Semi Transparent Pistons

Pedro Fernando Morales

Baylor University

June 26, 2009

Pedro Fernando Morales

Motivation

Introduction

We begin considering the second order differential operator given by

$$L = -\frac{\partial^2}{\partial x^2} + \sigma \delta(x - a) \tag{1}$$

And the eigenvalue problem

$$L\mu_k = \lambda_k^2 \mu_k \tag{2}$$

where μ_k is continuous in [0, L] and $\mu_k(0) = \mu_k(L) = 0$ Note that the eigenvalues are the λ_k^2 not the λ_k .

Pedro Fernando Morales

Solution to the Equation

Solution to the Equation

Solving the differential equation for the region 0 < x < a gives

$$\mu_{1,k}(x) = A\sin(\lambda_k x) \tag{3}$$

and for the region a < x < L we have

$$\mu_{2,k}(x) = B\sin(\lambda_k(L-x)) \tag{4}$$

Pedro Fernando Morales

We require the function μ_k to be continuous and to have a jump discontinuity at x = a in the derivative due to the $\delta(x - a)$ term in the differential equation. We can restate this by

$$A\sin(\lambda_k a) = B\sin(\lambda_k(L-a))$$

-A\lambda_k cos(\lambda_k a) - \lambda_k cos(\lambda_k(L-a)) = \sigma \mu(a) (5)

which, after normalizing to $\mu(a) = 1$ leds the eigenvalues to satisfy the equation

$$\sigma + \lambda \cot(\lambda a) + \lambda \cot(\lambda(L - a)) = 0$$
(6)

Pedro Fernando Morales

Associated Zeta Function

Contour Integration

As usual, we define the associated Zeta function to this differential operator as

$$\zeta_L(s) = \sum_{k=1}^{\infty} \lambda_k^{-2s} \tag{7}$$

and our aim is to use the Cauchy's Residue Theorem (or the Argument Principle) to describe the Zeta function, so we look for a suitable function $g(\lambda)$ that has residue of 1 at every λ_k so that $\lambda^{-2s}g(\lambda)$ has residue and by Cauchy's Residue Theorem

$$\zeta_L(s) = \int_{\gamma} \lambda^{-2s} g(\lambda) d\lambda \tag{8}$$

for a suitable path γ .

Associated Zeta Function

Consider

$$F(\lambda) = \sigma + \lambda \cot(\lambda a) + \lambda \cot(\lambda(L-a))$$
(9)

then, we have that

$$\frac{F'(\lambda)}{F(\lambda)} = \frac{d}{d\lambda} \ln(F(\lambda))$$
(10)

has residue 1 at every λ_k , so we can use it for our goal for a γ enclosing the λ_k 's. We can take γ to enclose the positive reals bigger or equal than the λ_k 's, but this will count extra terms not originally wanted, i.e when

$$\lambda = \frac{n\pi}{a} \qquad \lambda = \frac{n\pi}{L-a} \tag{11}$$

so then, we have to substract back these extra contributions.

Convergence Region

Convergence Region

For analyzing the region where the integral representation of the Zeta function is convergent, we discuss the behavior of F when $|\lambda| \rightarrow 0$ and $|\lambda| \rightarrow \infty$ for $\lambda \in \gamma$. Our ultimate goal is to deform the path into the imaginary axis, so we analyse $\lambda = ix$, for $x \in \mathbb{R}$. Thus F has the form

$$F(ix) = \sigma + x \coth(ax) + x \coth((L-a)x)$$
(12)

and hence, we have that for $x \rightarrow 0$

$$F(ix) \sim \sigma + \frac{1}{a} + \frac{1}{L-a} + \frac{L}{3}x^2$$
 (13)

and for $x \to \infty$

$$F(ix) \sim 2x + \sigma \tag{14}$$

Pedro Fernando Morales

Therefore for small x, the integral is well defined for

$$\operatorname{Re}(s) < 1 \tag{15}$$

while for large values of x, the integral converges for

$$\operatorname{Re}(s) > 0 \tag{16}$$

so the integral expression will converge for 0 < Re(s) < 1.

