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Motivation

Introduction

We begin considering the second order differential operator given
by

L = − ∂2

∂x2
+ σδ(x − a) (1)

And the eigenvalue problem

Lµk = λ2
kµk (2)

where µk is continuous in [0, L] and µk(0) = µk(L) = 0
Note that the eigenvalues are the λ2

k not the λk .
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Solution to the Equation

Solution to the Equation

Solving the differential equation for the region 0 < x < a gives

µ1,k(x) = A sin(λkx) (3)

and for the region a < x < L we have

µ2,k(x) = B sin(λk(L − x)) (4)
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Solution to the Equation

We require the function µk to be continuous and to have a jump
discontinuity at x = a in the derivative due to the δ(x − a) term in
the differential equation. We can restate this by

A sin(λka) = B sin(λk(L − a))

−Aλk cos(λka) − λk cos(λk(L − a)) = σµ(a)
(5)

which, after normalizing to µ(a) = 1 leds the eigenvalues to satisfy
the equation

σ + λ cot(λa) + λ cot(λ(L − a)) = 0 (6)
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Associated Zeta Function

Contour Integration

As usual, we define the associated Zeta function to this differential
operator as

ζL(s) =
∞∑

k=1

λ−2s
k (7)

and our aim is to use the Cauchy’s Residue Theorem (or the
Argument Principle) to describe the Zeta function, so we look for
a suitable function g(λ) that has residue of 1 at every λk so that
λ−2sg(λ) has residue and by Cauchy’s Residue Theorem

ζL(s) =

∫
γ
λ−2sg(λ)dλ (8)

for a suitable path γ.
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Associated Zeta Function

Consider
F (λ) = σ + λ cot(λa) + λ cot(λ(L − a)) (9)

then, we have that

F ′(λ)

F (λ)
=

d

dλ
ln(F (λ)) (10)

has residue 1 at every λk , so we can use it for our goal for a γ
enclosing the λk ’s. We can take γ to enclose the positive reals
bigger or equal than the λk ’s, but this will count extra terms not
originally wanted, i.e when

λ =
nπ

a
λ =

nπ

L − a
(11)

so then, we have to substract back these extra contributions.
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Convergence Region

Convergence Region

For analyzing the region where the integral representation of the
Zeta function is convergent, we discuss the behavior of F when
|λ| → 0 and |λ| → ∞ for λ ∈ γ. Our ultimate goal is to deform
the path into the imaginary axis, so we analyse λ = ix , for x ∈ R.
Thus F has the form

F (ix) = σ + x coth(ax) + x coth((L − a)x) (12)

and hence, we have that for x → 0

F (ix) ∼ σ +
1

a
+

1

L − a
+

L

3
x2 (13)

and for x → ∞
F (ix) ∼ 2x + σ (14)
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Convergence Region

Therefore for small x ,the integral is well defined for

Re(s) < 1 (15)

while for large values of x , the integral converges for

Re(s) > 0 (16)

so the integral expression will converge for 0 < Re(s) < 1.
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Contour Deformation

Contour Deformation

Now, we can deform the path γ to be the imaginary axis, since
there are no other poles in the Re(s) ≥ 0 but since there is a pole
at λ = 0, we have to analyze the behavior of the integral near zero,
and for doing this, consider∫

Cε

dλλ−2s d

dλ
lnF (λ) (17)

where Cε is the circle given by λ = εe iθ, where π/2 ≤ θ ≤ π/2.
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Contour Deformation

The power series expansion for F (λ) near zero is given by

F (λ) =

(
σ +

1

a
+

1

L − a

)
− L

3
λ2 + O(λ4) (18)

and hence, the integral over Cε is∫ π/2

−π/2
dθεie iθε−2se−2siθ d

dεe iθ
lnF (εe iθ)

= − icε−2s+2 sin((1 − s)π)

(1 − s)
+ O(ε2)

(19)

where c =
2aL(L − a)

3(L − a2σ + aLσ)
and hence in 0 < Re(s) < 1∫

Cε

dλλ−2s d

dλ
lnF (λ) → 0 (20)

as ε → 0.
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Phase conditions

Phase conditions

Thus, we can deform γ to be the imaginary axis passing through
zero. As λ approaches the positive imaginary axis, it has a phase

of e iπ/2, thus, λ−2s =
(
e iπ/2x

)−2s
= e−iπsx−2s , where x ∈ R+.

