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I |. Quantum Vacuum Energy

» |Important at all energy scales, subnuclear to
cosmological

» Applications coming in nanotechnology

» Most likely the source of Dark Energy

o /-year WMAP data completely consistent
with cosmological constant:

w = —1.10 £ 0.14(68% CL)

o The most fundamental aspect of guantum |
field theory—Zero-point fluctuations
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| ll. Self-energies: spheres & cylinde

Type ESphered Ecyindera” References

EM 0.04618 —0.01356 Boyer, DeRaad

D 0.002817 0.0006148 Bender,Gosdzins
23 '

(e —1) 5= 0 Brevik, Cavero

£? e 0 Klich, Milton

He? +0.0009 0 Kitson, Kitson

A2 /a? T 0 Milton, Cavero
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| lll. Self-energy for a ST sphere

We use the multiple scattering formalism to
confirm the result for the self-stress on a single
sphere of radius a using this formalism. We start
from the general formula

1 1
E=—Trl
2T n1+GOV’

where

V(r,r') = \o(r —a)d(r —r').

In strong coupling (A — oo) this becomes a |

Dirichlet sphere. e



| Partial. wave expansion

The free propagator in Euclidean space is:

ol e—IClIr—r / Bl ek
r.r)—= —
T Ar|r — 1| (27)3 k2 + (2

and the partial wave expansion of the plane
wave IS:

e = Al (k)Y (8) Y, (K).

Im
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| G fn.in.spherical basis

Then, from the orthonormality of the spherical
harmonics,

/dR l;(R)Yl/m/(R) — 5ll’5mm’a

we obtain the representation

* dk k?
Z/ -2 —I—Czjl (kr) 1 (k1) Yo, (F)
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Now we combine the representation for the free
Green’s function with the spherical potential to

obtain

(GoV)(r, 1) = —(5 (r" — a) Z/OO Ak kCle(ka)jg(kr)

XYy ()Y, (E (&)

When this, or powers of this, Is traced (that Is,
r and r’ are set equal, and integrated over), we

obtain a poorly defined expression. |

//////////



| Point-split regulation

To reqgulate this, we assume r # a, for example,
r < a. (This Is a type of point-split regulation.)
Then, because

1

jitka) = 5 ({" (ka) + (=1)'h" (=ka) )

while j;(kr) = (=1)45;(—kr), we see that the k
Integration can be evaluated as (r < a)

[ ika)i(hr) = T Kiya(icia) (1)
) k2—|—C2]l a)JI\kT . +1/20(6 1@ )L141/2(|G|T).

//////////



| Expression for Casimir energy

Thus, it Is easlily seen that an arbitrary power of
GoV has trace

Tr(GoV)" = (Aa)" > (Kir1p2(ICla) T 2(1¢]a)"

Im

and that therefore the total self-energy of the
semitransparent sphere is given by the
well-known expression (z = |(|a)

O

1 O
B =S (1) / drIn (14 Al o(2) Kist jo(2))
—0 0 |

[
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| Finite results

Actually, a slightly different form involving
Integration by parts was given in our papers
which results in the energy being finite though
order \* (result as shown in Table). In order \*
there Is a divergence which is associated with
surface energy.

The A — oo limit corresponds to a sphere on
which Dirichlet boundary conditions are satisfied,
and is evaluated to give the value stated above In

the table. |



I I\V. Wedge generalizes cylinder




| Case (d) dispersion relation

Using multiple scattering, or the
Kontorovich-Lebedev transformation, we obtain

the following implicit formula for the angular
eigenvalues, (r=reflection coefficient on wedge)

D(V,w) _ (1 o 62m‘u)2 o T2(6iu(27r—a) o eiua)Z

_ —4627””[811’12(V7T) —7? sinQ(V(W — Oé))],

which are selected by the “argument principle.”
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Brevik, Ellingsen, Milton, PRE 79 041120 (2009);
80, 021125 (2009); PRD 81, 065031 (201(-))_|.



| V. Annular Piston

o “Scalar Casimir Energies for Separable
Coordinate Systems: Application to
Semi-transparent Planes in an Annulus;’
Wagner, Milton, K. Kirsten, arXiv:0912.2374,
to appear in the proceedings of QFEXTO09

o “Casimir Effect for a Semitransparent Wedge
and an Annular Piston,” Milton, Wagner, Klaus
Kirsten, arXiv:0911.1123, Phys. Rev. D 80,

125028 (2009)



| Annular piston—-ST plates

3

We use multiple scattering in the angular coor-
dinates, and an eigenvalue condition In the ra-

dial coordinates—equally well solvable with radial
Green’s functions, but generalizable. _l



| Quantum vacuum energy

We start from the formula for the Casimir energy
In terms of the Green’s function,

