
EXTERIOR EULER SUMMABILITY

RICARDO ESTRADA AND JASSON VINDAS

Abstract. We define and study a summability procedure that is
similar to Euler summability but applied in the exterior of a disc,
not in the interior. We show that the method is well defined and
that it actually has many interesting properties.

We use these ideas to give a good definition of the support of an
analytic functional. We study some problems of analytic continua-
tion and also study Mittag-Leffler developments using this exterior
summability method.

1. Introduction

In a recent article, Amore [1] introduced a method for the conver-
gence acceleration of series, illustrating the procedure with several very
interesting examples. This method is similar, and actually related to
the method introduced by Euler many years ago [11, Chp. VIII]. Ba-
sically, while Euler’s method works in the interior of a disc, Amore’s
procedure works in the exterior of a disc.

The purpose of this article is to study this exterior procedure not as a
convergence acceleration method but rather as a summability method.
The study of the Euler interior procedure as a summability method
is due initially to Knopp [13, 14], and it is clearly explained in [11];
examples of Euler’s method for the convergence acceleration of series
can be found in [4]. As we show, the exterior Euler summability is
not only different from the usual Euler summability, but it actually
provides many new interesting and useful results, particularly in the
study of analytic continuations and in the definition of the support of
analytic functionals.

The plan of the article is the following. We define two notions of ex-
terior Euler summability in Section 2, one that applies to power series
and one that applies to numerical series, and prove that both defini-
tions are equivalent. In Section 3 we prove that if one starts with a
series

∑∞
n=0 an/z

n+1 which converges for |z| > R for some R < ∞,
then there exists a compact convex set Kcv such that the series is
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exterior Euler summable for z /∈ Kcv but is never exterior Euler sum-
mable if z ∈ Kcv is not an extreme point of this set; both summability
and non summability are possible at the extreme points. We inter-
pret these results in terms of the analytic continuation of the function
f0 (z) =

∑∞
n=0 an/z

n+1 defined in |z| > R, showing that it has an ana-

lytic continuation fcv to C \Kcv, and that Kcv is the smallest compact
convex subset of C for which such a continuation exists.

The exterior Euler summability is based upon a series transformation
in terms of a parameter λ. In Section 4 we prove that the sum of the
transformed series, if it exists, is independent of this parameter; the
uniqueness is rather clear if z /∈ Kcv, but it involves the study of the
boundary behavior of fcv (ω) as ω → z if z is an extreme point of Kcv.

Section 5 gives an account of the relationship between the exterior
Euler summability and some results about analytic functionals, hyper-
functions, and distributions. The use of the Cauchy representation [8]
allows one to relate an analytic function to an analytic functional, and
the series transformation required in the Euler exterior summability
becomes a change of variables in the corresponding analytic functional.

We present several illustrations in Section 6. In particular we show
that the geometric series

∑∞
n=0 ω

n is exterior Euler summable, to the

sum (1− ω)−1 , for all complex numbers ω 6= 1, and this gives an idea
of the power of the method; the standard interior Euler method gives
a much smaller region of summability for the geometric series [11].
In Section 7 we explain how not only convergent, but actually Abel
summable series can be transformed by the exterior Euler procedure,
and illustrate the ideas with the series

∑∞
n=1 (−1)n n−s, which is Abel

summable for any complex number s.
The exterior Euler expansion of functions given by Mittag-Leffler

developments is studied in Section 8, where we show that the region
of summability is rather large, and where we give several examples of
this “double series” manipulations.

2. Definition of Exterior Euler Summability

Let {an}∞n=0 be a sequence of complex numbers. Suppose that the
series

∑∞
n=0 an/z

n+1 converges for |z| > R for some R <∞. Let ξ ∈ C.
We say that the series

∑∞
n=0 an/ξ

n+1 is exterior Euler summable to
S = S (ξ) , and write

(2.1)
∞∑

n=0

an

ξn+1
= S (Ex) ,
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if there exists λ ∈ C such that

(2.2)
∞∑

n=0

an,λ

(ξ + λ)n+1 = S ,

where

(2.3) an,λ =
n∑

j=0

(
n

j

)
λn−jaj .

When λ = 0 it reduces to ordinary convergence.
One may think that it is possible, in principle, that the sum value

S given by (2.2) depends on λ, S = Sλ. However, we shall show in
Section 4 that if the corresponding series converge at λ1 and at λ2,
then Sλ1 = Sλ2 .

Our definition makes it clear that the exterior Euler summability is
to be applied to a power series in ξ−1. One may give a corresponding
definition for numerical series. We say that the series

∑∞
n=0 an is (Ex’)

summable to S if
∑∞

n=0 an/ξ
n+1 = S (Ex) ,when ξ = 1. Fortunately the

two summability methods are equivalent.

Lemma 2.1. Let {an}∞n=0 be a numerical sequence and let ξ ∈ C. Then

(2.4)
∞∑

n=0

an

ξn+1
= S (Ex’) ,

if and only if

(2.5)
∞∑

n=0

an

ξn+1
= S (Ex) .

Proof. Let An (ξ) = an/ξ
n+1. Then

∑∞
n=0 an/ξ

n+1 = S (Ex’) , if and
only if

∑∞
n=0An (ξ) /ωn+1 = S (Ex) , for ω = 1, and this, in turn, is

equivalent to the existence of λ ∈ C such that
∑∞

n=0An,λ (ξ) / (1 + λ)n+1 =
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S, where

An,λ (ξ) =
n∑

j=0

(
n

j

)
λn−jAj (ξ)

=
n∑

j=0

(
n

j

)
λn−j aj

ξj+1

=
1

ξn+1

n∑
j=0

(
n

j

)
(λξ)n−j aj

=
1

ξn+1
an,λξ .

