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Background on Geometry

The Riemann Cap (or Spherical Suspension) is defined as the
D = d + 1 dimensional compact manifold Ω = I ×N , with
I ⊆ [0, θ0] , and where N represents a smooth, compact
Riemannian d-dimensional base manifold. Ω is locally described by
the line element

ds2 = dθ2 + sin2 θdΣ2
N .

Remarks:

Generalization of the spherical caps ds2
D = dθ2 + sin2 θds2

D−1.

Presence of a conical singularity for θ“small”.

We consider the Laplace operator ∆Ω acting on scalar functions
ϕ ∈ L 2(Ω). In hypershperical coordinates

∆Ω =
∂2

∂θ2
+ d cot θ

∂

∂θ
+

1

sin2 θ
∆N ,

with ∆N being the Laplacian on N .



Eigenvalues and Eigenfunctions

The eigenvalue equation(
−∆Ω + m2

)
ϕ = α2ϕ ,

is separable and has a solution of the form

ϕ(θ,Xj) = (sin θ)
(1−d)

2 ψ(θ)H(Xj) , ∆N H(Xj) = −λ2H(Xj) ,

with H(Xj) being the hypershperical harmonics on N .
The specific solution of the eigenvalue equation which is regular for
θ → 0 is

ϕ = (sin θ)
(1−d)

2 P−µ− 1
2

+iω
(cos θ)H ,

µ =

√
(1− d)2

4
+ λ2 , −1

2
+ iω ≡ −1

2
+ i
√
α2 − σ2 ,

where σ2 = m2 + d2/4.



Spectral Zeta Function

The spectral zeta function of the problem is defined as

ζ(s) =
∑
α

α−2s =
∑(

ω2 + σ2
)−s

.

Since the base manifold is unspecified, we will express ζ(s) in
terms of the spectral zeta function on the base ζN (s) defined as

ζN (s) =
∑
µ

d(µ)µ−2s .

Here, we are interested in imposing Dirichlet boundary conditions
at θ = θ0. This leads to

P−µ− 1
2

+iω
(cos θ0) = 0 .

The above equation implicitly determines the eigenvalues ω (and
therefore α).



Zeta Function and Functional Determinants

Why do we care about spectral zeta functions?

The spectral zeta function is a powerful tool for the
evaluation of the regularized functional determinant of an
elliptic operator L,

DetL ≡ e−ζ
′(0) .

The spectral zeta function is utilized in order to compute the
One-Loop effective action Γ in quantum field theory,

Γ = −1

2
ζ ′(0)− 1

2
ζ(0) lnµ2 ,

where µ is a parameter with the dimensions of mass.

There are many other applications of the spectral zeta function in
Mathematical Physics, Spectral Geometry and Casimir Effect.



Integral Representation of ζ(s)

The starting point of our analysis is the following representation

ζ(s) =
∑
µ

d(µ)
1

2πi

∫
γ

dz
(
z2 + σ2

)−s ∂

∂z
ln P−µ−1/2+iz (cos θ0) .

By deforming the contour of integration to the imaginary axis and
by setting µ2u = z2 − σ2 we have

ζ(s) =
sinπs

π

∫ ∞
0

du

us

∂G
∂u

(u, s) ,

where

G(u, s) =
∑
µ

d(µ)µ−2s ln P−µ
−1/2+

√
uµ2+σ2

(cos θ0) .

Notice that the above representations are valid for < [s] > D/2 !



Analytic Continuation

The next step is to analytically continue ζ(s) in the neighborhood
of s = 0. To this end, an important result is available

Lemma

Let f (x) be a function defined for x ≥ ε with ε > 0 and analytic at
x = ε. Assume that f (x) has the following general asymptotic
behavior for x →∞:

f (x) =

ρk<N∑
k=1

(
fk + f̄k ln x

)
xρk +[f ]log ln x+[f ]reg+O(x−1) , ρk > 0

where the subscripts log and reg refer to the solely logarithmic and
regular (non-singular) parts of f (x) in the large x limit. Then,
there exists the analytic continuation of the integral∫ ∞

ε

dx

x s

d

dx
f (x) =

[f ]log
s

+ [f ]reg − f (ε) + O(s) .



Analytic Continuation

Why is this Lemma useful?
In general the function G(u, s) is well defined for <[s] > s0 and its
analytic continuation to s = 0 will have the form

G(u, s) =
1

s
GP(u) + GR(u) + O(s) .

By assuming that G(u, s) satisfies the hypothesis of the Lemma,
we obtain

ζ(s) ∼
[GP ]log

s
+ [GR ]log + [GP ]reg − GP(0)

+ s

(
[GR ]reg − GR(0)−

∫ ∞
0

du ln u
d

du
GP(u)

)
.