Contour Deformation

Contour Deformation

Now, we can deform the path γ to be the imaginary axis, since there are no other poles in the $\operatorname{Re}(s) \geq 0$ but since there is a pole at $\lambda = 0$, we have to analyze the behavior of the integral near zero, and for doing this, consider

$$\int_{C_{\epsilon}} d\lambda \lambda^{-2s} \frac{d}{d\lambda} \ln F(\lambda)$$
(17)

where C_{ϵ} is the circle given by $\lambda = \epsilon e^{i\theta}$, where $\pi/2 \le \theta \le \pi/2$.

Pedro Fernando Morales

Contour Deformation

The power series expansion for $F(\lambda)$ near zero is given by

$$F(\lambda) = \left(\sigma + \frac{1}{a} + \frac{1}{L-a}\right) - \frac{L}{3}\lambda^2 + O(\lambda^4)$$
(18)

and hence, the integral over C_{ϵ} is

$$\int_{-\pi/2}^{\pi/2} d\theta \epsilon i e^{i\theta} \epsilon^{-2s} e^{-2si\theta} \frac{d}{d\epsilon e^{i\theta}} \ln F(\epsilon e^{i\theta})$$

$$= -ic\epsilon^{-2s+2} \frac{\sin((1-s)\pi)}{(1-s)} + O(\epsilon^{2})$$
(19)

where
$$c = \frac{2aL(L-a)}{3(L-a^2\sigma + aL\sigma)}$$
 and hence in $0 < \operatorname{Re}(s) < 1$
$$\int_{C_{\epsilon}} d\lambda \lambda^{-2s} \frac{d}{d\lambda} \ln F(\lambda) \to 0$$
(20)

as $\epsilon \rightarrow 0$.

Pedro Fernando Morales

Phase conditions

Phase conditions

Thus, we can deform γ to be the imaginary axis passing through zero. As λ approaches the positive imaginary axis, it has a phase of $e^{i\pi/2}$, thus, $\lambda^{-2s} = (e^{i\pi/2}x)^{-2s} = e^{-i\pi s}x^{-2s}$, where $x \in \mathbb{R}^+$. Likewise, for λ approaching the negative imaginary axis, the phase is $e^{-i\pi/2}$ and $\lambda^{-2s} = (e^{-i\pi/2}x)^{-2s} = e^{i\pi s}x^{-2s}$ for x a positive real.

Phase conditions

Thus,

$$\int_{\gamma} d\lambda \lambda^{-2s} \frac{d}{d\lambda} \ln F(\lambda) = \int_{\infty}^{0} dx e^{-i\pi s} x^{-2s} \frac{d}{dx} \ln F(ix) + \int_{0}^{\infty} dx e^{i\pi s} x^{-2s} \frac{d}{dx} \ln F(ix) = 2i \sin(\pi s) \int_{0}^{\infty} dx x^{-2s} \frac{d}{dx} \ln F(ix)$$
(21)

and the Zeta function is given by

$$\zeta_L(s) = \frac{\sin(\pi s)}{\pi} \int_0^\infty x^{-2s} dx \frac{d}{dx} \ln F(ix) - \text{extra contributions} \quad (22)$$

Pedro Fernando Morales

Zeta Function

Zeta Function

The extra contributions are given by

$$\sum_{n=1}^{\infty} \left(\frac{\pi n}{a}\right)^{-2s} + \sum_{n=1}^{\infty} \left(\frac{\pi n}{L-a}\right)^{-2s} = \left(\left(\frac{\pi}{a}\right)^{-2s} + \left(\frac{\pi}{L-a}\right)^{-2s}\right) \zeta(2s)$$
(23)

and since $\ln(F(\lambda))$ has residue -1 at this values, we have that the Zeta function in the region $0 < \operatorname{Re}(s) < 1$ takes the form

$$\zeta_L(s) = \frac{\sin(\pi s)}{\pi} \int_0^\infty dx x^{-2s} \frac{d}{dx} \ln(F(ix)) + \left(\left(\frac{\pi}{a}\right)^{-2s} + \left(\frac{\pi}{L-a}\right)^{-2s}\right) \zeta(2s) \quad (24)$$