Likewise, for λ approaching the negative imaginary axis, the phase

is e−iπ/2 and λ−2s =
(
e−iπ/2x

)−2s
= e iπsx−2s for x a positive real.

Pedro Fernando Morales Baylor University

Casimir with Delta Potentials



One Dimensional Case Two Dimensional Case

Phase conditions

Thus,∫
γ
dλλ−2s d

dλ
ln F (λ) =

∫ 0

∞
dxe−iπsx−2s d

dx
lnF (ix)

+

∫ ∞

0
dxe iπsx−2s d

dx
lnF (ix)

= 2i sin(πs)

∫ ∞

0
dxx−2s d

dx
lnF (ix) (21)

and the Zeta function is given by

ζL(s) =
sin(πs)

π

∫ ∞

0
x−2sdx

d

dx
lnF (ix)−extra contributions (22)
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Zeta Function

Zeta Function

The extra contributions are given by

∞∑
n=1

(πn

a

)−2s
+

∞∑
n=1

(
πn

L − a

)−2s

=

((π

a

)−2s
+

(
π

L − a

)−2s
)

ζ(2s)

(23)
and since ln(F (λ)) has residue −1 at this values, we have that the
Zeta function in the region 0 < Re(s) < 1 takes the form

ζL(s) =
sin(πs)

π

∫ ∞

0
dxx−2s d

dx
ln(F (ix))

+

((π

a

)−2s
+

(
π

L − a

)−2s
)

ζ(2s) (24)
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Analitic Continuation

Analitic Continuation

We have to improve the behavior at infinity of the integrand, for
this we use the asymptotic behavior at infinity∫ ∞

0
dxx−2s d

dx
ln(F (ix) =

∫ ∞

0
dxx−2s d

dx
ln

(
F (ix)

2x + σ

)
+

∫ ∞

0
dxx−2s d

dx
ln(2x + σ)

=

∫ ∞

0
dxx−2s d

dx
ln

(
F (ix)

2x + σ

)
+

22s−1σ−2sπ

sin(2πs)
(25)

for 0 < Re(s) < 1/2 and hence, doing the analytic continuation,
the Zeta function can be written as

ζL(s) =
sin(πs)

π

∫ ∞

0
dxx−2s d

dx
ln

(
F (ix)

2x + σ

)
+

22s−1σ−2s

cos(πs)

+

((π

a

)−2s
+

(
π

L − a

)−2s
)

ζ(2s)
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Operator Determinant

Operator Determinant

Evaluating the operator determinant taking the derivative with
respect to s and the limit as s → 0,we have that

ζ ′L(0) = − ln (L + a(L − a)σ) − ln 2 (27)
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Associated Force

Associated Force

We have that the associated force of the system is given by

F = −1

2

∂

∂a
ζL(−1/2) (28)

which gives

F =
1

2π

∂

∂a

∫ ∞

0
dxx

d

dx
ln

(
F (ix)

2x + σ

)
− L(L − 2a)π

24a2(L − a)2
(29)

which after applying integration by parts becomes
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Associated Force

F =
1

2π

∂

∂a

(
x ln

(
F (ix)

2x + σ

)∣∣∣∣∞
0

−
∫ ∞

0
dx ln

(
F (ix)

2x + σ

))
− L(L − 2a)π

24a2(L − a)2

= − 1

2π

∂

∂a

(∫ ∞

0
dx ln

(
F (ix)

2x + σ

))
+

1

2π

∂

∂a

(
π2L

12a(L − a)

)
= − 1

2π

∂

∂a

(∫ ∞

0
dx ln

(
F (ix)

2x + σ

))
+

1

2π

∂

∂a

∫ ∞

0
ln

(
coth

(
3a(L − a)

2L
x

))
dx

(30)
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Associated Force

So the force is given by

F = − 1

2π

∂

∂a

∫ ∞

0
ln

σ + x coth(ax) + x coth((L − a)x)

(2x + σ) coth
(

3a(L−a)
2L x

)
 dx

(31)
and when doing the numerical approach we have the following
graph
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Figure: Casimir ForcePedro Fernando Morales Baylor University

Casimir with Delta Potentials



One Dimensional Case Two Dimensional Case

Associated Force

Trying to determine the sign of the force analitically, since the are
two oposite terms , one due to the contour integration, and the
other one because of the extra contributions which behave like