ζ(0) and ζ ′(0)

The previous relation gives the following results

ζ(0) = [GR ]log +
(

[GP ]reg − GP(0)
)
,

ζ ′(0) =
(

[GR ]reg − GR(0)
)
−
∫∞

0 du ln u d
duGP(u) .

Where we have assumed that [GP ]log = 0 in order to have a well
defined functional determinant.
Remark:
One can prove that

[GP ]log = −1

2
Res ζN

(
−1

2

)
= Res ζ(0) .

So if N is closed [GP ]log = 0 in even dimensions.



Riemann Caps Case

Can we apply the Lemma to our case?
The logarithm of the Legendre functions has the following
asymptotic expansion for µ→∞

ln P−µ
−1/2+

√
uµ2+σ2

(cos θ0) ∼ 1

2
ln t(u)− 1

2
ln 2πµ+ µτ(u)

−µ lnµu +
∞∑
n=0

µ−nan(t(u) cos θ0) .

where the functions an are given by a recursion relation.
From here one can see that the asymptotic behavior required by
the lemma is exactly reproduced.
Therefore, we can apply the Lemma to the function G(u, s) of our
integral representation of ζ(s).



Computation of the Needed Terms

The only thing left to do is to evaluate all the terms needed in the
expression for ζ(0) and ζ ′(0).
Essential steps:

1 Identify the logarithmic and regular parts of the asymptotic
expansion of ln P−µ

−1/2+
√

uµ2+σ2
for µ→∞. These terms will

have the general form

[ln P]log ∼ µαC1(σ, θ0) + lnµC2(σ, θ0) ,

[ln P]reg ∼ µβC3(σ, θ0) + lnµC4(σ, θ0) .

2 Perform the sum over the eigenvalues µ. The result will be
expressed in terms of ζN (s) and ζ ′N (s).

3 Utilize the analytic structure of ζN (s) near s = 0 in order to
find [GP ]log , [GP ]reg , [GR ]log and [GR ]reg .



Evaluation of GP(u), GP(0) and GR(0)

The terms that are left to evaluate can be obtained by using the
following procedure:

GP(u) is obtained by expanding in inverse powers of µ the
asymptotic expansion of ln P and considering only the polar
part in s.

GP(u) =
d∑

n=1

an(t(u) cos θ0)Res ζN

(n

2

)
, GP(0) = lim

u→0
GP(u)

GR(0) is obtained from the expression

GR(0) = PF

{
lim
s→0

∑
µ

d(µ)µ−2s ln P−µσ−1/2 (cos θ0)

}
,

which can be dealt with by first writing P in terms of a
hypergeometric and then using the Abel-Plana summation
formula.



Results

For the Riemann Cap we have obtained the following results:

We have found a general formula for ζ(0) and ζ ′(0) in
arbitrary dimensions for an arbitrary smooth and compact
base manifold N in terms of ζN (s) and ζ ′N (s).

As a particular case we have assumed N to be a
d-dimensional sphere. In this case ζN (s) becomes a Barnes
zeta function and more explicit results for ζ(0) and ζ ′(0) in
arbitrary dimensions have been given.

In the case of a d-dimensional sphere as base manifold we
have obtained specific expressions for ζ(0) and ζ ′(0) for
D = 3, 4, 5.



Final Remarks

The method used has its limitations

Pros. This formulation gives the value of ζ(0) and ζ ′(0) in a
very direct way in terms of specific parts of the asymptotic
expansion of the eigenfunctions.

Cons. This method only provides the analytic continuation of
ζ(s) at s = 0. Therefore it is not suitable for the evaluation,
for instance, of the Heat Kernel coefficients and the Casimir
Energy.

In a joint work with K. Kirsten we were able, by using a different
method, to evaluate the Heat Kernel coefficients for Laplace
operators on the Riemann Cap.



Open Problems

The computation of the Casimir Energy on the Riemann Cap
would be a subject of interest. One could proceed in two ways:

Generalize the method described here in order to find the
analytic continuation at s = −1/2. The hope is to find an
expression for ζ(−1/2) similar to the ones obtained for ζ(0)
and ζ ′(0).

Analytically continue ζ(s) at s = −1/2 by adding and
subtracting N leading terms of the asymptotic expansion of
the eigenfunctions (often used in recent literature). However,
in order to make the resulting integrals manageable, one
would be forced to deal with the following spectral function

ζd2/4(s) =
∑
α

(
α2 +

d2

4

)−s
.
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