Therefore,
∑∞

n=0An,λ (ξ) / (1 + λ)n+1 = S, is equivalent to the con-

vergence of
∑∞

n=0 an,λξ/ (ξ + λξ)n+1 to S, and this means exactly that∑∞
n=0 an/ξ

n+1 = S (Ex) . �

3. The Region of Summability

We now study the set of points where a power series of the type∑∞
n=0 an/z

n+1 is exterior Euler summable. Naturally, there is a disc

D = D (0, r0) such that the series converges for z /∈ D and diverges
for z ∈ D. In the case of (Ex) summability we shall show that there
exists a compact convex set K such that

∑∞
n=0 an/z

n+1 is exterior Euler
summable if z /∈ K while it is not exterior Euler summable if z ∈ IntK.
As in the convergence case, both summability and non-summability can
occur if z ∈ ∂K. In fact we shall show that

(3.1) K =
⋂
λ∈C

Dλ ,

where Dλ = D (−λ, rλ) is the disc centered at −λ outside of where the
series

∑∞
n=0 an,λ/ (z + λ)n+1 is convergent.

We shall also establish that the analytic function

(3.2) f0 (z) =
∞∑

n=0

an

zn+1
, |z| > r0 ,

has a unique analytic continuation to the region C \K.
Observe that if the analytic function g0, defined in a region Ω0, ad-

mits two analytic continuations, g1 and g2, defined in corresponding
regions Ω1 and Ω2, then in general it is not true that g1 (z) = g2 (z)
if z ∈ Ω1 ∩ Ω2. (Consider for example g0 (z) the branch of ln z defined
in |z − i| < 1, with g0 (i) = πi/2, while g1 is the analytic continuation
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to C \ [0,∞) and g2 is the analytic continuation to C \ (−∞, 0]; then
g1 (−i) = 3πi/2 but g2 (−i) = −πi/2.)

However we have:

Lemma 3.1. Let f0 (z) =
∑∞

n=0 an/z
n+1 for z ∈ Ω0 = C \ D (0, r) ,

the series being convergent in Ω0. Suppose that f0 6= 0. Let K1 and
K2 be two compact convex subsets of C. Suppose f0 admits analytic
continuations fj, j = 1, 2, defined in Ωj = C \Kj. Then

(3.3) K1 ∩K2 6= ∅ ,

(3.4) f1 (z) = f2 (z) for z ∈ Ω1 ∩ Ω2 ,

and f0 admits an analytic continuation to Ω1 ∪ Ω2, which is also an
analytic continuation of f1 and f2.

Proof. Let us first show that f1 (z) = f2 (z) for z ∈ Ω1 ∩ Ω2. Since
f0 = f1 = f2 in Ω0, it follows that f1 = f2 in the component of Ω1 ∩Ω2

that contains Ω0; hence (3.3) will follow if we show that Ω1 ∩ Ω2 is
connected. But if z ∈ C \ (K1 ∪K2) there is a ray from z to ∞ that
does not meet K1 ∪K2. Indeed, let Aj be the set of complex numbers
η, |η| = 1, such that the ray z + tη, t > 0, meets Kj. If z /∈ Kj

then Aj is an arc of |η| = 1 of length |Aj| < π since Kj is convex.
Hence |A1 ∪ A2| < 2π, and thus there exists η ∈ C, |η| = 1, such that
η /∈ A1 ∪ A2, that is, such that the ray z + tη, t > 0 does not meet
K1 ∪ K2. Since any point of Ω1 ∩ Ω2 = C \ (K1 ∪K2) can be joined
to ∞ by a ray contained in Ω1 ∩ Ω2 it follows that Ω1 ∩ Ω2 is arcwise
connected and thus connected.

If we now define f (z) = fj (z) if z ∈ Ωj, j = 1, 2, for z ∈ Ω1 ∪ Ω2,
it follows that f is well defined, analytic, and an analytic continuation
of f0, f1, and f2.

Finally, if K1∩K2 = ∅ it would follow that Ω1∪Ω2 = C, and hence f0

would admit an analytic continuation f to the whole Riemann sphere.
But by Liouville theorem f would be constant, and since f0 (∞) = 0,
then f = 0, a contradiction. �

Using induction we then have,

Lemma 3.2. Let f0 (z) =
∑∞

n=0 an/z
n+1 for z ∈ Ω0 = C \D (0, r) , the

series being convergent in Ω0. Suppose that f0 6= 0. Let K1, . . . , Km be
compact convex subsets of C. Suppose f0 admits analytic continuations
fj, j = 1, . . . , m, defined in Ωj = C \Kj. Then

(3.5)
m⋂

j=1

Kj 6= ∅ ,
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(3.6) fj (z) = fk (z) for z ∈ Ωj ∩ Ωk ,

and f0, f1, . . . , fm admit an analytic continuation to
⋃m

j=1 Ωj.

Let us now consider the family F of analytic continuations (fΩ,Ω)
of (f0,Ω0) such that Ω = C \L where L is a compact convex set. Then
the family of these sets L has the finite intersection property, because
of (3.5). Hence we can define

(3.7) Kcv =
⋂

(f,Ω)∈F

C \ Ω ,

and the analytic extension fcv defined in C \ Kcv. Observe that Kcv

is the smallest compact convex set such that f0 admits an analytic
continuation defined in its complement.

We shall show that the power series
∑∞

n=0 an/z
n+1 is exterior Euler

summable to fcv (z) for z ∈ C \ Kcv, but the series is never exterior
Euler summable if z ∈ IntKcv. We start with the following lemma.

Lemma 3.3. Let f0 (z) =
∑∞

n=0 an/z
n+1 for z ∈ Ω0 = C \D (0, r) , the

series being convergent in Ω0. Suppose that f0 6= 0. Then

(3.8) Kcv =
⋂
λ∈C

Dλ ,

where Dλ = D (−λ, rλ) is the disc such that
∑∞

n=0 an,λ/ (ξ + λ)n+1 con-

verges if ξ /∈ Dλ and diverges if ξ ∈ Dλ.