0.2 0.4 0.6 0.8 1.0
a

-2

-1

1

2

Force

Figure: Individual Terms
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Associated Force

And the integrand behavior is also oscillatory, it does not have a
the same sign in each half of the interval
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IntegrandHfixed xL

Figure: Integrand Behavior
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Associated Force

And we have that the energy will have this shape

0.2 0.4 0.6 0.8 1.0
a

-2.5

-2.0

-1.5

-1.0

Energy

Figure: Casimir Energy
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Two Dimensional Case

Like in the previous consideration, we start analyzing the second
order differential operator

L = − ∂2

∂x2
− ∂2

∂y2
+ σδ(x − a) (32)

which has eigenvalues λ2
k and eigenfunctions µλk

Lµλk
= λ2

kµλk
(33)
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Requiring also the continuity and the jump of the derivative at
x = a leads to a solution

µ1,λk
= A sin(

√
λ2

k − C 2x) sin(Cy)

µ2,λk
= B sin(

√
λ2

k − C 2(L − x)) sin(Cy)
(34)

where
C =

πn

M
(35)

where n ∈ N and each n defines a mode in the solution
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Associated Zeta Function

Associated Zeta Function

As before, after normalizing the constants, we have that the λk ’s
satisfy the equation

F (ν) = σ + ν cot(νa) + ν cot(ν(L − a)) = 0 (36)

where
λ2 = ν2 +

π

M
n2 (37)

hence, the associated zeta function can be written as

ζL(s) =
∞∑

k=1

λ−2s
k =

∞∑
n=1

∞∑
m=1

(
ν2
m +

( π

M
n
)2
)−s

(38)
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Contour Integration

Contour Integration

Therefore, by the discussion in the previous section, we have that

ζL(s) =
1

2πi

∞∑
m=1

∫
γ
dν

(
ν2 +

( π

M
n
)2
)

d

dν
ln (F (ν)) (39)

where γ is a path that encloses the values of νm but misses where
F is not defined.
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Contour Integration

For a fixed n, the expression∫
γ
dν

(
ν2 +

( π

M
n
)2
)

d

dν
ln (F (ν)) (40)

converges when Re(s) > 0. Now the behavior near zero does not
affect the convergence of (40), but the behavior near iπn/M does.
Near this, (40) will converge for Re(s) < 1/2.
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Contour Integration

As before, for Cε being the half circle iπn/M + εe iθ, for
−π/2 ≤ θ ≤ π/2, we have that∫

Cε

dν

(
ν2 +

( π

M
n
)2
)−s d

dν
ln (F (ν)) → 0 (41)

as ε → 0
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Phase Conditions

Phase Conditions

Thus, we can deform γ to be the imaginary axis passing thru
±iπn/M. For ν = xe iπ/2, where x ∈ R+, we have that(

ν2 +
(πn

M

)2
)−s

=

((πn

M

)2
− x2

)−s

(42)

which is real for 0 < x < πn/M and has a phase of(
e iπ
)−s

= e−iπs for x > πn/M.

Similarly, for ν = xe−iπ/2, we have that it real for 0 < x < πn/M

and has a phase of
(
e−iπ

)−s
= e iπs for x > πn/M.
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Phase Conditions

Therefore, we have that∫
γ
dν

(
ν2 +

(πn

M

)2
)

d

dν
ln (F (ν))

=

∫ πn/M

∞
dxe−iπs

(
x2 −

(πn

M

)2
)−s d

dx
ln(F (ix))

+

∫ 0

πn/M
dx

((πn

M

)2
− x2

)−s d

dx
ln(F (ix))

+

∫ πn/M

0
dx

((πn

M

)2
− x2

)−s d

dx
ln(F (ix))

+

∫ ∞

πn/M
dxe iπs

(
x2 −

(πn

M

)2
)−s d

dx
ln(F (ix))

=2i sin(πs)

∫ ∞

πn/M
dx

(
x2 −

(πn

M

)2
)−s d

dx
ln(F (ix))

(43)
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Phase Conditions

and therefore the Zeta function takes the form

ζL(s) =
sin(πs)

π

∞∑
n=1

∫ ∞

πn/M
dx

(
x2 −

(πn

M

)2
)−s d

dx
ln(F (ix))