1 dw
E=— [ —=2u°Tr
5 | 32 TG -G"),
where the trace denotes the integration over
spatial coordinates, and we have again
subtracted out the vacuum contribution. The

Green'’s function G(r, r’) will satisfy the equation

[—V2—w2+V(r)] G(r,r') =0(r —1r'), |

while G» hasV(r) =0. = e



| Cylindrical geometry of annulus

Boundary conditions: G =0at p =a and p = b.
Potential: V(r) = v(0)/p.
Green'’s function (n = separation constant):

< dk
Glrx'w) = [ 51N ST R (o, k) By s )
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| Eigenfunction and Green’s functior

Normalized radial eigenfunctions:

{dd

Pl (W™ — kQ)pQ} Ry(p;w, k) =" Ry(p;w, k),

BC: R,(a;w, k) = R,(b;w, k) = 0. Reduced
Green’s function:

{ 592 -0+ 0(9)} g,(0,0') = 50— 0),

with periodic boundary conditions. |



I Vacuum. energy

Ood > dk
b [t [ [ [
X /d@ {gn(Q,Q) —97(7 )(‘979)} -

or (w — i¢,  + k2 = K?),

1
g:__ BdIQZ/ ,OdPR2 (p; K

X /dH {gn(ﬁﬁ) — gy )(9»9)} _l



| Radial.Integral

Using the differential equation, the desired radial
Integral Is found to be concisely written as

b _
2 . NN R
/a pdp R, (p; k) = —— R

Yol

where R, (r; x) is a solution of the differential

equation which satisfies R, (a; k) = 0. Here the
normalization Is

dp 9
R, (p; L.
[ - |



I Argument principle

The eigenvalues are given by the zeros of
D(n) = R,(b; k). So we have

b 0 r
1 0 Rn(ba "{)
dpR*(p; k :—/ T
Z/ pdpRy(p; k) = - i r)
' Y
X(ni@w@)
K g Ry (b k)
1 no . =~



| Contour of Integration




| The Radial Solutions

We need the solution of the modified Bessel
differential equation, of imaginary order, which Is

zero for p = a for all values of n and . An
obvious solution Is

~ ~ ~

R, (p; k) = Kiy(ra) Liy(kp)—Liy(ra) Kiy(kp) = R (p, k)

where




| Reduced Green’s Function

Free reduced Green’s function:

1 .
0.0 = o (—smhn@ -

h
CPLT cosh nie — 0

sinh nm

For a single potential v(6) = \é(0 — «) for
0.0" € o, 2 + ol g,(0,0") =

2n cosh nm cosh n|d — 6|

= —| —sinhn|d — 0’|
277< sinh ‘ 2n sinhnm 4+ A coshnm

)\C()Sh n(2m + 2a — 0 — 0') — cosh 2nmw cosh n|d — ¢
2n sinh nm + A cosh nr|2 sinh nr




| Trace of Green’s fn

The quantity of interest, tr (¢ — ¢\V)), is then

[ o on0.0) - 96,00

—A(sinh nm cosh nm + n)

B 2n? sinh nm(2n sinh nm 4+ A cosh n)

1 0 A
= ——1In (1 + — coth mr)

21
1
= 2 (142000 0)).

2n On ! |
precisely of the expected form.



| Casimir.energy for single plane

The final form for the Casimir energy for a single
radial o-function potential in the annular region is

167?22/ Zdli/dﬁ (—ln Kin(ka) I, (kD)

- fin(ﬁa)Kin(/{b)D ((%m {1 + %cothmb |
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| MS derivation

This result may also be obtained by the multiple
scattering formalism, which says that

1 1
E=—_Trln GG = ST In(1 + GOV).
() ()

The above agrees If IBP:

E = —2 d/—@/{/dn (—ln Ky (ka) 1, (kb)

—Jm(m) m(/{b)Dln [1+Ag<>( )}.



| Two Semitransparent Planes

If we want to look at an explicitly finite guantity
we will need to look at the interaction energy
between two semitransparent planes.
Multiple-scattering formalism:
1 [d
F=—[ i1 -¢V1,621).

Y Lo 2T

The subscripts on the Vs represent the poten-
tials Vi(r) = Md(0)/p?, and Va(r) = Xad(0 — )/ p?.

