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One Dimensional Case

Motivation

Introduction

We begin considering the second order differential operator given

by
2
L:—ﬁ—l—aé(x—a) (]_)
And the eigenvalue problem
Lik = Afpix (2)

where g is continuous in [0, L] and px(0) = uk(L) =0
Note that the eigenvalues are the )\i not the \g.
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One Dimensional Case

Solution to the Equation

Solution to the Equation

Solving the differential equation for the region 0 < x < a gives
pk(x) = Asin(Agx) (3)
and for the region a < x < L we have

p2.k(x) = Bsin(Ag(L — x)) (4)
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One Dimensional Case
Solution to the Equation

We require the function py to be continuous and to have a jump
discontinuity at x = a in the derivative due to the §(x — a) term in
the differential equation. We can restate this by

Asin(Aga) = Bsin(Ax(L — a))

—AXg cos(Aka) — Ak cos(Ak(L — a)) = op(a) (5)

which, after normalizing to p(a) = 1 leds the eigenvalues to satisfy
the equation

o + Acot(Aa) + Acot(A(L—a)) =0 (6)
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One Dimensional Case

Associated Zeta Function

Contour Integration

As usual, we define the associated Zeta function to this differential
operator as

OED PP (7)
k=1

and our aim is to use the Cauchy's Residue Theorem (or the
Argument Principle) to describe the Zeta function, so we look for
a suitable function g(\) that has residue of 1 at every Ak so that
A"25g()) has residue and by Cauchy's Residue Theorem

u(9) = [ X g ®)

for a suitable path 7.
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One Dimensional Case
Associated Zeta Function

Consider
F()\) = o + Acot(Aa) + Acot(A(L — a)) (9)
then, we have that
F'(A\) d
FOO ~ dn In(F(X)) (10)

has residue 1 at every Ak, so we can use it for our goal for a ~y
enclosing the Ax's. We can take v to enclose the positive reals
bigger or equal than the A\t's, but this will count extra terms not
originally wanted, i.e when

(11)

so then, we have to substract back these extra contributions.
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One Dimensional Case

Convergence Region

Convergence Region

For analyzing the region where the integral representation of the
Zeta function is convergent, we discuss the behavior of F when
[A| = 0 and |A\] — oo for A € v. Our ultimate goal is to deform
the path into the imaginary axis, so we analyse A\ = ix, for x € R.
Thus F has the form

F(ix) = 0 4+ x coth(ax) + x coth((L — a)x) (12)

and hence, we have that for x — 0

. 11 L,
F(IX)NU+3+E+§X (13)

and for x — oo
F(ix) ~2x+o (14)
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One Dimensional Case
Convergence Region

Therefore for small x,the integral is well defined for

Re(s) < 1 (15)
while for large values of x, the integral converges for

Re(s) >0 (16)

so the integral expression will converge for 0 < Re(s) < 1.
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One Dimensional Case

Contour Deformation

Contour Deformation

Now, we can deform the path « to be the imaginary axis, since
there are no other poles in the Re(s) > 0 but since there is a pole
at A = 0, we have to analyze the behavior of the integral near zero,
and for doing this, consider

d
dI\"— In F(\ 17
[ fmFo) (17)

where C, is the circle given by X\ = ee’®, where 7/2 < 6 < /2.
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One Dimensional Case
Contour Deformation
The power series expansion for F(\) near zero is given by
1 1 L

F(\) = (a + =+ a) - §A2 +0(\Y (18)

and hence, the integral over C, is

w/2 d )
/ dfeie’® 25 e= 2510 = In F(ee™)

—7/2 dee' (19)
725+25in((1 B S)ﬂ-) + 0(62)

(1-s)

— ice

2al(L —
where ¢ = 30 j 3(20 —i—aa)La) and hence in 0 < Re(s) < 1
d
dM"—1InF()\) — 0 20
[ i FQ) (20)
as e — 0.
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One Dimensional Case

Phase conditions

Phase conditions

Thus, we can deform  to be the imaginary axis passing through
zero. As X approaches the positive imaginary axis, it has a phase
of e™/2, thus, A2 = (e'™/2x) 7% _ emimx=25 where x € R
Likewise, for A approaching the negative imaginary axis, the phase
is e ™/2 and A7 = (e_i”/2x) T e’ x =25 for x a positive real.
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One Dimensional Case
Phase conditions
Thus,
0 d 0 , d
/y dAN™ Sﬁ In F(A\) = / dxe_”rsx_zsd— In F(ix)

