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Purpose and Outline

Purpose

To describe any arbitrary electromagnetic field in a bounded geometry
in terms of two scalar fields, and

To define these fields such that the boundary conditions consist of at
most first-derivatives of the fields.

Outline

1 Review of Electromagnetism and Hertz Potentials in Vector Formalism

2 Overview of Differential Form Formalism

3 Formulation of Electromagnetism in Differential Form Formalism

4 “Scalar” Hertz Potential Examples
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Maxwell’s Equations

Vector Equations

~∇ · ~E = ρ (1)

~∇×~B − ∂t
~E = ~ (2)

~∇ · ~B = 0 (3)

∂t
~B + ~∇×~E = 0 (4)

Constants

For simplicity, take

ε0 = µ0 = c = 1.

Potentials

(3) and (4) imply

~B = ~∇× ~A (5)

~E = −~∇V − ∂t
~A (6)

Charge Conservation

Also note that (1) and (2) imply ∂tρ+ ~∇ · ~ = 0.
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Hertz Potentials

Hertz Potentials

V = −~∇ · ~Πe (7)

~A = ∂t
~Πe + ~∇×~Πm (8)

Inhomogeneous Maxwell Equations

~∇ · (�~Πe) = ρ (9)

~∇×(�~Πm) + ∂t(�~Πm) = ~ (10)

Lorenz Condition

∂tV + ~∇ · ~A = 0

Definition

� = ∂2
t −∇2

Jeff Bouas (Texas A&M University) Hertz potentials in curvilinear coordinates July 9, 2010 4 / 20



Hertz Potentials

From here on, set ρ = 0,~ = ~0.

Equations of Motion

�~Πe = ~∇× ~W + ~∇g + ∂t
~G (11)

�~Πm = −∂t
~W − ~∇w + ~∇×~G (12)

The w and ~W terms come from (9) and (10) just as V and ~A came from
(3) and (4). The g and ~G terms come from relaxing the Lorenz condition.
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Differential Geometry
Let (x0, . . . , xn−1) be the coordinate system on an n-dimensional
manifold. Then we write vectors on that manifold as

~v = v0∂x0 + · · ·+ vn−1∂xn−1 ,

and 1-forms (or covectors) as

v = v0dx0 + · · · vn−1dxn−1.

Example

For Minwoski space, we can write the electromagnetic potential Aµ as the
vector

~A = Aµ∂xµ = V ∂t + Ax∂x + Ay∂y + Az∂z

(not to be confused with the 3-vector from before) or as the 1-form

A = −Vdt + Axdx + Aydy + Azdz .
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Differential Geometry

Definition

The wedge product of two forms, written f ∧g , is the antisymmetrized
tensor product.

Example

dx∧dy = dx⊗dy − dy⊗dx

dx∧dy∧dz = dx⊗dy⊗dz − dx⊗dz⊗dy + dz⊗dx⊗dy + . . .

Definition

For a k-form of the form f = fα1···αk
dxα1∧ · · · ∧dxαk , define the

differential of f as

df =
n−1∑
µ=0

∂fα1···αk

∂x i
dxµ∧dxα1∧ · · · ∧dxαk .
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Differential Geometry

Definition

Let η0···n be the volume form. For a k-form of the form
f = fα1···αk

dxα1∧ · · · ∧dxαk , define the Hodge dual of f as

∗f = fα1···αk
ηα1···αk

β1···βn−k
dxβ1∧ · · · ∧dxβn−k .

Definition

δ = ∗d∗

Definition

� = dδ + δd = d∗d∗+ ∗d∗d
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Electromagnetism Revisited

Maxwell’s Equations

Define

F = −Eidt∧dx i + Bi∗(dt∧dx i ).

Then (1) – (4) become

δF = J (13)

dF = 0 (14)

Potentials

(14) implies

F = dA (15)

Lorenz Condition

δA = 0

Relaxed Lorenz Condition

δ(A + G ) = 0

Hertz Potentials

The relaxed Lorenz condition
implies

A = δΠ− G (16)
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Electromagnetism Revisited

Since

0 = J = δF = δdA = δd(δΠ− G ) (17)

= δ(�Π− dG ), (18)

we can write

Equations of Motion

�Π = dG + δW . (19)
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Cartesian Coordinates

(x0, x1, x2, x3) = (t, x , y , z)

Π = φdt∧dz + ψ∗(dt∧dz)

= φdt∧dz + ψdx∧dy

Equations of Motion

Given �Π = 0,

�φ = 0

�ψ = 0
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Axial Cylindrical Coordinates

(x0, x1, x2, x3) = (t, ρ, ϕ, z)

Π = φdt∧dz + ψ∗(dt∧dz)

= φdt∧dz + ρψdρ∧dϕ

Equations of Motion

Given �Π = 0,

�φ = 0

�ψ = 0
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Spherical Coordinates

(x0, x1, x2, x3) = (t, r , θ, ϕ)

Π = φdt∧dr + ψ∗(dt∧dr)

= φdt∧dr + ψr2 sin θdθ∧dϕ

Definition

�̂ = � + 2
r ∂r = ∂2

t − ∂2
r − 1

r2 sin θ
∂θ sin θ∂θ − 1

r2 sin2 θ
∂2
ϕ

Equations of Motion?