Pedro Fernando Morales

Analitic Continuation

Analitic Continuation

We have to improve the behavior at infinity of the integrand, for this we use the asymptotic behavior at infinity

$$\int_{0}^{\infty} dx x^{-2s} \frac{d}{dx} \ln(F(ix)) = \int_{0}^{\infty} dx x^{-2s} \frac{d}{dx} \ln\left(\frac{F(ix)}{2x+\sigma}\right) \\ + \int_{0}^{\infty} dx x^{-2s} \frac{d}{dx} \ln(2x+\sigma) \\ = \int_{0}^{\infty} dx x^{-2s} \frac{d}{dx} \ln\left(\frac{F(ix)}{2x+\sigma}\right) + \frac{2^{2s-1}\sigma^{-2s}\pi}{\sin(2\pi s)}$$
(25)

for 0 < Re(s) < 1/2 and hence, doing the analytic continuation, the Zeta function can be written as

$$\zeta_L(s) = \frac{\sin(\pi s)}{\pi} \int_0^\infty dx x^{-2s} \frac{d}{dx} \ln\left(\frac{F(ix)}{2x+\sigma}\right) + \frac{2^{2s-1}\sigma^{-2s}}{\cos(\pi s)}$$

Pedro Fernando Morales

Operator Determinant

Operator Determinant

Evaluating the operator determinant taking the derivative with respect to s and the limit as $s \rightarrow 0$, we have that

$$\zeta_L'(0) = -\ln(L + a(L - a)\sigma) - \ln 2$$
(27)

Pedro Fernando Morales

Associated Force

We have that the associated force of the system is given by

$$F = -\frac{1}{2}\frac{\partial}{\partial a}\zeta_L(-1/2) \tag{28}$$

which gives

$$F = \frac{1}{2\pi} \frac{\partial}{\partial a} \int_0^\infty dx x \frac{d}{dx} \ln\left(\frac{F(ix)}{2x+\sigma}\right) - \frac{L(L-2a)\pi}{24a^2(L-a)^2}$$
(29)

which after applying integration by parts becomes

Pedro Fernando Morales

$$F = \frac{1}{2\pi} \frac{\partial}{\partial a} \left(x \ln \left(\frac{F(ix)}{2x + \sigma} \right) \Big|_{0}^{\infty} - \int_{0}^{\infty} dx \ln \left(\frac{F(ix)}{2x + \sigma} \right) \right)$$
$$- \frac{L(L - 2a)\pi}{24a^{2}(L - a)^{2}}$$
$$= -\frac{1}{2\pi} \frac{\partial}{\partial a} \left(\int_{0}^{\infty} dx \ln \left(\frac{F(ix)}{2x + \sigma} \right) \right) + \frac{1}{2\pi} \frac{\partial}{\partial a} \left(\frac{\pi^{2}L}{12a(L - a)} \right)$$
$$= -\frac{1}{2\pi} \frac{\partial}{\partial a} \left(\int_{0}^{\infty} dx \ln \left(\frac{F(ix)}{2x + \sigma} \right) \right)$$
$$+ \frac{1}{2\pi} \frac{\partial}{\partial a} \int_{0}^{\infty} \ln \left(\coth \left(\frac{3a(L - a)}{2L} x \right) \right) dx$$
(30)

Pedro Fernando Morales

So the force is given by

$$F = -\frac{1}{2\pi} \frac{\partial}{\partial a} \int_0^\infty \ln\left(\frac{\sigma + x \coth(ax) + x \coth((L-a)x)}{(2x+\sigma) \coth\left(\frac{3a(L-a)}{2L}x\right)}\right) dx$$
(31)

and when doing the numerical approach we have the following $\operatorname{\mathsf{graph}}$

Pedro Fernando Morales

Baylor University

Trying to determine the sign of the force analitically, since the are two oposite terms , one due to the contour integration, and the other one because of the extra contributions which behave like

Figure: Individual Terms

Pedro Fernando Morales

And the integrand behavior is also oscillatory, it does not have a the same sign in each half of the interval