00 X

+/0 dxe"“x*%di)l( In F(ix)

o d
= 2isin(7rs)/ dxx 25— In F(ix) (21)
0 dx

and the Zeta function is given by

: o d
Ci(s) = sin(rs) / x725dxd— In F(ix)—extra contributions (22)
0

™ X
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One Dimensional Case

Zeta Function

Zeta Function

The extra contributions are given by

i (T)zs+§ ([i) - ((Z)zs ¥ (J)) (@9)
(23

and since In(F()\)) has residue —1 at this values, we have that the
Zeta function in the region 0 < Re(s) < 1 takes the form

T dx

Cu(s) = Sn(Ts) /O " a2 L in(F(ix))
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One Dimensional Case

Analitic Continuation

Analitic Continuation

We have to improve the behavior at infinity of the integrand, for
this we use the asymptotic behavior at infinity

e d . e d F(ix)
d 257| F — d 257|
/0 o n(F(ix) /0 ho = In <2x+0>

dXX_QSdi In(2x + o)

0

F(ix) 2251525

/ o 7| <2x—|—a>jL sin(2ms)
(25)

for 0 < Re(s) < 1/2 and hence, doing the analytic continuation,
the Zeta function can be written as

. 0 : 2s—1 __—2s
Culs) = smgzrs) /0 dxx_2sdi)'< In ( F(ix) > n 27t

2x+o cos(7s)
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One Dimensional Case

Operator Determinant

Operator Determinant

Evaluating the operator determinant taking the derivative with
respect to s and the limit as s — 0,we have that

¢;(0)=—In(L+a(L —a)o)—In2 (27)
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One Dimensional Case

Associated Force

Associated Force

We have that the associated force of the system is given by

10
F=-55,0(-1/2) (28)
which gives
(ix) L(L—2a)n
27”93/ o 7|n <2x+a>  2422(L — a)2 (29)

which after applying integration by parts becomes
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One Dimensional Case
Associated Force

“zea (1 (55 ), e (5s))
2L4E31L2(_L2—a?97)T2

_ zlﬂaaa (/0: dIn (;fﬁ)) + 217rf?a (1227(TEL—=?)>
= %% (/0 dxln (23?2))
D o (H2) )

(30)
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One Dimensional Case
Associated Force

So the force is given by

. _2180 /oo o x coth(ax) + xc:’il:((s — a)x) dx
T oa alL—a
0 (2x 4+ o) coth (TX)

(31)
and when doing the numerical approach we have the following
graph

Force
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One Dimensional Case
Associated Force

Trying to determine the sign of the force analitically, since the are
two oposite terms , one due to the contour integration, and the
other one because of the extra contributions which behave like

Force
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One Dimensional Case

Associated Force
And the integrand behavior is also oscillatory, it does not have a
the same sign in each half of the interval
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Figure: Integrand Behavior
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One Dimensional Case
Associated Force
And we have that the energy will have this shape

Energy

-10
-15F

20}

‘ ‘ ‘ ‘ a
I 02 04 06 08 il

Figure: Casimir Energy
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Two Dimensional Case

Two Dimensional Case

Like in the previous consideration, we start analyzing the second
order differential operator

0? 0?
Lf—ﬁ—aiyz—i-ad(x—a) (32)

which has eigenvalues )\i and eigenfunctions 1y,

Lpy, = >‘12<NAk (33)
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Two Dimensional Case

Requiring also the continuity and the jump of the derivative at
x = a leads to a solution

p1,5, = Asin(1/A2 — C2x)sin(Cy)

(34)
pox, = Bsin(1/A2 — C?(L — x))sin(Cy)
where n

where n € N and each n defines a mode in the solution
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Two Dimensional Case

Associated Zeta Function

Associated Zeta Function

As before, after normalizing the constants, we have that the Ax's
satisfy the equation

F(v) = o+ vcot(rva) + veot(v(L —a)) =0 (36)
where -
N =124 an (37)

hence, the associated zeta function can be written as

Q=3 =33 (uﬁq + (;:’n)2> T @)
k=1

n=1 m=1
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Two Dimensional Case

Contour Integration

Contour Integration

Therefore, by the discussion in the previous section, we have that

Ci(s) = % i/vdy (,,2 n <A7;n>2> d% n(Fv))  (39)

where ~ is a path that encloses the values of v, but misses where
F is not defined.
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Two Dimensional Case
Contour Integration

For a fixed n, the expression

/de <y2 n (;;n>2> dily In (F(1)) (40)

converges when Re(s) > 0. Now the behavior near zero does not
affect the convergence of (40), but the behavior near imn/M does.
Near this, (40) will converge for Re(s) < 1/2.
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Two Dimensional Case
Contour Integration

