Hertz potentials in curvilinear coordinates

Jeff Bouas
Texas A\&M University

July 9, 2010

Quantum Vacuum Workshop

Purpose and Outline

Purpose

- To describe any arbitrary electromagnetic field in a bounded geometry in terms of two scalar fields, and
- To define these fields such that the boundary conditions consist of at most first-derivatives of the fields.

Outline
(1) Review of Electromagnetism and Hertz Potentials in Vector Formalism
(2) Overview of Differential Form Formalism
(3) Formulation of Electromagnetism in Differential Form Formalism
(9) "Scalar" Hertz Potential Examples

Maxwell's Equations

```
Vector Equations
    \(\vec{\nabla} \cdot \vec{E}=\rho\)
\[
\begin{equation*}
\vec{\nabla} \times \vec{B}-\partial_{t} \vec{E}=\vec{\jmath} \tag{1}
\end{equation*}
\]
\[
\vec{\nabla} \cdot \vec{B}=0
\]
\[
\begin{equation*}
\partial_{t} \vec{B}+\vec{\nabla} \times \vec{E}=0 \tag{3}
\end{equation*}
\]
```


Constants

For simplicity, take

$$
\epsilon_{0}=\mu_{0}=c=1
$$

Potentials

(3) and (4) imply

$$
\begin{align*}
\vec{B} & =\vec{\nabla} \times \vec{A} \tag{5}\\
\vec{E} & =-\vec{\nabla} V-\partial_{t} \vec{A} \tag{6}
\end{align*}
$$

Charge Conservation

Also note that (1) and (2) imply $\partial_{t} \rho+\vec{\nabla} \cdot \vec{\jmath}=0$.

Hertz Potentials

Hertz Potentials

$$
\begin{align*}
& V=-\vec{\nabla} \cdot \vec{\Pi}_{e} \tag{7}\\
& \vec{A}=\partial_{t} \vec{\Pi}_{e}+\vec{\nabla} \times \vec{\Pi}_{m} \tag{8}
\end{align*}
$$

Lorenz Condition

$$
\partial_{t} V+\vec{\nabla} \cdot \vec{A}=0
$$

Inhomogeneous Maxwell Equations

$$
\begin{align*}
& \vec{\nabla} \cdot\left(\square \vec{\Pi}_{e}\right)=\rho \tag{9}\\
& \vec{\nabla} \times\left(\square \vec{\Pi}_{m}\right)+\partial_{t}\left(\square \vec{\Pi}_{m}\right)=\vec{\jmath} \tag{10}
\end{align*}
$$

Hertz Potentials

From here on, set $\rho=0, \vec{\jmath}=\overrightarrow{0}$.
Equations of Motion

$$
\begin{align*}
\square \vec{\Pi}_{e} & =\vec{\nabla} \times \vec{W}+\vec{\nabla} g+\partial_{t} \vec{G} \tag{11}\\
\square \vec{\Pi}_{m} & =-\partial_{t} \vec{W}-\vec{\nabla} w+\vec{\nabla} \times \vec{G} \tag{12}
\end{align*}
$$

The w and \vec{W} terms come from (9) and (10) just as V and \vec{A} came from (3) and (4). The g and \vec{G} terms come from relaxing the Lorenz condition.

Differential Geometry

Let $\left(x^{0}, \ldots, x^{n-1}\right)$ be the coordinate system on an n-dimensional manifold. Then we write vectors on that manifold as

$$
\vec{v}=v^{0} \partial_{x^{0}}+\cdots+v^{n-1} \partial_{x^{n-1}},
$$

and 1 -forms (or covectors) as

$$
v=v_{0} d x^{0}+\cdots v_{n-1} d x^{n-1}
$$

Example

For Minwoski space, we can write the electromagnetic potential A^{μ} as the vector

$$
\vec{A}=A^{\mu} \partial_{x^{\mu}}=V \partial_{t}+A^{x} \partial_{x}+A^{y} \partial_{y}+A^{z} \partial_{z}
$$

(not to be confused with the 3 -vector from before) or as the 1 -form

$$
A=-V d t+A_{x} d x+A_{y} d y+A_{z} d z
$$

Differential Geometry

Definition

The wedge product of two forms, written $f \wedge g$, is the antisymmetrized tensor product.

