The problem

Zeta Functio 00 00000 Analytic Continuation

Casimir Energy and Force 0 000

Potentials with compact support

Pedro Fernando Morales

Department of Mathematics Baylor University pedro_morales@baylor.edu

July, 9th 2010

BAY LORR

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Pedro Fernando Morales Potentials with Compact Support

The	problem

Zeta Function 00 00000 Analytic Continuation

Casimir Energy and Force 0 000

Outline

 The problem The Idea The Statement The Assumptions 2 Zeta Function Secular Equation Characteristic Function Asymptotics for large y3 Analytic Continuation General Setting Analytic Continuation 4 Casimir Energy and Force Determinant and Energy Force

Pedro Fernando Morales Potentials with Compact Support $\underset{U=N-I}{B}\underset{V=E}{A}\underset{V=E}{Y}\underset{K=K}{L}\underset{K=K}{O}\underset{K=K}{O}\underset{K=K}{R}$

<ロト <同ト < 国ト < 国ト

≣ । ≣ •ी ९ (Math Department

The problem	Zeta Function	Analytic Continuation	Casimir Energy and Fo
●O	00	0	o
○	00000	00	ooo
The Idea			

Pistons with Compact Supported Potentials

Consider a piston

with Dirichlet boundary conditions and middle plate represented by V(x) BAYLO

Pedro Fernando Morales Potentials with Compact Support Math Department

イロト イポト イヨト イヨト

The problem ○ ○	Zeta Function 00 00000	Analytic Continuation 0 00	Casimir Energy and Force 0 000	
The Idea				
Zeta Func	Zeta Function			

• State the problem as an eigenvalue equation

Pedro Fernando Morales Potentials with Compact Support

The problem ○ ○	Zeta Function 00 00000	Analytic Continuation 0 00	Casimir Energy and Force 0 000
The Idea			
Zeta Euro	tion		

- State the problem as an eigenvalue equation
- Write down the spectral zeta function

Pedro Fernando Morales Potentials with Compact Support

The problem ○ ○	Zeta Function 00 00000	Analytic Continuation 0 00	Casimir Energy and Force o ooo
The Idea			
Zeta Function			

- State the problem as an eigenvalue equation
- Write down the spectral zeta function
- Find the Casimir energy and functional determinant

《曰》 《圖》 《臣》 《臣》

The problem ○ ○	Zeta Function 00 00000	Analytic Continuation 0 00	Casimir Energy and Force o ooo
The Idea			
Zeta Euro	tion		

- State the problem as an eigenvalue equation
- Write down the spectral zeta function
- Find the Casimir energy and functional determinant
 - Find analytic continuation

BAYLOR

イロト イポト イヨト イヨト

The problem ○ ○	Zeta Function 00 00000	Analytic Continuation 0 00	Casimir Energy and Force 0 000
The Idea			
Zota Euro	tion		

- State the problem as an eigenvalue equation
- Write down the spectral zeta function
- Find the Casimir energy and functional determinant
 - Find analytic continuation
 - Evaluate $\zeta'(0)$ and $\zeta\left(-\frac{1}{2}\right)$

RAYIOR

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シック◇

The problem	Zeta Function	Analytic Continuation	Casimir Energy and Force
00 ● 0	00 00000	0 00	0 000
The Statement			

Eigenvalue Problem

We want to solve the eigenvalue equation

$$\left(-\frac{\partial^2}{\partial x^2}+V(x)\right)\phi(x)=\lambda^2\phi(x)$$

in [0, L] with Dirichlet boundary conditions.

BAY LORR

・ロト ・四ト ・ヨト ・ヨト

Pedro Fernando Morales Potentials with Compact Support

The problem	Zeta Function	Analytic Continuation	Casimir Energy and Force
00	00 00000	0	0000
O The Statement			

Eigenvalue Problem

We want to solve the eigenvalue equation

$$\left(-\frac{\partial^2}{\partial x^2}+V(x)\right)\phi(x)=\lambda^2\phi(x)$$

in [0, L] with Dirichlet boundary conditions. Let V(x) be supported in [a, a + w] such that w > 0 and

$$\int_{a}^{a+w} V(x)dx = \sigma$$

$$BAY$$

is fixed.