Proof. Let Ke =
⋂

λ∈CDλ. If F1 is a subfamily of the family F of

analytic continuations (fΩ,Ω) of (f0,Ω0) such that Ω = C \L where L
is a compact convex set, then

Kcv ⊆
⋂

(f,Ω)∈F1

C \ Ω ,

and so Kcv ⊆ Ke.
To prove the reverse inclusion, let us observe that if Kcv ⊂ D, where

D = D (−λ, s) is a disc with center at −λ, then s > rλ and actually∑∞
n=0 an,λ/ (ξ + λ)n+1 converges if ξ ∈ C \ D. If we now use the fact

that for any compact convex set K we have K =
⋂

K⊂D
D open disc

D , we

obtain

(3.9) Ke =
⋂
λ∈C

Dλ ⊆
⋂

Kcv⊂D
D open disc

D = Kcv ,

as required. �
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In the proof of the previous lemma we used that any compact convex
subset of C is the intersection of all the open discs that contain it. We
now give a proof of this simple fact along with other related results.

Lemma 3.4. Let K be a compact convex subset of C. Then,

(3.10) K =
⋂

K⊂D
D open disc

D ,

and also

(3.11) K =
⋂

K⊂D
D open disc

D .

On the other hand

(3.12)
⋂

K⊂D
D open disc

D = {z ∈ K : z is not an extreme point of K} .

Proof. To prove (3.10) it is enough to prove that if z /∈ K then there ex-
ists an open disc D with K ⊂ D and z /∈ D. Since there exists an open
half plane H with the property that K ⊂ H and z /∈ H, we can assume
that K ⊂ {ω ∈ C : <e ω < 0} and z > 0. Since K is compact, there ex-
ists M > 0 such that K ⊂ {ω ∈ C : −M ≤ <e ω < 0, |=mω| ≤M} .
Choose λ > 0 such that

(3.13) λ > max

{
M,

M2 − z2

2z

}
,

and r such that

(3.14)
√
λ2 +M2 < r < λ+ z .

Then K ⊂ D (−λ, r) and z /∈ D (−λ, r) .
Next we observe that clearly K ⊂

⋂
K⊂D, D open discD, while if K ⊂

D, where D = D (−λ, s) , then r = maxz∈K |z + λ| < s, and so if
r < t < s, then K ⊂ D1 ⊂ D1 ⊂ D, if D1 = D (−λ, t) . Hence⋂

K⊂D1, D1 open discD1 ⊆
⋂

K⊂D, D open discD = K. This gives (3.11).

Finally we establish (3.12). Observe first that L =
⋂

K⊂D, D open discD
is a subset of K. If z ∈ K is not an extreme point, then there exists
ω1, ω2 ∈ K such that z is in the open segment from ω1 to ω2. If K ⊂ D,
D an open disc, then since ω1, ω2 ∈ D it follows that z ∈ D; thus z ∈ L.
On the other hand, if z is an extreme point of K, then there exists an
open disc D with K ⊂ D and with ∂D∩K = {z} , and this yields that
z /∈ L. �
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Returning to exterior Euler summability, we can give the following
result.

Theorem 3.5. Let f0 (z) =
∑∞

n=0 an/z
n+1 for z ∈ Ω0 = C \ D (0, r) ,

the series being convergent in Ω0. Suppose that f0 6= 0. Then

(3.15)
∞∑

n=0

an

zn+1
= fcv (z) (Ex) ,

if z ∈ C\Kcv. The series
∑∞

n=0 an/z
n+1 is not exterior Euler summable

if z ∈ Kcv is not an extreme point of Kcv.

Proof. Notice that the series
∑∞

n=0 an/z
n+1 is exterior Euler summable

if z /∈ Ke =
⋂

λ∈CDλ, thus the Lemma 3.3 yields (3.15).
Suppose now that z ∈ Kcv and

∑∞
n=0 an/z

n+1 is exterior Euler sum-

mable. Then there exists λ ∈ C such that z ∈ C \Dλ. But Kcv ⊂ Dλ,
so z /∈

⋂
Kcv⊂D, D open discD, and from (3.12), we obtain that z must be

an extreme point of Kcv. �

Let us remark that the function fcv may or may not have an analytic
extension across the flat portions of ∂Kcv, but the extreme points ofKcv

are natural boundary points for the analytic continuation. In particu-
lar, if ∂Kcv is strictly convex, so that it does not have any flat sections,
then ∂Kcv is a natural boundary for the analytic continuation of fcv.
When ∂Kcv is a natural boundary for the analytic continuation of fcv

then
(
fcv,C \Kcv

)
is the maximal analytic continuation of f0, not only

among the ones defined in the complement of a convex set, but among
all analytic continuations. Interestingly, the series

∑∞
n=0 an/z

n+1 could
be exterior Euler summable at the extreme points of ∂Kcv but it never
is in the flat sections of ∂Kcv.

4. Uniqueness of the Sum

Implicit in our definition of exterior Euler summability is the fact
that for a fixed z ∈ C the sum of the series

∑∞
n=0 an,λ/ (z + λ)n+1 , if

convergent, is independent of λ. We now show that this is the case.
If z ∈ C\Kcv, then (3.15) shows that

∑∞
n=0 an,λ/ (z + λ)n+1 = fcv (z)

whenever the series is convergent, and thus the sum of the series is
independent of λ. When z ∈ Kcv, however, a proof of the uniqueness of
the sum value is required. Let us start with some preliminary results.
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Lemma 4.1. Let z ∈ Kcv. If the series
∑∞

n=0 an,λ/ (z + λ)n+1 con-
verges, then

(4.1) lim
t→0+

fcv (z + tω) =
∞∑

n=0

an,λ

(z + λ)n+1 ,

whenever

(4.2) <e
(

ω

z + λ

)
> 0 ,

uniformly on compacts of this open half-plane Hλ.
If µ ∈ C let

(4.3) hµ (ω) =
∞∑

n=2

an,µ

(n− 1)n (z + µ)n−1 ,

for ω ∈ C \Dµ. Then hλ (ω) admits a continuous extension to C \Dλ,

while (ω − z)2 h−z (ω) admits a continuous extension to C \ Dλ that
vanishes at ω = z.