The Green’s functions with superscript (z) repre-
sent the interaction with only a single potmm_l

//////////



| Simplified interaction energy

1 0.9
E — . o /ﬁ)dliz In (1 — trggl)vlgq(f)vg) ,
7

gff) given above. Then

tr 97(71)0197(72)02
A\ A9 cosh? n(m — «)

(2n sinh nm + Ay cosh nm) (2n sinh nw 4+ Ay cosh )
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| Energy.for annular Casimir piston

Using the argument principle to determine the
angular eigenvalues, we get the following
expression for the energy for an annular Casimir

piston: (I, = L+ 1) E=

//-@d/i/ 877 In {Km(lia)lm(/ﬁb) I, (I{}@)Kin(&b)}

(1 Ai\s cosh® n(m — «)/ cosh® nm
n .
(2n tanh nm + A1) (2n tanh nm + A9)
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| MS calculation for annular piston

i

Energy/length for annular piston as function of
angle (left), and compared to energy/length for

rectangular piston (right). Here d = £%sin 4, and
plateaus may be understood from the PFA

Eppa 107 (1+a)4. |
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| V. Triangular cylinder

For an equilateral triangle of height i, the scalar
eilgenmodes corresponding to Dirichlet boundary
conditions are known explicitly

2 (T2
=3 (3) G+E+B)

where
L+l+13=0, [ #0.

[Preliminary. Work in progress with Elom Abalo.]
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| Casimir.energy

In d transverse dimensions, the Casimir energy Is

c_ [(—=1/2 —d/2) Z( 2(d+1)/2

22+d - (d+1)/2

which can be analytically continued and
summed by means of the Chowla-Selberg
formula (which we used to find the temperature
dependence for the diaphanous wedge), which is
exceedingly rapidly convergent.

0.0177891
£ =+——5—. |

//////////




| Chowla-Selberg (Kronecker):

S~ (am? + bmj + ¢?) 7" = 2 (2q)a”

m,]EZ

2%\ /ma™'T(q — 3)¢(2¢ — 1)
[(q)ar?
2q+3 4

| — 172y o (1
F(Q)A§(Q§)\/az -24(0)

[=1

x cos(lmb/a)K, (7‘(’[\/7/&)

A = dac — b, o,(l) = >, v", where v are |

summed over the divisors of /.




| Poisson.sum formula

We can also evaluate the eigenvalue sum by use
of the Poisson sum formula,

S =2r Y Fik),

[=—00 k=—00

IN terms of the Fourier transform

foy = [ e p(a)

o 2T
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| Alternative evaluation

The unregulated energy for the equilateral

triangle Is
11 [~dtl = 2, 72
E—____ - —Bt(l1+I5+112)
87r6/0 ! t{l lz_:me
5y e 2l

3 = %(w/h)?, where the double sum may be

broken up using |

Z% + Z% -+ lllg — 3m2 -+ 712, l1’2 =1 — N.




I Two equivalent forms

g:

S {M C(4) - 87C(3)

+ 47%(12) 3/42 173204 (1 )Kg/g(\/_ﬂ'l):|

[=1
B 1 10
~ 14472h2 \/g

C(4) — 12m((3)

1)l+k

—+16Vf_j£:

0.0177891/h°.
P - /

2 terms (~ 10° terms) gives 6-figure accuracy. mws:



| E. for. square waveguide

Same methods for evaluating the Casimir energy
for a square waveguide (side a) (Lukosz/
Ambjgrn and Wolfram):

1 _ 2 = 3/2 \

=0 _2g(4) — wC(3) 4 8 ;z Posy(1) Ky o (ml,
— : _4g( 27((3 +4Z
- 32m2a? | " o 1

= 0.00483155/a’

The C-S formula Is extraordinarily Convengmr—l



| Other triangles

By bifurcating the square, we can obtain the
Isosceles right triangle, and by bifurcating the
equilateral triangle we can get the 30°-60°-90°

triangle:
1 3)  0.0263299
giso — _gsq | C( ) _ |
2 167ma? 2
e Lo C(3) _ 0.0567229
T o T grh2 T 52 v

To be compared to the result for a circle

0.0006148 |
gcirc — :

a2




| H modes

We can also get results for Neumann boundary
conditions (H or TE modes)

¢(3) 0.0429968

58]21[ — gSl()l {702 — a2 !
v _ep_ G(3) 0045082
ot ot T 6 CR
ov Loy C(B) 00454195
o 27 167a? a?

Loy ¢(3) _ 00708193

2 8mh? h? |

N
5369 T




| Systematic dependence of”

E(a) — E(A), A = cross-sectional area, as a

function of A/c?, ¢ = circumference of waveguide.
E(A)

0.015
0.010 -

0.005 -




VIl. Conclusions

» | believe finite Casimir self-energies can be
well-defined, in that they are robustly
calculable.

» Self-energies, however, are difficult to ascribe
physical meaning to, except in the presence
of gravity.

» Self-energies gravitate like all other forms of
energy, consistent with the equivalence
principle.

» Therefore, It Is consistent to remove the
divergent parts through some sort of |

renormalization.



| Mutual energy unambiguous

» Casimir interaction energies between rigid
bodies are finite and observable without
guestion.

» Multiple-scattering technigues are very
effective at yielding these energies, but they
are equally applicable to calculating
self-energies.

TAMU7/9/10
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