Example

$$
d x \wedge d y=d x \otimes d y-d y \otimes d x
$$

$$
d x \wedge d y \wedge d z=d x \otimes d y \otimes d z-d x \otimes d z \otimes d y+d z \otimes d x \otimes d y+\ldots
$$

Definition

For a k-form of the form $f=f_{\alpha_{1} \cdots \alpha_{k}} d x^{\alpha_{1}} \wedge \cdots \wedge d x^{\alpha_{k}}$, define the differential of f as

$$
d f=\sum_{\mu=0}^{n-1} \frac{\partial f_{\alpha_{1} \cdots \alpha_{k}}}{\partial x^{i}} d x^{\mu} \wedge d x^{\alpha_{1}} \wedge \cdots \wedge d x^{\alpha_{k}}
$$

Differential Geometry

Definition

Let $\eta_{0 \ldots n}$ be the volume form. For a k-form of the form $f=f_{\alpha_{1} \cdots \alpha_{k}} d x^{\alpha_{1}} \wedge \cdots \wedge d x^{\alpha_{k}}$, define the Hodge dual of f as

$$
* f=f_{\alpha_{1} \cdots \alpha_{k}} \eta_{1}^{\alpha_{1} \cdots \alpha_{k}}{ }_{\beta_{1} \cdots \beta_{n-k}} d x^{\beta_{1}} \wedge \cdots \wedge d x^{\beta_{n-k}} .
$$

Definition

$$
\delta=* d *
$$

Definition

$$
\square=d \delta+\delta d=d * d *+* d * d
$$

Electromagnetism Revisited

Maxwell's Equations
Define

$$
F=-E_{i} d t \wedge d x^{i}+B_{i} *\left(d t \wedge d x^{i}\right)
$$

Then (1) - (4) become

$$
\begin{align*}
& \delta F=J \tag{13}\\
& d F=0 \tag{14}
\end{align*}
$$

Potentials
(14) implies

$$
\begin{equation*}
F=d A \tag{15}
\end{equation*}
$$

Lorenz Condition

$$
\delta A=0
$$

Relaxed Lorenz Condition

$$
\delta(A+G)=0
$$

Hertz Potentials
The relaxed Lorenz condition implies

$$
\begin{equation*}
A=\delta \Pi-G \tag{16}
\end{equation*}
$$

Electromagnetism Revisited

Since

$$
\begin{align*}
0 & =J=\delta F=\delta d A=\delta d(\delta \Pi-G) \tag{17}\\
& =\delta(\square \Pi-d G), \tag{18}
\end{align*}
$$

we can write
Equations of Motion

$$
\begin{equation*}
\square \Pi=d G+\delta W \tag{19}
\end{equation*}
$$

Cartesian Coordinates

$$
\begin{aligned}
& \left(x^{0}, x^{1}, x^{2}, x^{3}\right)=(t, x, y, z) \\
& \Pi=\phi d t \wedge d z+\psi *(d t \wedge d z) \\
& =\phi d t \wedge d z+\psi d x \wedge d y
\end{aligned}
$$

Equations of Motion
Given $\square \square=0$,

$$
\begin{aligned}
& \square \phi=0 \\
& \square \psi=0
\end{aligned}
$$

Axial Cylindrical Coordinates

$$
\begin{aligned}
& \left(x^{0}, x^{1}, x^{2}, x^{3}\right)=(t, \rho, \varphi, z) \\
& \begin{array}{l}
\Pi=\phi d t \wedge d z+\psi *(d t \wedge d z) \\
\quad=\phi d t \wedge d z+\rho \psi d \rho \wedge d \varphi
\end{array}
\end{aligned}
$$

