Closed Path Approach to Casimir Effect in Rectangular Cavities and Pistons

By Zhonghai (Bruce) Liu

June 26, 2009

Outline

(1) Foundation of Closed Path Approach

- What is cylinder kernel?
- Methods of images

2 Scalar Rectangular Cavity and Piston

- 4 kinds of closed paths
- When B.C. at $x=0$, a are fixed
(3) EM Rectangular Cavity and Piston
- Hertz potential
- EM cavity with all faces conducting B.C.
- Boundary condition equivalence
- Translate EM piston to Scalar Pistons

What is cylinder kernel?
Methods of images

Cylinder kernel

The cylinder kernel is defined as:

$$
\bar{T}\left(t, \mathbf{r}, \mathbf{r}^{\prime}\right)=-\sum \frac{1}{\omega_{n}} \phi_{n}(\mathbf{r}) \phi_{n}^{*}\left(\mathbf{r}^{\prime}\right) e^{-t \omega}
$$

The exponential ultraviolet cutoff term $e^{-t \omega}$ regularizes the divergent sum and bring a finite energy density.

The cylinder kernel in free space is:

$$
\bar{T}^{f}\left(t, \mathbf{r}, \mathbf{r}^{\prime}\right)=-\frac{1}{2 \pi^{2}} \frac{1}{t^{2}+\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{2}}
$$

The relation between energy density and cylinder kernel:

$$
\left\langle T_{00}\right\rangle=-\left.\frac{1}{2} \frac{\partial^{2}}{\partial t^{2}} \bar{T}(t, \mathbf{r}, \mathbf{r})\right|_{t \rightarrow 0}=\frac{1}{2} \sum \omega_{n}\left|\phi_{n}(\mathbf{r})\right|^{2} e^{-t \omega}
$$

Method of images

For parallel plates at $x=0, a$

- Cylinder Kernel satisfies Dirichlet B.C. on both plates

$$
\bar{T}_{D D}=\bar{T}^{f}+D_{0} \bar{T}^{f}+D_{a} \bar{T}^{f}+D_{0} D_{a} \bar{T}^{f}+D_{a} D_{0} \bar{T}^{f}+\ldots
$$

- where the operator D_{a} is

$$
D_{a} f(x)=-f(2 a-x)
$$

For rectangular cavity

Cylinder Kernel satisfies Dirichlet B.C. on all faces

$$
\begin{align*}
\bar{T}^{D D D}= & D^{e e e} \bar{T}^{f}+D^{0 e e} \bar{T}^{f}+D^{e o e} \bar{T}^{f}+D^{e e o} \bar{T}^{f} \\
& +D^{00 e} \bar{T}^{f}+D^{e o o} \bar{T}^{f}+D^{0 e o} \bar{T}^{f}+D^{000} \bar{T}^{f} \tag{1}\\
= & V^{P}-V^{S_{x}}-V^{S_{y}}-V^{S_{z}}+V^{E_{x y}}+V^{E_{y z}}+V^{E_{z x}}-V^{C}
\end{align*}
$$

4 kinds of closed paths
When B.C. at $x=0, a$ are fixed

(1) Periodic Paths: (c) (d) (i) [even][even][even]
(2) Side Paths: (a) (e) (f) [odd][even][even], [even][odd][even], [even][even][odd]
(3) Edge Paths: (b) (g) [odd][odd][even], [even][odd][odd], [odd][even][odd],
(4) Corner Paths: (h) [odd][odd][odd]

$$
\begin{align*}
E_{\text {piston }}^{\alpha \beta \gamma} & =E_{a, b, c}^{\alpha \beta \gamma}+\left.E_{L-a, b, c}^{\alpha \beta \gamma}\right|_{L \rightarrow \infty} \\
F_{\text {piston }}^{\alpha \beta \gamma} & =F_{a, b, c}^{\alpha \beta \gamma}+F_{L-a, b, c}^{\alpha \beta \gamma} \mid L \rightarrow \infty \\
& =F_{1}^{P}+\eta_{\beta} F_{1}^{S_{y}}+\eta_{\gamma} F_{1}^{S_{z}}+\eta_{\beta} \eta_{\gamma} F_{1}^{E_{y z}} \tag{2}
\end{align*}
$$

where $\alpha, \beta, \gamma=D, N, M$ and

$$
\eta_{D}=-1, \eta_{N}=1, \eta_{M}=1
$$

4 kinds of closed paths
When B.C. at $x=0, a$ are fixed

(1) Solid red $=F^{M N N}$, dashed red $=F^{M M N}$, solid black $=F^{M M M}$, solid green $=F^{M D N}$, dashed green $=F^{M M D}$ and solid blue $=F^{M D D}$.
(2) As $\eta \rightarrow 0$, all piston forces reduce to parallel plates; while as $\eta \rightarrow \infty$, all piston forces go to 0 .
(3) When B.C. at $x=0, a$ are both Dirichlet or both Neumann, the piston forces will be always attractive no matter what B.C. are on other sides. when mixed B.C. are at $x=0$, a, the piston force will be always repulsive.
(4) $\left|F_{\text {piston }}^{P}\right|>\left|F_{\text {piston }}^{S_{y}}\right|>\left|F_{\text {piston }}^{E_{y z}}\right|, F_{\text {piston }}^{P}$ are dominant.