Proof. The limit formula (4.1) when (4.2) is satisfied follows easily
from the Abel limit theorem. For the second part, observe that if∑∞

n=0 an,λ/ (z + λ)n+1 converges, then the series defining hλ (ω) is ab-
solutely convergent if |ω + λ| ≥ |z + λ| , and this yields the continuity
of hλ (ω) in C\Dλ. The result about (ω − z)2 h−z (ω) follows by writing
this function in terms of hλ (ω) , observing that

(4.4) hµ1 (ω)− hµ2 (ω) = (a0ω − a1) ln

(
ω + µ1

ω + µ2

)
+ a0 (µ2 − µ1) ,

for ω ∈ C \
(
Dµ1 ∪Dµ2

)
. �

Observe that, in particular,

(4.5) lim
t→0+

fcv (z + t (z + λ)) =
∞∑

n=0

an,λ

(z + λ)n+1 ,

if the series converges.

Theorem 4.2. Let f0 (z) =
∑∞

n=0 an/z
n+1 for z ∈ Ω0 = C \ D (0, r) ,

the series being convergent in Ω0. Suppose that f0 6= 0. Let z ∈ C.
Suppose the series

(4.6) Sλ =
∞∑

n=0

an,λ

(z + λ)n+1 ,
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converges for two complex numbers λ1 and λ2. Then

(4.7) Sλ1 = Sλ2 .

Proof. It remains to give the proof when z ∈ Kcv. Observe first that
unless z belongs to the segment from −λ1 to −λ2, then the two half-
planes Hλ1 and Hλ2 cannot be disjoint, and thus if ω ∈ Hλ1 ∩Hλ2 , the
Lemma 4.1 yields that limt→0+ fcv (z + tω) should be equal to both Sλ1

and Sλ2 , and (4.7) follows.
If z belongs to the segment from −λ1 to −λ2, then Kcv = {z} , and

thus fcv (ω) = g ((ω − z)−1) for some entire function g with g (0) = 0.
Using the Lemma 4.1, the function (ω − z)2 h−z (ω) is continuous in
C\Dλ1 , and continuous in C\Dλ2 . But (C \Dλ1)∪(C \Dλ2) = C, and
thus (ω − z)2 h−z (ω) is continuous in all C. Moreover, h−z is analytic
at ∞, with h−z (∞) = 0, and therefore h−z (z + 1/ξ) = A+Bξ for some
constants A and B. It follows that g is a polynomial of degree 3 at the
most. However, if g is a polynomial, then limt→0+ fcv (z + tω) = ∞ for
any ω 6= 0, which implies that Sλ1 = Sλ2 = ∞, and thus the series∑∞

n=0 an,λ/ (z + λ)n+1 diverges for both λ = λ1 and λ = λ2. �

Our analysis gives the behavior of fcv (ω) as ω approaches an extreme
point of Kcv where the series is exterior Euler summable.

Theorem 4.3. Let f0 (z) =
∑∞

n=0 an/z
n+1 for z ∈ Ω0 = C \ D (0, r) ,

the series being convergent in Ω0. Suppose that f0 6= 0. Let z ∈ Kcv be
a point where

(4.8)
∞∑

n=0

an

zn+1
= S (Ex) ,

exists. Then there exists an open arc I of |ξ| = 1 with |I| ≥ π such
that

(4.9) lim
t→0+

fcv

(
z + teiθ

)
= S ,

if eiθ ∈ I, uniformly over compacts of I. There may be rays z + teiθ,
t > 0, of C \ Kcv for which the limit of fcv

(
z + teiθ

)
as t → 0+ does

not exist.

Proof. Indeed, we just need to take I as the set of numbers ξ with
|ξ| = 1 that belong to some half-plane Hλ given be (4.2) for which the
series (4.1) converges.

If we take

(4.10) fcv (ω) = ω2e−1/ω − ω2 + ω − 1

2
,
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then

(4.11) fcv (ω) =
∞∑

n=0

(−1)n−1

(n+ 3)!ωn+1
(Ex) ,

for ω 6= 0, so that Kcv = {0}. The series is exterior Euler summable at
ω = 0 to S = −1/2. Here fcv (tω) → S as t→ 0+ if <e ω ≥ 0, but the
limit does not exist if <e ω < 0. �

Observe that while fcv is analytic, and thus continuous in C \Kcv,
its extension to the set of points where the series is exterior Euler
summable, a subset of (C \ Kcv) ∪ ∂Kcv, will not be continuous, in
general.

5. Analytic Functionals and Exterior Summability

There is a close connection between the exterior Euler summability
and some results about analytic functionals and hyperfunctions [15, 16,
17], as we now explain.

Let U be an open set in C. We denote by O (U) the space of analytic
functions defined on U. The topology of O (U) is that of uniform con-
vergence on compact subsets of U, i.e., the topology generated by the
family of seminorms ‖ϕ‖K = max {|ϕ (z)| : z ∈ K} , for K a compact
subset of U and ϕ ∈ O (U) . Since we can find a sequence of compact
subsets of U, {Kn}∞n=1 , with Kn ⊂ int(Kn+1),

⋃∞
n=1Kn = U, it fol-

lows that O (U) is a Fréchet space, actually a strict projective limit of
Banach spaces.

A subset S of a topological space X is called locally closed if each
x ∈ S has a neighborhood in X, Vx, such that S ∩ Vx is closed in Vx.
It can be shown that S is locally closed in X if and only if there exist
an open set U and a closed set F such that S = U ∩ F. If S is locally
closed in X, we say that U is an open neighborhood of S if U is open
in X and S is closed in U. We denote the set of open neighborhoods of
S as N (S) .