Figure: Integrand Behavior

Pedro Fernando Morales

Casimir with Delta Potentials

Baylor University

And we have that the energy will have this shape

Pedro Fernando Morales

Casimir with Delta Potentials

Baylor University

Two Dimensional Case

Like in the previous consideration, we start analyzing the second order differential operator

$$L = -\frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial y^2} + \sigma \delta(x - a)$$
(32)

which has eigenvalues λ_k^2 and eigenfunctions μ_{λ_k}

$$L\mu_{\lambda_k} = \lambda_k^2 \mu_{\lambda_k} \tag{33}$$

Pedro Fernando Morales

Requiring also the continuity and the jump of the derivative at x = a leads to a solution

$$\mu_{1,\lambda_k} = A\sin(\sqrt{\lambda_k^2 - C^2}x)\sin(Cy)$$

$$\mu_{2,\lambda_k} = B\sin(\sqrt{\lambda_k^2 - C^2}(L - x))\sin(Cy)$$
(34)

where

$$C = \frac{\pi n}{M} \tag{35}$$

where $n \in \mathbb{N}$ and each n defines a mode in the solution

Pedro Fernando Morales

Associated Zeta Function

Associated Zeta Function

As before, after normalizing the constants, we have that the λ_k 's satisfy the equation

$$F(\nu) = \sigma + \nu \cot(\nu a) + \nu \cot(\nu(L-a)) = 0$$
(36)

where

$$\lambda^2 = \nu^2 + \frac{\pi}{M} n^2 \tag{37}$$

hence, the associated zeta function can be written as

$$\zeta_L(s) = \sum_{k=1}^{\infty} \lambda_k^{-2s} = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \left(\nu_m^2 + \left(\frac{\pi}{M}n\right)^2 \right)^{-s}$$
(38)

Pedro Fernando Morales

Contour Integration

Contour Integration

Therefore, by the discussion in the previous section, we have that

$$\zeta_L(s) = \frac{1}{2\pi i} \sum_{m=1}^{\infty} \int_{\gamma} d\nu \left(\nu^2 + \left(\frac{\pi}{M}n\right)^2\right) \frac{d}{d\nu} \ln\left(F(\nu)\right)$$
(39)

where γ is a path that encloses the values of ν_m but misses where F is not defined.

For a fixed n, the expression

$$\int_{\gamma} d\nu \left(\nu^2 + \left(\frac{\pi}{M} n \right)^2 \right) \frac{d}{d\nu} \ln \left(F(\nu) \right)$$
(40)

converges when Re(s) > 0. Now the behavior near zero does not affect the convergence of (40), but the behavior near $i\pi n/M$ does. Near this, (40) will converge for Re(s) < 1/2.

As before, for C_{ϵ} being the half circle $i\pi n/M + \epsilon e^{i\theta}$, for $-\pi/2 \le \theta \le \pi/2$, we have that

$$\int_{C_{\epsilon}} d\nu \left(\nu^2 + \left(\frac{\pi}{M}n\right)^2\right)^{-s} \frac{d}{d\nu} \ln\left(F(\nu)\right) \to 0$$
 (41)

as $\epsilon \to 0$

Pedro Fernando Morales

Casimir with Delta Potentials

Baylor University

Phase Conditions

Phase Conditions

Thus, we can deform γ to be the imaginary axis passing thru $\pm i\pi n/M$. For $\nu = xe^{i\pi/2}$, where $x \in \mathbb{R}^+$, we have that

$$\left(\nu^2 + \left(\frac{\pi n}{M}\right)^2\right)^{-s} = \left(\left(\frac{\pi n}{M}\right)^2 - x^2\right)^{-s}$$
(42)

which is real for $0 < x < \pi n/M$ and has a phase of $(e^{i\pi})^{-s} = e^{-i\pi s}$ for $x > \pi n/M$. Similarly, for $\nu = xe^{-i\pi/2}$, we have that it real for $0 < x < \pi n/M$ and has a phase of $(e^{-i\pi})^{-s} = e^{i\pi s}$ for $x > \pi n/M$.