Hertz potential

- EM field can be represented by the 4 -vector $(\Phi, \mathbf{A}), \mathbf{E}$ and \mathbf{B} can then be expressed as

$$
\begin{align*}
& \mathbf{E}=-\nabla \Phi-\partial_{t} \mathbf{A} \\
& \mathbf{B}=\nabla \times \mathbf{A} \tag{3}
\end{align*}
$$

- However, that is not the only way to express EM field. Define Herta potential as below

$$
\begin{equation*}
(\Phi, \mathbf{A})=\left(-\nabla \cdot \Pi_{e}, \partial_{t} \Pi_{e}+\nabla \times \Pi_{m}\right) \tag{4}
\end{equation*}
$$

- For a highly symmetric geometry such as rectangular cavity, we can choose the Hertz potentials as $\Pi_{e}=\varphi \overrightarrow{\mathbf{e}}_{3}$ and $\Pi_{m}=\psi \vec{e}_{3}$.

$$
\begin{align*}
& (\Phi, \mathbf{A})=\left(-\partial_{3} \phi, \partial_{2} \psi,-\partial_{1} \psi, \partial_{0} \varphi\right) \\
& \mathbf{E}=-\nabla \Phi-\partial_{t} \mathbf{A}=\left(\partial_{1} \partial_{3} \phi-\partial_{0} \partial_{2} \psi, \partial_{2} \partial_{3} \phi+\partial_{0} \partial_{1} \psi, \partial_{3}^{2} \phi-\partial_{0}^{2} \phi\right) \tag{5}\\
& \mathbf{B}=\nabla \times \mathbf{A}=\left(\partial_{0} \partial_{2} \phi-\partial_{1} \partial_{3} \psi,-\partial_{0} \partial_{1} \phi+\partial_{2} \partial_{3} \psi, \partial_{3}^{2} \psi-\partial_{0}^{2} \psi\right)
\end{align*}
$$

EM cavity with all faces conducting

- There are 2 kinds of B.C. for EM field:
(1) Conducting B.C. (CBC): $E_{t}=0, B_{n}=0$ on the boundary
(2) Permeable B.C. (PBC): $E_{n}=0, B_{t}=0$ on the boundary.
- B.C. of \mathbf{E} and $\mathbf{B} \Longrightarrow$ B.C. of Hertz potential ϕ and ψ

$$
\begin{align*}
\left.B_{x}\right|_{x=0, a}=0 & E_{y}=\left.E_{z}\right|_{x=0, a}=0 \\
\left.B_{y}\right|_{y=0, b}=0 & E_{x}=\left.E_{z}\right|_{y=0, b}=0 \tag{6}\\
\left.B_{z}\right|_{z=0, c}=0 & E_{x}=\left.E_{y}\right|_{z=0, c}=0 \\
\left.\phi_{x}\right|_{x=0, a}=0 & \left.\partial_{x} \psi_{x}\right|_{x=0, a}=0 \\
\left.\phi_{y}\right|_{y=0, b}=0 & \left.\partial_{y} \psi_{y}\right|_{y=0, b}=0 \tag{7}\\
\left.\partial_{z} \phi_{z}\right|_{z=0, c}=0 & \left.\psi_{z}\right|_{z=0, c}=0
\end{align*}
$$

- The 2 Hertz potential are $\phi=\phi^{D D N}$ and $\psi=\psi^{N N D}$
- $E_{\text {cavity }}^{C C C}=\frac{1}{2}\left(\mathbf{E}^{2}+\mathbf{B}^{2}\right)=E_{\text {cavity }}^{D D N}+E_{\text {cavity }}^{N N D}$

Foundation of Closed Path Approach Scalar Rectangular Cavity and Piston EM Rectangular Cavity and Piston

Boundary condition equivalence

- If we replace CBC by PBC and replace PBC by CBC, then the two scalar Hertz potentials exchange to each other $(\phi, \psi) \rightarrow(\psi, \phi)$, which makes \mathbf{E} and \mathbf{B} exchange their values but keeps the energy density $\varepsilon=\frac{1}{2}\left(\mathbf{E}^{2}+\mathbf{B}^{2}\right)$ unchanged.
- A straightforward conclusion would be $E_{\text {cavity }}^{C C C}=E_{\text {cavity }}^{P P P}$ and therefore $F_{\text {piston }}^{C C C}=F_{\text {piston }}^{P P P}$.
- Similar as scalar piston, all a-dependent terms (if appearing) are: $F^{P}, \eta_{\beta} F^{S_{y}}, \eta_{\gamma} F^{S_{z}}, \eta_{\beta} \eta_{\gamma} F^{E_{y z}}$
it has nothing to do with η_{α}, so B.C. at $x=0$, a changing from CBC to PBC won't change the piston force, $F_{\text {piston }}^{C \beta \gamma}=F_{\text {piston }}^{P \beta \gamma}$.
- Therefore $F^{C C C}=F^{P C C}$ and $F^{P P P}=F^{C P P}$
- So far, without any calculation, we know that

$$
F^{C C C}=F^{P P P}=F^{C P P}=F^{P C C}=F^{D D N}+F^{D N D}
$$

Translate EM piston to Scalar Pistons

- It turns out that a EM piston force can be always translated to 2 scalar piston forces, determined by the Hertz potential.
- $F^{C C C}=F_{1}^{D D N}+F_{1}^{D N D}$
$F^{C P C}=F_{1}^{D D D}+F_{1}^{N N N}$
$F^{C M C}=F_{2}^{N M N}+F_{2}^{D M D}$
$F^{C M M}=2 F_{3}^{N M M}$
$F^{M C C}=F_{2}^{M D N}+F_{2}^{M N D}$
$F^{M P C}=F_{2}^{M D D}+F_{2}^{M N N}$
$F^{M M C}=F_{3}^{M M N}+F_{3}^{M M D}$
$F^{M M M}=2 F_{4}^{M M M}$
- The piston force of EM piston is closely related to the piston forces of 2 corresponding scalar piston by use of the Hertz potentials.
- Cylinder Kernel \Longrightarrow Energy Density \Longrightarrow Total Energy \Longrightarrow Casimir Force of a cavity \Longrightarrow Casimir force of a piston