− extra contributions (44)

where the extra contributions are

∞∑
n=1

( ∞∑
m=1

((πm

a

)2
+
(πn

M

)2
)−s

+
∞∑

m=1

((
πm

L − a

)2

+
(πn

M

)2
)−s)

= E

(
s,

π2

a2
,

π2

M2

)
+ E

(
s,

π2

(L − a)2
,

π2

M2

)
(45)

where E is the Epstein Zeta function.
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Phase Conditions

Hence, the Zeta function takes the form

ζL(s) =
sin(πs)

π

∞∑
n=1

∫ ∞

πn/M
dx

(
x2 −

(πn

M

)2
)−s d

dx
ln(F (ix))

+ E

(
s,

π2

a2
,

π2

M2

)
+ E

(
s,

π2

(L − a)2
,

π2

M2

)
(46)
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Behavior Improvement

Behavior Improvement

For improving the convergence of the integral, we can use the
same trick as before, considering the asymptotic behavior of F∫ ∞

πn/M
dx

(
x2 −

(πn

M

)2
)−s d

dx
ln

(
F (ix)

2x + σ

)
+

∫ ∞

πn/M
dx

(
x2 −

(πn

M

)2
)−s d

dx
ln (2x + σ) (47)

but the second integral is a little hard to handle, so instead,
consider the power series expantion of the asymptotic behavior at
infinity

1

2x + σ
=

∞∑
k=1

(−1)k−1 σk−1

2k
x−k (48)
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Behavior Improvement

Instead of using the 2x + σ asymptote, we start substracting a
couple of terms of the series expantion, so we have that for
−1/2 < Re(s)

ζL(s) =
sin(πs)

π

∞∑
n=1

∫ ∞

πn/M
dx

(
x2 −

(πn

M

)2
)−s

×
(

d

dx
ln F (ix) −

(
x−1 − σx−2

2

))
+
( π

M

)−2s
ζ(2s)− σ sin(πs)

2π

( π

M

)−2s−1
ζ(2s +1)B(1− s, s +1/2)

+ E

(
s,

π2

a2
,

π2

M2

)
+ E

(
s,

π2

(L − a)2
,

π2

M2

)
(49)
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Operator Determinant

Operator Determinant

Therefore, it is possible to evaluate the operator determinant that
is

ζ ′L(0) =
∞∑

n=1

(
ln
(
F
(
i
πn

M

))
− ln

(πn

M

)
− σ

2

(
M

πn

))
− ln(2M)

− σM

2π

(
3γ + 2 ln(M) − 2 ln(π) +

1√
π

Γ′(1/2)

)
+

∞∑
n=1

ln
(
1 − e−

2Mn
a

)
+

Mπ

12a
+

a2 ln(2π)

2π2

+
∞∑

n=1

ln
(
1 − e−

2Mn
L−a

)
+

Mπ

12(L − a)
+

(L − a)2 ln(2π)

2π2

(50)
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Casimir Force

Casimir Force

For calculating the behavior at s = −1/2, we need to consider
some extra terms so that the Zeta function converge at s = −1/2.
Taking the asymptotic expantion of the infitity behavior of F up to
3 terms gives

ζL(s) =
sin(πs)

π

∞∑
n=1

∫ ∞

πn/M
dx

(
x2 −

(πn

M

)2
)−s ( d

dx
lnF (ix) −

(
x−1 − σx−2

2
+

σ2

4
x−3

))
+
( π

M

)−2s
ζ(2s)− σ sin(πs)

2π

( π

M

)−2s−1
ζ(2s +1)B(1− s, s +1/2)

+
( π

M

)−2(s+1)
ζ(2s+2)s+E

(
s,

π2

a2
,

π2

M2

)
+E

(
s,

π2

(L − a)2
,

π2

M2

)
(51)
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Casimir Force

and hence the force is given by

F = −1

2

∂

∂a
ζL(−1/2) =

1

2

∂

∂a

1

π

∞∑
n=1

∫ ∞

πn/M
dx

(
x2 −

(πn

M

)2
)1/2

×
(

d

dx
lnF (ix) −

(
x−1 − σx−2

2
+

σ2

4
x−3

))
− 1

2

∂

∂a
E

(
−1

2
,
π2

a2
,

π2

M2

)
− 1

2

∂

∂a
E

(
−1

2
,

π2

(L − a)2
,

π2

M2

)
(52)
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