Pedro Fernando Morales

Phase Conditions

Therefore, we have that

$$\int_{\gamma} d\nu \left(\nu^{2} + \left(\frac{\pi n}{M}\right)^{2}\right) \frac{d}{d\nu} \ln \left(F(\nu)\right)$$

$$= \int_{\infty}^{\pi n/M} dx e^{-i\pi s} \left(x^{2} - \left(\frac{\pi n}{M}\right)^{2}\right)^{-s} \frac{d}{dx} \ln(F(ix))$$

$$+ \int_{\pi n/M}^{0} dx \left(\left(\frac{\pi n}{M}\right)^{2} - x^{2}\right)^{-s} \frac{d}{dx} \ln(F(ix))$$

$$+ \int_{0}^{\pi n/M} dx \left(\left(\frac{\pi n}{M}\right)^{2} - x^{2}\right)^{-s} \frac{d}{dx} \ln(F(ix))$$

$$+ \int_{\pi n/M}^{\infty} dx e^{i\pi s} \left(x^{2} - \left(\frac{\pi n}{M}\right)^{2}\right)^{-s} \frac{d}{dx} \ln(F(ix))$$

$$= 2i \sin(\pi s) \int_{\pi n/M}^{\infty} dx \left(x^{2} - \left(\frac{\pi n}{M}\right)^{2}\right)^{-s} \frac{d}{dx} \ln(F(ix))$$
(43)

Pedro Fernando Morales

Phase Conditions

and therefore the Zeta function takes the form

$$\zeta_L(s) = \frac{\sin(\pi s)}{\pi} \sum_{n=1}^{\infty} \int_{\pi n/M}^{\infty} dx \left(x^2 - \left(\frac{\pi n}{M}\right)^2 \right)^{-s} \frac{d}{dx} \ln(F(ix))$$

- extra contributions (44)

where the extra contributions are

$$\sum_{n=1}^{\infty} \left(\sum_{m=1}^{\infty} \left(\left(\frac{\pi m}{a} \right)^2 + \left(\frac{\pi n}{M} \right)^2 \right)^{-s} + \sum_{m=1}^{\infty} \left(\left(\frac{\pi m}{L-a} \right)^2 + \left(\frac{\pi n}{M} \right)^2 \right)^{-s} \right)$$
$$= E \left(s, \frac{\pi^2}{a^2}, \frac{\pi^2}{M^2} \right) + E \left(s, \frac{\pi^2}{(L-a)^2}, \frac{\pi^2}{M^2} \right) \quad (45)$$

where E is the Epstein Zeta function.

Pedro Fernando Morales

Hence, the Zeta function takes the form

$$\zeta_{L}(s) = \frac{\sin(\pi s)}{\pi} \sum_{n=1}^{\infty} \int_{\pi n/M}^{\infty} dx \left(x^{2} - \left(\frac{\pi n}{M}\right)^{2} \right)^{-s} \frac{d}{dx} \ln(F(ix)) + E\left(s, \frac{\pi^{2}}{a^{2}}, \frac{\pi^{2}}{M^{2}}\right) + E\left(s, \frac{\pi^{2}}{(L-a)^{2}}, \frac{\pi^{2}}{M^{2}}\right)$$
(46)

Pedro Fernando Morales

Behavior Improvement

Behavior Improvement

For improving the convergence of the integral, we can use the same trick as before, considering the asymptotic behavior of F

$$\int_{\pi n/M}^{\infty} dx \left(x^2 - \left(\frac{\pi n}{M}\right)^2 \right)^{-s} \frac{d}{dx} \ln \left(\frac{F(ix)}{2x + \sigma} \right) + \int_{\pi n/M}^{\infty} dx \left(x^2 - \left(\frac{\pi n}{M}\right)^2 \right)^{-s} \frac{d}{dx} \ln \left(2x + \sigma \right)$$
(47)

but the second integral is a little hard to handle, so instead, consider the power series expantion of the asymptotic behavior at infinity

$$\frac{1}{2x+\sigma} = \sum_{k=1}^{\infty} (-1)^{k-1} \frac{\sigma^{k-1}}{2^k} x^{-k}$$
(48)

