boundary condition

0 =
∂G

∂x
(t, 0+; s0, y0) =

∂G0

∂x
+

∂γ

∂x
.
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You get

µ0(t) = 2
∂G0

∂x
(t, 0+; s0, y0) =

y0

π
[(t − s0)

2 + y0
2]−1,

and hence

γ(t, x; s0, y0)

= − y0

4π2

∫ ∞

−∞
ds ln[(t − s)2 + x2][(s − s0)

2 + y0
2]−1.
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But from the method of images we know a more
elementary formula for γ:

γ(t, x; s0, y0) = G0(t, x; s0,−y0)

= − 1

4π
ln[(t − s0)

2 + (x + y0)
2].

Lemma: Let x and y be positive. Then (indeed)

∫ ∞

−∞
ds

ln[(t − s)2 + x2]

(s − r)2 + y2
=

π

y0
ln[(t − r)2 + (x + y)2].
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Interval (0, L)

Try γ(t, x; s0, y0)

=

∫ ∞

−∞
ds G0(t, x; s, 0)µ0(s)+

∫ ∞

−∞
ds G0(t, x; s, L)µL(s).

BC are
∂γ

∂n
(0+) = − ∂G0

∂x
(t, 0; s0, y0),

∂γ

∂n
(L−) = +

∂G0

∂x
(t, L; s0, y0).

We get the basic boundary-integral equations of the
system,
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µ0(t) =
1

π

y0

(t − s0)2 + y0
2

+
1

π

∫ ∞

−∞
ds

L

(t − s)2 + L2
µL(s),

µL(t) =
1

π

L − y0

(t − s0)2 + (L − y0)2

+
1

π

∫ ∞

−∞
ds

L

(t − s)2 + L2
µ0(s).
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More abstractly, fix a vertex v∗ ; then

µv∗
(t) = 2

∂G0

∂n
(t, v∗; s0, y0)+2

∫

∂Γ̃

∂G0

∂n
(t, v∗; s, v)µv(s),

where a sum over v is implicit in integration over ∂Γ̃ =
R × ∂Γ, and

∂G0

∂n
(t, v∗; s, v∗) = 0.

Even more abstractly, the integral equation has the
form

µ = g0 + Kµ,
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so that formally

µ = (1 − K)−1g0 ∼ (1 + K + K2 + · · ·)g0 .

The operator has norm 1, so the convergence is con-
ditional (for derivatives of T ) and only distributional
for T itself (for test functions orthogonal to constants).
Nevertheless, iterating yields order by order the image
solution!
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Quantum graphs

Half-line case generalizes easily to any infinite star
graph (giving the known solution).

Interval case generalizes with difficulty to any compact
graph. The system of integral equations is complicated
and redundant, and it is not obvious that the relevant
operator has norm 1. Presumably iteration will yield
the Wilson solution in principle.
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Multidimensional case

G0(t,x; s,y) = Cn[(t − s)2 + |x − y|2]−(n−2)/2.

Try G = G0 + γ where (Dirichlet case)

γ(t,x; s0,y0) =

∫ ∞

−∞
ds

∫

S

dσy
∂G0

∂ny
(t,x; s,y)µ(s,y).

µ depends on (s0,y0) ; S = ∂Ω ; n̂ = inward normal.
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As in Balian–Bloch or any PDE book on potential the-
ory,

γ(t,x+; s0,y0) =

∫ ∞

−∞
ds

∫

S

dσy
∂G0

∂ny
(t,x; s,y)µ(s,y)

+
1

2
µ(t,x).

So you get the basic boundary integral equation

µ(t,x) = −2G0(t,x; s0,y0)

− 2

∫ ∞

−∞
ds

∫

S

dσy
∂G0

∂ny
(t,x; s,y)µ(s,y).
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In lowest order, for d = 3, I get after several more steps

γ1 =
−1

(2π)3

∫

S

dσy cosφ

[
l

r1
2r2(t2 + l2)

+
l2 − t2

r1r2(t2 + l2)2

]

— same thing Liu gets in his thesis by Laplace-trans-
forming the Balian–Bloch formula for the first-order

term of the spectral density. cosφ ≡ n̂y · ̂(x − y) ;

r1 ≡ |x− y| ; r2 ≡ |y − y0| ; l ≡ r1 + r2 .
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No stationary-phase or semiclassical approximation has
been made here — just the leading approximation in
the multiple-scattering expansion.

So far the spatial boundary is curved (but smooth). If
it’s flat, should be able to integrate over y to get the
simple image term as B&B predicted. But the inte-
grals are hard.
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Conclusions and Prospects

• Things turn out consistent when they can be calcu-
lated (or proved).

◦ Those calculations can be surprisingly hard.
◦ Direct cylinder calculation has no great advantage

(so far) over spectral calculation.
◦ Convergence is marginal at best.
◦• Empirics outrun proofs.
• Apparently optical approximations become exact for

flat surfaces and good for gently curved ones.
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•◦ More work is needed to ground optical and diffrac-
tive approximations on exact integral-equation for-
mulations.
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