Equations of Motion
Given $\square \square=0$,

$$
\begin{aligned}
& \square \phi=0 \\
& \square \psi=0
\end{aligned}
$$

Spherical Coordinates

$$
\begin{aligned}
& \left(x^{0}, x^{1}, x^{2}, x^{3}\right)=(t, r, \theta, \varphi) \\
& \Pi=\phi d t \wedge d r+\psi *(d t \wedge d r) \\
& \quad=\phi d t \wedge d r+\psi r^{2} \sin \theta d \theta \wedge d \varphi
\end{aligned}
$$

Definition

$$
\hat{\square}=\square+\frac{2}{r} \partial_{r}=\partial_{t}^{2}-\partial_{r}^{2}-\frac{1}{r^{2} \sin \theta} \partial_{\theta} \sin \theta \partial_{\theta}-\frac{1}{r^{2} \sin ^{2} \theta} \partial_{\varphi}^{2}
$$

Equations of Motion?

$$
\begin{aligned}
\square \Pi & =\left(\hat{\square} \phi-\partial_{r} \frac{2 \phi}{r}\right) d t \wedge d r-\partial_{\theta} \frac{2 \phi}{r} d t \wedge d \theta-\partial_{\varphi} \frac{2 \phi}{r} d t \wedge d \varphi \\
& +\left(\hat{\square} \psi-\partial_{r} \frac{2 \psi}{r}\right) *(d t \wedge d r)-\partial_{\theta} \frac{2 \psi}{r} *(d t \wedge d \theta)-\partial_{\varphi} \frac{2 \psi}{r} *(d t \wedge d \varphi)
\end{aligned}
$$

Spherical Coordinates

$$
\begin{aligned}
G & =\frac{2}{r} \phi, \quad d G=-\partial_{r} \frac{2 \phi}{r} d t \wedge d r-\partial_{\theta} \frac{2 \phi}{r} d t \wedge d \theta-\partial_{\varphi} \frac{2 \phi}{r} d t \wedge d \varphi \\
* W & =\frac{2}{r} \psi,
\end{aligned} \quad \delta W=-\partial_{r} \frac{2 \psi}{r} *(d t \wedge d r)-\partial_{\theta} \frac{2 \psi}{r} *(d t \wedge d \theta)-\partial_{\varphi} \frac{2 \psi}{r} *(d t \wedge d \varphi) .
$$

Equations of Motion
Given $\square \Pi=d G+\delta W$,

$$
\begin{aligned}
\hat{\square} \phi & =0 \\
\hat{\square} \psi & =0
\end{aligned}
$$

Schwarzchild Coordinates

$$
\begin{gathered}
\left(x^{0}, x^{1}, x^{2}, x^{3}\right)=(t, r, \theta, \varphi) \\
d s^{2}=\left(1-\frac{r_{s}}{r}\right) d t^{2}+\frac{1}{\left(1-\frac{r_{s}}{r}\right)} d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \varphi^{2} \\
\Pi=\phi d t \wedge d r+\psi *(d t \wedge d r) \quad G=\frac{2 \zeta}{r} \phi \\
=\phi d t \wedge d r+\psi r^{2} \sin \theta d \theta \wedge d \varphi
\end{gathered}
$$

Definition

$$
\begin{gathered}
\zeta=1-\frac{r_{s}}{r} \\
\hat{\square}=\frac{1}{\zeta} \partial_{t}^{2}-\partial_{r} \zeta \partial_{r}-\frac{1}{r^{2} \sin \theta} \partial_{\theta} \sin \theta \partial_{\theta}-\frac{1}{r^{2} \sin ^{2} \theta} \partial_{\varphi}^{2}
\end{gathered}
$$

Equations of Motion
Given $\square \Pi=d G+\delta W$,

$$
\begin{aligned}
\hat{\square} \phi & =0 \\
\hat{\square} \psi & =0
\end{aligned}
$$

Radial Cylindrical Coordinates

$$
\begin{gathered}
\left(x^{0}, x^{1}, x^{2}, x^{3}\right)=(t, \rho, \varphi, z) \\
\Pi=\phi d t \wedge d \rho+\psi \rho d \phi \wedge d z
\end{gathered}
$$