If S is locally closed in C then O (S) is the space of germs of analytic
functions defined on S. That is, a function ϕ defined on S belongs to
O (S) if and only if there exists U ∈ N (S) and an analytic function
ϕ̃ ∈ O (U) such that πU

S (ϕ̃) = ϕ, where πU
S is the restriction operator

from U to S. The system of topological vector spaces {O (U)}U∈N(S)

with operators πU
V : O (U) −→ O (V ) for U ⊇ V is actually a directed

system and thus we can give O (S) the inductive limit topology. When
K is compact, then O (K) is a strict limit of Banach spaces. If S ⊆ R
is open then O (S) is the space of real analytic functions on S, while if
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S ⊆ R is locally closed then O (S) is the space of germs of real analytic
functions on S.

If S ⊆ C is locally closed, then the dual space O′ (S) is called the
space of analytic functionals on S. When K ⊆ R is compact then
O′ (K) is actually isomorphic to the space B (K) of hyperfunctions
defined on K, although hyperfunctions are usually constructed by using
a different approach [15]. Observe that if K ⊆ R then the space of
distributions T ∈ D′ (R) whose support is contained in K, the space
E ′ [K] , is a subspace of B (K) .

If K is a compact subset of C, and T ∈ O′ (K) then its Cauchy or
analytic representation, denoted as f (z) = C {T (ω) ; z} , is the analytic
function f ∈ O

(
C \K

)
given by

(5.1) f (z) = C {T (ω) ; z} =
1

2πi

〈
T (ω) ,

1

ω − z

〉
.

Notice that the analytic representation satisfies

(5.2) lim
z→∞

f (z) = 0 .

According to a theorem of Silva [15], the operator C is an isomorphism
of the space O′ (K) onto the subspace O0

(
C \K

)
of O

(
C \K

)
formed

by those analytic functions that satisfy (5.2). When K ⊆ R then the
operator C becomes an isomorphism of the space of hyperfunctions
B (K) onto O0

(
C \K

)
.

The inverse operator C−1 is given as follows. Let ϕ ∈ O (K) , and let
ϕ̃ ∈ O (U) be an analytic extension to some region U ∈ N (K) ; let C be
a closed curve in U such that the index of any point of K with respect
to C is one. Then if f ∈ O0

(
C \K

)
we define T = C−1 {f} ∈ O′ (K)

by specifying its action on ϕ as

(5.3) 〈T (ω) , ϕ (ω)〉 = −
∮

C

f (ξ) ϕ̃ (ξ) dξ .

Clearly T = C−1 {f} is defined if f ∈ O
(
C \K

)
, but in this space C−1

has a non trivial kernel, namely, the constant functions.
If K1 and K2 are compact subsets of C with K1 ⊂ K2 and K2 has

no holes, that is, C \K2 is connected, then any functional T ∈ O′ (K1)
can be considered as an analytic functional of the space O′ (K2) , so
that we have a canonical injection O′ (K1) ↪→ O′ (K2) . This injection
corresponds to the injection O0

(
C \K1

)
↪→ O0

(
C \K2

)
provided by

the restriction to a smaller region. In general not all analytic function-
als T ∈ O′ (K2) are in the image of O′ (K1) , that is, in general they
do not admit an “extension” to O′ (K1) . An extension exists precisely
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when the Cauchy representation f = C {T} ∈ O0

(
C \K2

)
admits an

analytic continuation to C \K1.
If T ∈ O′ (K) , then the power series expansion of its Cauchy repre-

sentation at infinity takes the form

(5.4) C {T (ω) ; z} = − 1

2πi

∞∑
n=0

µn (T )

zn+1
, |z| > ρ ,

where

(5.5) µn (T ) = 〈T (ω) , ωn〉 ,
are the moments of T and where ρ = max {|z| : z ∈ K} . Observe that
C {T (ω) ; z} is defined if z ∈ C \ K, but the series in (5.4) will be
divergent if |z| < ρ, and could be divergent if |z| = ρ.

Our results about exterior Euler summability yield several corre-
sponding results on analytic functionals.

Theorem 5.1. Let K be a compact convex subset of C and let T ∈
O′ (K) with Cauchy representation f = C {T} ∈ O0

(
C \K

)
. Then

(5.6)
∞∑

n=0

µn (T )

zn+1
= −2πif (z) (Ex) ,

for all z ∈ C \K.

We also obtain the following result.

Theorem 5.2. Let f0 (z) =
∑∞

n=0 an/z
n+1 for z ∈ Ω0 = C \ D (0, r) ,

the series being convergent in Ω0. Suppose that f0 6= 0. Let T0 ∈
O′ (D (0, r)

)
be the analytic functional T0 = C−1 {f0} . Then there exists

a smallest compact convex subset K ⊂ D (0, r) such that T0 admits an
extension to T ∈ O′ (K) . This smallest compact convex set is actually
Kcv and the analytic representation of T is fcv.

Using this result we obtain that one can define the notion of the
compact convex support of an analytic functional. Naturally the notion
of the “support” of an analytic functional is not well defined.

The solution of the moment problem in the space of distributions
E ′ [I] , where I is an interval of the form [−a, a] , was given in [7] (see also
[9, Thm. 7.3.1]). Here we can give the solution of moment problems in
O′ (K) if K is a compact convex subset of C.

Theorem 5.3. Let {µn}∞n=0 be a sequence of complex numbers and let
K be a compact convex subset of C. Then the moment problem

(5.7) 〈T (ω) , ωn〉 = µn , n ∈ N ,
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has a solution T ∈ O′ (K) if and only if the series
∑∞

n=0 µn/z
n+1 is

exterior Euler summable for all z ∈ C \ K, in fact, −2πiT is then
the inverse Cauchy representation of the analytic function given by the
Euler exterior sum of this series. If there is a solution, it is unique.