As before, for C. being the half circle imn/M + eeie, for
—7m/2 <6 < 7/2, we have that

/Ce dv <,,2 + (;’n)2> - d% In(F(v)) — 0 (41)

ase—0
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Two Dimensional Case

Phase Conditions

Phase Conditions

Thus, we can deform  to be the imaginary axis passing thru
+imn/M. For v = xe”r/z, where x € RT, we have that

() =G 2)
<V+(I\/I ) _<M x (42)
which is real for 0 < x < wn/M and has a phase of
s »
(™) " = e '™ for x > wn/M.
Similarly, for v = xe_i”/Q, we have that it real for 0 < x < wn/M
and has a phase of (e_"”)_S = '™ for x > 7n/M.
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Two Dimensional Case
Phase Conditions

Therefore, we have that
Ldu <u2 + (7;/’;)2> diy In (F(»))

:/O:n/M dxe i <x2 - (7;/';)2> N d% In(F(ix))
()
“f M ((7;;)2 - x) 9 In(F(i)
L (e G

“Disin(rs) /:O/M d <x2 _ (7;/’,’)2> B dii In(F(ix)
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Two Dimensional Case
Phase Conditions

and therefore the Zeta function takes the form

Gu(s) = SnTs) i/m dx <x2 = (7\/',')2> B dii In(F(ix))

T wn/M

n=1

— extra contributions (44)

where the extra contributions are

S(E () (@) 6))

n=1 \m=1 m=1

71'2 7T2 7T2 71'2
—E(s, 5%~ ) +E(s,——,— ] (4

where E is the Epstein Zeta function.
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Two Dimensional Case
Phase Conditions

Hence, the Zeta function takes the form

Cu(s) =S'” Z/M/M < (7\;>2>Si<ln(F(ix))

2 .2 2 2
™ Y T ™
E(s, % S ) +E(s,——,— ) (4
+ <s,32,M2>+ <S’(L—a)2’l\/l2> (46)
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Two Dimensional Case

Behavior Improvement

Behavior Improvement

For improving the convergence of the integral, we can use the
same trick as before, considering the asymptotic behavior of F

o, 2 —S .
/ dx (X2 — (W—n) > a In ( F(ix) >
7n/M M dx 2x+ o
> 2 (T2 T d
—|—/7m/de (X (M) > dXIn(2x—|—J) (47)
but the second integral is a little hard to handle, so instead,

consider the power series expantion of the asymptotic behavior at
infinity

-1

(o0}
k 1‘7 —k
48
2x+0 ; ok X ( )
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Two Dimensional Case
Behavior Improvement

Instead of using the 2x + o asymptote, we start substracting a
couple of terms of the series expantion, so we have that for
—1/2 < Re(s)

Cu(s) = s'”gzrs)g:l/ﬂjl\/’ dx <x2 _ (7;27)2) s

X <CZ’< In F(ix) — (Xl — UX2_2>>
* (%)45 C(25)= USI;(:TS) (%>_25_16(25+ 1)B(1—s,s+1/2)

2 2 2 2

T s T T
E(s, = T ) rE(s, " T ) (49
* <S’a2’/w2>+ <S’(L—a)2’l\/72> (49)
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Two Dimensional Case

Operator Determinant

Operator Determinant

Therefore, it is possible to evaluate the operator determinant that

¢1(0) = il <'n (F (i)~ (1) -3 (iﬁ)) ~ In(2M)

— % <3’y +2In(M) = 2In(7) + \/17?r’(1/2))

o0 2

_2Mn Mm  a%In(27)

F2 (1o ) e
n=1

° 2Mn M (L — 8)2 |n(27r)
! (1 - —L,a)
+; "\t UETI 22

(50)
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Two Dimensional Case

Casimir Force

Casimir Force

For calculating the behavior at s = —1/2, we need to consider
some extra terms so that the Zeta function converge at s = —1/2.
Taking the asymptotic expantion of the infitity behavior of F up to
3 terms gives

CL(s) = SmE:TS) i/ﬂ:,w dx <x2 - (7;\/7)2> N ((Z( In F(ix) — <X1 :

n=1
() =TI () s Ba-ss412)
—2(s+1) 2 2 2 5

(51)
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Two Dimensional Case
Casimir Force

and hence the force is given by

19 191K [ TN
F=—Z2AG(-1/2) == 2 (—
28aCL( /2) 2837rn§_:1/7m/,\,,dx<x (M))

d ) o ox 2 0% g
X (dxlnF(/X)— (x - +TX

10 1 7 7 10 1 72 72
“20a" <‘2732’M2> T20a" <_2’(L—a)2’/w2> (52
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