Equations of Motion?

$$
\begin{aligned}
\square \Pi & =\left(\square \phi+\frac{\phi}{\rho^{2}}\right) d t \wedge d \rho-\partial_{\varphi} \frac{2 \phi}{\rho} d t \wedge d \varphi \\
& +\left(\square \psi+\frac{\psi}{\rho^{2}}\right) *(d t \wedge d \rho)-\partial_{\varphi} \frac{2 \psi}{\rho} *(d t \wedge d \varphi)
\end{aligned}
$$

TE Modes in Cylindrical Coordinates

Define

$$
\begin{aligned}
\Pi_{A} & =\phi_{A} d t \wedge d z+\psi_{A^{*}}(d t \wedge d z) \\
\Pi_{R} & =\phi_{R} d t \wedge d \rho+\psi_{R^{*}}(d t \wedge d \rho)
\end{aligned}
$$

We start with

$$
\begin{gathered}
A=\delta \Pi_{A}=\delta \Pi_{R}-G \\
B_{z}=B_{k \omega} \sin (k z) g(\rho, \varphi) e^{-i \omega t},
\end{gathered}
$$

hence

$$
\phi_{A}=0, \psi_{A}=\frac{-B_{k \omega}}{\omega^{2}-k^{2}} \sin (k z) g(\rho, \varphi) e^{-i \omega t}
$$

TE Modes in Cylindrical Coordinates

From (20) we obtain

Radial Modes

$$
\begin{aligned}
\phi_{R} & =\frac{i B_{k \omega}}{\rho \omega\left(\omega^{2}-k^{2}\right)} \sin (k z) \partial_{\varphi} g(\rho, \varphi) e^{-i \omega t} \\
\psi_{R} & =\frac{-B_{k \omega}}{k\left(\omega^{2}-k^{2}\right)} \cos (k z) \partial_{\rho} g(\rho, \varphi) e^{-i \omega t} \\
G_{t} & =\frac{i B_{k \omega}}{\rho \omega\left(\omega^{2}-k^{2}\right)} \sin (k z) \partial_{\rho} \partial_{\varphi} g(\rho, \varphi) e^{-i \omega t}, G_{\rho}=0 \\
G_{z} & =\frac{B_{k \omega}}{k \rho\left(\omega^{2}-k^{2}\right)} \cos (k z) \partial_{\rho} \partial_{\varphi} g(\rho, \varphi) e^{-i \omega t}, G_{\varphi}=0
\end{aligned}
$$

Azimuthal Cylindrical Coordinates

Define

$$
\Pi_{P}=\phi_{P} d t \wedge d \varphi+\psi_{P} *(d \wedge d \varphi)
$$

and again start with

$$
\begin{equation*}
\delta \Pi_{A}=\delta \Pi_{P}-G \tag{21}
\end{equation*}
$$

This yields

Azimuthal Modes

$$
\begin{aligned}
\phi_{P} & =\frac{-i B_{k \omega}}{\omega\left(\omega^{2}-k^{2}\right)} \sin (k z) \rho \partial_{\rho} g(\rho, \varphi) e^{-i \omega t} \\
\psi_{P} & =\frac{B_{k \omega}}{\rho k\left(\omega^{2}-k^{2}\right)} \cos (k z) \partial_{\varphi} g(\rho, \varphi) e^{i-\omega t} \\
G_{t} & =-\frac{1}{\rho^{2}} \partial_{\varphi} \phi_{P}, G_{\rho}=0 \\
G_{z} & =\frac{1}{\rho} \partial_{\rho} \psi_{P}, G_{\varphi}=0
\end{aligned}
$$

Ongoing and Future Work

(1) Determine the equations of motion for the radial and azimuthal cylindrical cases.
(2) Consider the polar and azimuthal spherical cases.
(3) Examine the boundary conditions of all of the presented cases.
(9) Consider geometries with non-trivial topology.