6. Special Cases

We shall now give several examples of the exterior Euler summability.

Example 1. Let ω ∈ C be fixed and consider the Dirac delta function
at ω, the analytic functional δω ∈ O′ ({ω}) , given by

(6.1) 〈δω (z) , ϕ (ω)〉 = ϕ (ω) ,

for ϕ ∈ O ({ω}) . In this case the moments are given by µn = ωn,
n ∈ N, while the Cauchy representation is f (z) = (2πi)−1 (ω − z)−1 ,
so that we obtain,

(6.2)
∞∑

n=0

ωn

zn+1
=

1

z − ω
(Ex) ,

for all z 6= ω.

The power of a summation method is many times measured [11] by
the set of points ω where the geometric series

∑∞
n=0 ω

n is summable, to

(1− ω)−1 , of course. For instance for convergence this set is the open
disc |ω| < 1, while for Cesàro summability it is the set |ω| ≤ 1, ω 6= 1.
We now study this question for (Ex’) summability.

Example 2. The geometric series
∑∞

n=0 ω
n is (Ex’) summable if and

only if the series
∑∞

n=0 ω
n/zn+1 is (Ex) summable at z = 1; the pre-

vious example shows that this is the case precisely when 1 = z 6= ω.
Therefore,

(6.3)
∞∑

n=0

ωn =
1

1− ω
(Ex’) , for all ω 6= 1 .

It is easy to see that one can take the derivative of an exterior Euler
summation formula in the region C \ Kcv. This yields the following
formulas.

Example 3. If k ∈ N, k ≥ 1, differentiation of (6.2) yields the formula

(6.4)
∞∑

n=k−1

(
n

k − 1

)
ωn+1−k

zn+1
=

1

(z − ω)k
(Ex) , for z 6= ω .
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Hence, we also obtain

(6.5)
∞∑

n=0

(
n+ k − 1

k − 1

)
ωn =

1

(1− ω)k
(Ex’) , for all ω 6= 1 .

Example 4. If g is an entire function with g (0) = 0, then the function
f (z) = g

(
(z − ω)−1) is analytic in C \ {ω} , and we obtain

(6.6)
∞∑

n=0

an

zn+1
= f (z) (Ex) , for z 6= ω ,

an expansion that is convergent for |z| > |ω| . The coefficients an in
this development are the same coefficients in the convergent Taylor
expansion

(6.7) h (ξ) = g

(
ξ

1− ξω

)
=

∞∑
n=0

anξ
n+1 , |ξ| < |ω|−1 ,

so that an = h(n+1) (0) / (n+ 1)!. Notice that the series
∑∞

n=1 anξ
n+1 is

actually (Ex’) summable to h (ξ) for all ξ 6= 1/ω.
The example considered in the proof of the Theorem 4.3, namely,

(6.8) f (z) = z2e−1/z − z2 + z − 1

2
,

(6.9)
∞∑

n=0

(−1)n−1

(n+ 3)!zn+1
= f (z) (Ex) , z 6= 0 ,

(6.10)
∞∑

n=0

(−1)n−1

(n+ 3)!zn+1
= −1

2
(Ex) , z = 0 ,

shows that when g is not a polynomial, it is possible for the series
to be exterior Euler summable everywhere. Actually, a series that is
exterior Euler summable everywhere can only arise in this way. In the
case of (6.10) the series

∑∞
n=0 an,λ/ (z + λ)n+1 converges, to −1/2, for

z = 0 whenever λ > 0, because, in fact, the extension of f (z) to the
circle |z + λ| ≥ λ obtained by assigning the value −1/2 to z = 0, is
continuous in C \ Dλ, while on the circle |z + λ| = λ this extension,
namely f

(
−λ+ λeiθ

)
, is a differentiable function of θ, even at θ =

0. Interestingly, if λ < 0 then f
(
−λ+ λeiθ

)
is also a differentiable

function of θ, but the series
∑∞

n=0 an,λ/ (z + λ)n+1 does not converge
when z = 0.
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Example 5. Consider the series

(6.11)
∞∑

n=0

1

(n+ 1) zn+1
= ln

(
z

z − 1

)
, |z| > 1 .

Here we obtain that Kcv = [0, 1] and that the series is exterior Euler
summable for any z that is not in the interval [0, 1] . This, in turn,
yields the formula

(6.12)
∞∑

n=1

ωn

n
= ln

(
1

1− ω

)
(Ex’) , for ω /∈ [1,∞) .

7. Convergence Acceleration

It is important to emphasize that the exterior Euler summability
is not only a summability method, but actually it is a devise for the
convergence acceleration of slowly convergent series, or even divergent
series which are Cesàro or Abel summable.

Let us consider an Abel summable series, which we write in the form∑∞
n=0 (−1)n+1 an. Let S be the sum of the series,

(7.1)
∞∑

n=0

(−1)n+1 an = S (A) .

Our aim is to find a rapidly convergent representation of S.
The Abel summability imply that the function

(7.2) f (z) =
∞∑

n=0

an

zn+1
,

is analytic in the region {z ∈ C : |z| > 1} . Let T = C−1 {f} , an analytic
functional in the closed unit disc D. Our key assumption is that T
admits an extension to O′ (K) , where K is a compact convex subset
of D such that −1 /∈ K. If we take K minimal with this property, then
K = Kcv, f admits an analytic continuation fcv to C \ Kcv, a region
that contains the point z = −1, and

(7.3) S = fcv (−1) .

Observe that, in general, the series in (7.1) is not convergent, not
even Cesàro summable. However, if an = O

(
nβ
)

for some β ≥ 0, then
the series should be Cesàro summable of some order since in that case
the Fourier series

∑∞
n=0 ane

−inθ is a distribution in D′ (∂D) [2, 3, 6], and
since fcv is analytic at −1, this Fourier series represents a continuous
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function in a neighborhood of −1 in the circle, and thus the series is
Cesàro summable in that neighborhood [5, 19].

