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Motivation

e Physical understanding requires (T#"(r)).
e Perfectly reflecting wall = divergence.
e Ultraviolet cutoft = pressure paradox:
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5 = p in dimension 2, intersecting planes.
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8_E = +2 / p in dimension 3

oh S,
(for both intersecting planes and sphere).

e This shouldn’t happen in an internally consistent
dynamical theory.

e A steeply rising smooth potential
x mocks up a reflecting wall.
x should define a nonsingular, internally consistent

theory.

e In principle this can be done for a spherical bound-

ary, etc., but for now we do only a plane one.



RENORMALIZATION

Cylinder kernel divergences <= heat kernel.

In dimension 3, (TY) should contain
e universal ¢t—* divergence

e t72 term o V(r)

e Int terms o V2 and V2V.

After removing these we should be able to set t = 0.
Only the first occurs where V' = 0.

Elsewhere (T*") should include V¢? interaction term.



The model

( ) = 0, z <0
Y= Az¢ 2>0. (1<aeR)
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Get dimensions right: v = A\g (—) .
20

N —L 2"\ o2
Only one length scale: 2 = A\aF2 = W :
0
For any a, v(zg9) = Ap; increasingly steep as a — 0.









Eigenfunctions

Pn(r) = et T gbp(z)
(rJ_a kJ_ S R27 S R7 D€ (07 OO))

(— 5—; +o(z) - p2) $,(z) = 0.

¢,(2) = \/g sin[pz — §(p)] when z < 0.



When z >0, ,(2) = C(p)Pa (2. (2p)?).

Z
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(— 3 + 2% — E) P.(z,F) =0, P,(4+o00,F)=0.

Pi(z, F) x Ai(z — F), Ps(z, F) ocD%(E_l)(\sz).

For hard wall at zo, Pso(z, E) o sin[VE(z — 2)].
(Henceforth usually 2 =1, VE =p (20 = 1 = \g).)



The solutions must match at z = 0:

i) -0
2 1

C(p)® =

Even for P = Ai, these formulas are unpleasant.
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SMALL p

When p = 0 the solution is known:

2 o
P.(2,0) = z*/*K ( z—f).
2 \ o+ 2

Perturbation expansion:

Po(z,E) = Py(2,0)+ EPV (2) + - - -.

5(p) = pla+2)77 r(jii) r(31;>1+ O(p%).
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LARGE p (WKB)

dp(2) ~ [p* — v 4008[/ N dz—Z,

turning point a = p2/0‘.

:/ \/pZ—U(Z)dZ%—E mod 7
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a =1 (Airy function):

p3**T(3)/T(3), p—0,
o(p) ~ 2p3 n 7T
— + =, p — 0.
3 4
fu

o = 2 (parabolic cylinder function):

2pT(3)/T(3), p—0,
o(p) ~ p? T
— + — p — OQ.

4 4’

13



Cylinder kernel calculations

Recall
T(t,r,r’) Z P et
82
(ﬁ +V2—v(z ))T(ta ri,z2) =256 (r )o@ - 7).

—2 ¢, (%)
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CARTESIAN CALCULATIONS

__ 1 o0
T(tr,,z,z2)=— 5 de(s,p)qbp(z)¢p(z'),
0
e ™ 2 2
Y(s,p) = g s=\/12+rL?.
In potential-free region, z < 0,
1 )

T=— dpY (s,p) Siﬂ(pz — 5(p)) sin(pz’ — 5(p)).

T2
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1 1
212 2+ r 2 4 (2 — 2')?
1 o0
4+ ) dpY (s,p) cos(p(z +2') — 25(19))
0

= Tfree + Tren .

T——

Hard wall: §(p) = zop = (correctly)

_ 1 1
R o2 2 4 2 4 (242 — 229)2
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The bad news:

__ 1 o0 —SPp
Tren = W/O dp : s COS(p(Z + Z/) o 25(}9))

is poorly convergent when s = +/t? + r 2 is small,
which is precisely where we want it. In fact, we should
be able to take s = 0 and get a finite answer when
z+ 2" > 0, but the integrand is pointwise infinite there!

There is a genuine divergence for §(p) = Ap + B unless
B = 0. Asymptotics for small p as well as large is
critical. Presumably large k| is at fault, so ...
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POLAR CALCULATIONS

Do the integral in polar coordinates in the Fourier
space: (Z=z+2,s=(t,r1),v=(w,k1))

_ 1 >C €
Tren = 4—4/ dpLB dv 2
/ dp/ du s~ tsin(spyv/1 — u2)

x cos(Zpu — 26(pu)).

e cos(pZ — 25(p))
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With s =0 and z = 7/,

T1en(0,0, 2, 2) / dp/ du p\/ 1 — u?

x cos(2zpu — 26(pu)).

Integration by parts (appealing to §(0) = 0!) improves
the convergence but worsens the algebra:

Tien(0,0,2,2) = — —= d/d Vi
e 27r3 P Yu |z = & (pu)

X Sin(ZZpu — 26(pu)).
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Numerics (BARELY STARTED)

e Padé interpolation between small and large p asymp-
totics works fairly well.

e The oscillatory integrals appear intractable so far,
even with Riesz—Cesaro averaging.
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