Behavior Improvement

Instead of using the $2x + \sigma$ asymptote, we start substracting a couple of terms of the series expantion, so we have that for -1/2 < Re(s)

$$\zeta_{L}(s) = \frac{\sin(\pi s)}{\pi} \sum_{n=1}^{\infty} \int_{\pi n/M}^{\infty} dx \left(x^{2} - \left(\frac{\pi n}{M}\right)^{2} \right)^{-s} \\ \times \left(\frac{d}{dx} \ln F(ix) - \left(x^{-1} - \frac{\sigma x^{-2}}{2} \right) \right) \\ + \left(\frac{\pi}{M} \right)^{-2s} \zeta(2s) - \frac{\sigma \sin(\pi s)}{2\pi} \left(\frac{\pi}{M} \right)^{-2s-1} \zeta(2s+1)B(1-s,s+1/2) \\ + E\left(s, \frac{\pi^{2}}{a^{2}}, \frac{\pi^{2}}{M^{2}} \right) + E\left(s, \frac{\pi^{2}}{(L-a)^{2}}, \frac{\pi^{2}}{M^{2}} \right)$$
(49)

Pedro Fernando Morales

Operator Determinant

Operator Determinant

Therefore, it is possible to evaluate the operator determinant that is

$$\zeta_{L}'(0) = \sum_{n=1}^{\infty} \left(\ln \left(F\left(i\frac{\pi n}{M}\right) \right) - \ln \left(\frac{\pi n}{M}\right) - \frac{\sigma}{2} \left(\frac{M}{\pi n}\right) \right) - \ln(2M) \\ - \frac{\sigma M}{2\pi} \left(3\gamma + 2\ln(M) - 2\ln(\pi) + \frac{1}{\sqrt{\pi}}\Gamma'(1/2) \right) \\ + \sum_{n=1}^{\infty} \ln \left(1 - e^{-\frac{2Mn}{a}} \right) + \frac{M\pi}{12a} + \frac{a^{2}\ln(2\pi)}{2\pi^{2}} \\ + \sum_{n=1}^{\infty} \ln \left(1 - e^{-\frac{2Mn}{L-a}} \right) + \frac{M\pi}{12(L-a)} + \frac{(L-a)^{2}\ln(2\pi)}{2\pi^{2}}$$

(50)

Pedro Fernando Morales

Casimir Force

Casimir Force

For calculating the behavior at s = -1/2, we need to consider some extra terms so that the Zeta function converge at s = -1/2. Taking the asymptotic expansion of the infitity behavior of F up to 3 terms gives

$$\zeta_{L}(s) = \frac{\sin(\pi s)}{\pi} \sum_{n=1}^{\infty} \int_{\pi n/M}^{\infty} dx \left(x^{2} - \left(\frac{\pi n}{M}\right)^{2} \right)^{-s} \left(\frac{d}{dx} \ln F(ix) - \left(x^{-1} + \left(\frac{\pi}{M}\right)^{-2s} \zeta(2s) - \frac{\sigma \sin(\pi s)}{2\pi} \left(\frac{\pi}{M}\right)^{-2s-1} \zeta(2s+1)B(1-s,s+1/2) + \left(\frac{\pi}{M}\right)^{-2(s+1)} \zeta(2s+2)s + E\left(s,\frac{\pi^{2}}{a^{2}},\frac{\pi^{2}}{M^{2}}\right) + E\left(s,\frac{\pi^{2}}{(L-a)^{2}},\frac{\pi^{2}}{M^{2}}\right)$$
(51)

Pedro Fernando Morales

Casimir Force

and hence the force is given by

$$F = -\frac{1}{2}\frac{\partial}{\partial a}\zeta_{L}(-1/2) = \frac{1}{2}\frac{\partial}{\partial a}\frac{1}{\pi}\sum_{n=1}^{\infty}\int_{\pi n/M}^{\infty}dx\left(x^{2} - \left(\frac{\pi n}{M}\right)^{2}\right)^{1/2}$$
$$\times \left(\frac{d}{dx}\ln F(ix) - \left(x^{-1} - \frac{\sigma x^{-2}}{2} + \frac{\sigma^{2}}{4}x^{-3}\right)\right)$$
$$-\frac{1}{2}\frac{\partial}{\partial a}E\left(-\frac{1}{2},\frac{\pi^{2}}{a^{2}},\frac{\pi^{2}}{M^{2}}\right) - \frac{1}{2}\frac{\partial}{\partial a}E\left(-\frac{1}{2},\frac{\pi^{2}}{(L-a)^{2}},\frac{\pi^{2}}{M^{2}}\right)$$
(52)

Pedro Fernando Morales

Baylor University