Nevertheless, whether the series (7.1) is convergent or not, then our
assumptions yield that

(7.4)
∞∑

n=0

an

zn+1
= S (Ex) , if z = −1 ,

so that there exist complex numbers λ such that

(7.5) S =
∞∑

n=0

an,λ

(−1 + λ)n+1 ,

where

(7.6) an,λ =
n∑

j=0

(
n

j

)
λn−jaj ,

is a convergent series. Actually, if −λ ∈ (0,∞), the series (7.5) is
exponentially convergent. If a power series

∑∞
n=0 anz

n has radius of
convergence R, and |z| < R, we say that the series converges like
(|z| /R)n; if R = ∞ we say that the series converges like an entire
function. For example, if Kcv = [0, 1] , by taking −λ = 1/2 then the
series converges like (1/3)n , while if −λ = 1 then the convergence is
like (1/2)n . See [1] for an analysis of the best way to choose λ in order
to minimize the error when using a partial sum, with a fixed number of
terms, of the series (7.5); [1] also has several very interesting numerical
evaluations of series.

Let us illustrate this procedure with the series
∑∞

n=1 (−1)n+1 n−s,
which is Abel summable for all values of s ∈ C; it converges when
<e s > 0. We have

(7.7)
∞∑

n=1

(−1)n+1

ns
=
(
1− 2s−1

)
ζ (s) (A) ,

where ζ (s) is the Riemann zeta function. The convergence accelera-
tion of

∑∞
n=1 (−1)n+1 n−s thus provides a procedure for the numerical

evaluation of ζ (s) (the numerical evaluation when s > 0 is given in
[1]).

In this case there exist distributions Ts (x) for s ∈ C, with Cauchy
representations fs (z) , such that

(7.8) 2πifs (−1) =

〈
Ts (x) ,

1

x+ 1

〉
=

∞∑
n=1

(−1)n+1

ns
.
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As we shall see, suppTs = [0, 1] for s ∈ C \ {0, 1, 2, . . .} , while for
q = 0, −1, −2, . . . we have suppT−q = {1} . In order to construct the
distributions Ts (x) we use the well known formula

(7.9)

∫ ∞

0

ts−1e−ktdt =
Γ (s)

ks
,

and make a change of variables to obtain

(7.10)

∫ 1

0

xn lns−1 (1/x) dx =
Γ (s)

(n+ 1)s .

The function T̃s (x) = χ(0,1) (x) lns−1 (1/x) is locally integrable in R \
{1} , and at x = 1 it behaves like T̃s (x) ∼ (1− x)s−1 as x → 1−. It

follows that T̃s (x) defines a distribution for s 6= 0, −1, −2, . . . , analytic
as a function of s, with simple poles at the negative integers. Therefore,
if we define

(7.11) Ts (x) =
T̃s (x)

Γ (s)
,

then the distribution Ts (x) is an entire function of s, with moments

(7.12) µs,n = 〈Ts (x) , xn〉 =
1

(n+ 1)s .

Our results give the exterior Euler expansions

(7.13)
∞∑

n=1

1

nszn
= 2πifs (z) (Ex) , for z /∈ [0, 1] ,

if s 6= 0, −1, −2, . . . , and

(7.14)
∞∑

n=1

nq

zn
= 2πif−q (z) (Ex) , for z 6= 1 ,

if q = 0, −1, −2, . . . . If we now take z = −1 and use the scheme given
by (7.5) and (7.6) we obtain

(7.15)
(
1− 21−s

)
ζ (s) = −

∞∑
n=0

n∑
j=0

(
n

j

)
λn−j

(−1 + λ)n+1 (1 + j)s ,

(that reduces to formula (19) of [1] if we replace λ by −λ). If λ = −1
we obtain the formula [12, 18]

(7.16)
(
1− 21−s

)
ζ (s) =

∞∑
n=0

1

2n+1

n∑
j=0

(
n

j

)
(−1)j

(1 + j)s ,
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that converges like (1/2)n if s 6= 0, −1, −2, . . . , and that reduces to a
finite sum in case s = 0, −1, −2, . . . . If −λ = 1/2, then the convergence
in (7.15) is like (1/3)n for any s ∈ C.

8. Mittag-Leffler Expansions

We shall now consider the exterior Euler sum representation of some
Mittag-Leffler expansions.

Let us start with a series
∑∞

n=1 an that is Cesàro summable [9, 11].
Then the series of distributions

(8.1) T (x) =
∞∑

n=1

anδ

(
x− 1

n

)
,

is Cesàro summable in the space D′ (R) (actually in the space E ′ (R)).
Indeed, if

∑∞
n=1 an is (C) summable, then so is

∑∞
n=1 ann

−β for any
β > 0. Also, there exists N ∈ N such that an = O

(
nN
)

as n → ∞. If
φ ∈ E (R) then we can write

(8.2) φ (x) =
N+1∑
j=0

φ(j) (0) xj

j!
+ xN+2ψ (x) ,

for some function ψ ∈ E (R) , and thus we obtain

〈T (x) , φ (x)〉 =
∞∑

n=1

anφ

(
1

n

)

=
∞∑

n=1

an

{
φ (0) +

φ′ (0)

n
+ · · · φ(N+1) (0)

(N + 1)!nN+1
+
ψ
(

1
n

)
nN+2

}

=
N+1∑
j=0

∞∑
n=1

an

nj

φ(j) (0)

j!
+

∞∑
n=1

an

nN+2
ψ

(
1

n

)
(C) ,

as the sum of N + 1 Cesàro summable series and a convergent one.
More generally, for a series of the type

∑∞
n=−∞ an that is Cesàro

summable in the principal value sense at infinity [9], namely, if the

symmetric Cesàro limit
∑N

n=−N an exists as N → ∞, then the series∑∞
n=−∞,n6=0 anδ (x− 1/n) is likewise principal value Cesàro summable

in the space E ′ (R) .
Observe that the analytic representation of a distribution of the type

(8.3) Tα (x) = p.v.
∞∑

n=−∞,n6=0

anδ
(
x− α

n

)
(C) ,
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for α ∈ R \ {0} is given by

(8.4) 2πifα (z) =

〈
Tα (x) ,

1

x− z

〉
= p.v.