�Π = (�̂φ− ∂r
2φ

r
)dt∧dr − ∂θ

2φ

r
dt∧dθ − ∂ϕ

2φ

r
dt∧dϕ

+ (�̂ψ − ∂r
2ψ

r
)∗(dt∧dr)− ∂θ

2ψ

r
∗(dt∧dθ)− ∂ϕ

2ψ

r
∗(dt∧dϕ)
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Spherical Coordinates

G =
2

r
φ, dG = −∂r

2φ

r
dt∧dr − ∂θ

2φ

r
dt∧dθ − ∂ϕ

2φ

r
dt∧dϕ

∗W =
2

r
ψ, δW = −∂r

2ψ

r
∗(dt∧dr)− ∂θ

2ψ

r
∗(dt∧dθ)− ∂ϕ

2ψ

r
∗(dt∧dϕ)

Equations of Motion

Given �Π = dG + δW ,

�̂φ = 0

�̂ψ = 0
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Schwarzchild Coordinates

(x0, x1, x2, x3) = (t, r , θ, ϕ)

ds2 = (1− rs
r )dt2 + 1

(1− rs
r

)
dr2 + r2dθ2 + r2 sin2 θdϕ2

Π = φdt∧dr + ψ∗(dt∧dr)
= φdt∧dr + ψr2 sin θdθ∧dϕ

G = 2ζ
r φ

∗W = 2ζ
r ψ

Definition

ζ = 1− rs
r

�̂ = 1
ζ ∂

2
t − ∂rζ∂r − 1

r2 sin θ
∂θ sin θ∂θ − 1

r2 sin2 θ
∂2
ϕ

Equations of Motion

Given �Π = dG + δW ,

�̂φ = 0

�̂ψ = 0
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Radial Cylindrical Coordinates

(x0, x1, x2, x3) = (t, ρ, ϕ, z)

Π = φdt∧dρ+ ψρdφ∧dz

Equations of Motion?

�Π = (�φ+ φ
ρ2 )dt∧dρ− ∂ϕ 2φ

ρ dt∧dϕ

+(�ψ + ψ
ρ2 )∗(dt∧dρ)− ∂ϕ 2ψ

ρ ∗(dt∧dϕ)
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TE Modes in Cylindrical Coordinates

Define
ΠA = φAdt∧dz + ψA∗(dt∧dz),

ΠR = φRdt∧dρ+ ψR∗(dt∧dρ).

We start with
A = δΠA = δΠR − G . (20)

Bz = Bkω sin(kz)g(ρ, ϕ)e−iωt ,

hence

φA = 0, ψA =
−Bkω

ω2 − k2
sin(kz)g(ρ, ϕ)e−iωt ,
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TE Modes in Cylindrical Coordinates

From (20) we obtain

Radial Modes

φR =
iBkω

ρω(ω2 − k2)
sin(kz)∂ϕg(ρ, ϕ)e−iωt

ψR =
−Bkω

k(ω2 − k2)
cos(kz)∂ρg(ρ, ϕ)e−iωt

Gt =
iBkω

ρω(ω2 − k2)
sin(kz)∂ρ∂ϕg(ρ, ϕ)e−iωt ,Gρ = 0

Gz =
Bkω

kρ(ω2 − k2)
cos(kz)∂ρ∂ϕg(ρ, ϕ)e−iωt ,Gϕ = 0
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Azimuthal Cylindrical Coordinates
Define

ΠP = φPdt∧dϕ+ ψP∗(d∧dϕ),

and again start with
δΠA = δΠP − G . (21)

This yields

Azimuthal Modes

φP =
−iBkω

ω(ω2 − k2)
sin(kz)ρ∂ρg(ρ, ϕ)e−iωt

ψP =
Bkω

ρk(ω2 − k2)
cos(kz)∂ϕg(ρ, ϕ)e i−ωt

Gt = − 1

ρ2
∂ϕφP ,Gρ = 0

Gz =
1

ρ
∂ρψP ,Gϕ = 0

Jeff Bouas (Texas A&M University) Hertz potentials in curvilinear coordinates July 9, 2010 19 / 20



Ongoing and Future Work

1 Determine the equations of motion for the radial and azimuthal
cylindrical cases.

2 Consider the polar and azimuthal spherical cases.

3 Examine the boundary conditions of all of the presented cases.

4 Consider geometries with non-trivial topology.
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