∞∑
n=−∞,n6=0

nan

α− nz
(C) ,

for z ∈ C\ supp (Tα) . If we now put bn = nan, and ω = α/z, we obtain
the following result.

Lemma 8.1. If the series
∑∞

n=−∞,n6=0 bn/n is principal value Cesàro
summable, then the series

(8.5) G (ω) = p.v.
∞∑

n=−∞

bn
ω − n

(C) ,

is also principal value Cesàro summable for all ω ∈ C\Z, G is analytic
in this region and has single poles at the integers n ∈ N, with residues
bn.

Observe that the sum in (8.5) may have a term corresponding to
n = 0. The results of Section 5 yield the following exterior Euler series
representation of the Mittag-Leffler function G.

Theorem 8.2. The analytic function G given by (8.5) can be written
as the exterior Euler summable series

(8.6) G (ω) =
b0
ω
−

∞∑
k=0

ξkω
k (Ex’) ,

for ω 6= 0, ω /∈ (−∞,−1] ∪ [1,∞),where the moments are given as

(8.7) ξk = p.v.
∞∑

n=−∞,n6=0

bn
nk+1

(C) .

Actually one can give a related expansion which is valid in the region
C \ ((−∞,−N − 1] ∪ [N + 1,∞)) , ω 6= 0, ±1, . . . , ±N, namely,

(8.8) G (ω) =
N∑

n=−N

bn
ω − n

−
∞∑

k=0

ξk,Nω
k (Ex’) ,

where

(8.9) ξk,N = p.v.
∞∑

n=−∞,|n|>N

bn
nk+1

(C) .
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An example is provided by G (ω) = π cotπω, that has the principal
value convergent Mittag-Leffler expansion p.v.

∑∞
n=−∞ 1/ (ω − n) :

(8.10) π cotπω =
1

ω
+ 2

∞∑
n=1

ζ (2n)ω2n−1 (Ex’) ,

for any complex number ω 6= 0 with ω /∈ (−∞,−1] ∪ [1,∞). Here ζ is
the Riemann zeta function.

We can also consider Mittag-Leffler developments that are not prin-
cipal value (C) summable. We shall illustrate this with an expansion
for the digamma function ψ (ω) = Γ′ (ω) /Γ (ω) , whose Mittag-Leffler
development is given by

(8.11) ψ (ω) = −γ +
∞∑

n=0

(
1

n+ 1
− 1

n+ ω

)
, ω 6= 0,−1,−2, . . . ,

where γ is Euler’s constant. In this case the series of analytic function-
als
∑∞

n=1(1/n)δ (ω − α/n) is not (C) summable for any α ∈ C, but the
analytic functional

(8.12) T (ω) =
∞∑

n=1

1

n

(
δ
(
ω − α

n

)
− δ

(
ω − β

n

))
,

is given by a convergent series for any α, β ∈ C. The moments are

(8.13) µk =
〈
T (ω) , ωk

〉
=
(
αk − βk

)
ζ (k + 1) , k ∈ N ,

while its Cauchy representation f = C {T} is given by

2πif (z) =

〈
T (z) ,

1

ω − z

〉
(8.14)

=
∞∑

n=1

(
1

α− nz
− 1

β − nz

)
=

1

z
(ψ (1− α/z)− ψ (1− β/z)) .

If we now employ the Theorem 5.1, taking into account that µ0 = 0,
we obtain

(8.15)
∞∑

k=1

(
αk − βk

)
ζ (k + 1)

zk
= ψ

(
1− β

z

)
−ψ

(
1− α

z

)
(Ex) ,

as long as z /∈ K (α, β) , where the triangular setK (α, β) is the smallest
convex set that contains α, β, and 0, that is, the convex support of the
analytic functional T.
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When 1 /∈ K (α, β) then (8.15) yields

(8.16)
∞∑

k=1

(
αk − βk

)
ζ (k + 1) = ψ (1− β)− ψ (1− α) (Ex’) .

If we take α = 0 and use the fact that ψ (1) = −γ we obtain

(8.17)
∞∑

k=1

βkζ (k + 1) = −ψ (1− β)− γ (Ex’) , β /∈ [1,∞) .

In particular, if β = −1 we find the sum of the not only exterior Euler
summable but actually Cesàro summable series,

(8.18)
∞∑

k=1

(−1)k+1 ζ (k + 1) = 1 (C) .

When β = −N, N = 2, 3, 4, . . . , we obtain exterior Euler summable
series that are not Abel summable,

(8.19)
∞∑

k=1

(−1)k+1Nkζ (k + 1) = 1 +
1

2
+ · · ·+ 1

N
(Ex’) .

If we now take α = 1 − ω, β = ω, and use the identity ψ (1− ω) −
ψ (ω) = π cotπω, then (8.16) yields that for ω 6= 0, ω /∈ (−∞,−1] ∪
[1,∞),

(8.20)
∞∑

k=1

(
(1− ω)k − ωk

)
ζ (k + 1) = π cotπω (Ex’) .

If ω = 1/4 the series becomes convergent, and we recover the Flajolet-
Vardi formula [10]

(8.21)
∞∑

k=1

((
3

4

)k

−
(

1

4

)k
)
ζ (k + 1) = π ,

considered also by Amore [1, Eqn. 4].
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