Pedro Fernando Morales Potentials with Compact Support

Э Math Department

BAYLOR

The problem ○○ ●	Zeta Function 00 00000	Analytic Continuation 0 00	Casimir Energy and Force 0 000		
The Assumptions					
Assumptions on ϕ					

• Continuous

Pedro Fernando Morales Potentials with Compact Support

The problem ○○ ●	Zeta Function 00 00000	Analytic Continuation 0 00	Casimir Energy and Force o ooo		
The Assumptions					
Assumption	Assumptions on ϕ				

- Continuous
- Incommensurable lengths $(a/L \notin \mathbb{Q})$

Pedro Fernando Morales Potentials with Compact Support

The problem ○○ ●	Zeta Function 00 00000	Analytic Continuation 0 00	Casimir Energy and Force o ooo	
The Assumptions				
Assumptions on ϕ				

- Continuous
- Incommensurable lengths $(a/L \notin \mathbb{Q})$
- Normalization $(\phi(a) = \phi(a + w) = 1)$

E ∽ Q (~

BAYLOR

《曰》 《圖》 《臣》 《臣》

The problem oo o	Zeta Function ●0 ○○○○○	Analytic Continuation o oo	Casimir Energy and Force 0 000
Secular Equation			
Secular Condi	ition		
Integrating t	he equation around	the support gives	

$$\lambda^{2} \int_{a-\epsilon}^{a+w+\epsilon} \phi(x) dx = - \int_{a-\epsilon}^{a+w+\epsilon} \frac{\partial^{2} \phi(x)}{\partial x^{2}} dx + \int_{a-\epsilon}^{a+w+\epsilon} V(x) \phi(x) dx$$

<ロ> <回> <回> < E> < E> E の < C

Pedro Fernando Morales Potentials with Compact Support

Letting $\epsilon \rightarrow 0$ and using the solutions of the differential equation, lead to

$$\lambda \cot(\lambda a) + \lambda \cot(\lambda(L - w - a)) + \sigma - \lambda^{2} w$$
$$= \int_{a}^{a+w} \phi'(x) \left[\int_{a}^{x} (V(u) - \lambda^{2}) du \right] dx$$

BAYLOR

Pedro Fernando Morales Potentials with Compact Support

3 Math Department

5900

The problem	Zeta Function	Analytic Continuation	Casimir Energy and Force
00 0 0	00 ●0000	0 00	0 000
Characteristic Function			

Characteristic Function

In order to remove singularities at the origin, define

$$F(\lambda) = -\frac{1}{\lambda}\sin(\lambda(L-w)) - \frac{\sigma}{\lambda^2}\sin(\lambda a)\sin(\lambda(L-w-a)) +w\sin(\lambda a)\sin(\lambda(L-w-a)) +\frac{\sin(\lambda a)\sin(\lambda(L-w-a))}{\lambda^2} \int_{a}^{a+w} \phi'(x) \left[\int_{a}^{x} (V(u) - \lambda^2) du\right] dx$$

 $= \underset{U=N-I}{\overset{N}{\longrightarrow}} \underset{V=E}{\overset{Y}{\rightarrow}} \underset{R=S-I}{\overset{L}{\longrightarrow}} \underset{T=Y}{\overset{N}{\rightarrow}} \underset{T=Y}{\overset{N}{\overset{N}{\rightarrow}} \underset{T=Y}{\overset{N}{\rightarrow}} \underset{T=Y}{\overset{N}{\rightarrow}} \underset{T=Y}{\overset{N}{\rightarrow}} \underset{T=Y}{\overset{N}{\overset{N}{}} \underset{T=Y}{\overset{N}{}$

Pedro Fernando Morales

Potentials with Compact Support

≣ । ≣ •ी ९.(Math Department

The problem oo o	Zeta Function °° 0●000	Analytic Continuation O OO	Casimir Energy and Force O OOO		
Characteristic Function					
Asymptotics	for large <i>y</i>				

In order to write the zeta function as a contour integral and deform it to the imaginary axis, we set $\lambda = iy$, and when $y \to \infty$,

$$\frac{\partial^2 \phi(x)}{\partial x^2} + V(x)\phi(x) + y\phi(x) \sim \frac{\partial^2 \phi(x)}{\partial x^2} + y\phi(x)$$

Math Department

Э

BAYLOR

イロト 人間ト イヨト イヨト

Pedro Fernando Morales Potentials with Compact Support

The problem	Zeta Function	Analytic Continuation	Casimir Energy and Force
	00000	00	000
Characteristic Function			

so that

$$\int\limits_{a}^{a+w} \phi(x) dx \sim c_V$$

where c_V is a constant depending on V(x) and independent of a

BAYLOR UNIVERSITY

Pedro Fernando Morales Potentials with Compact Support

The problem	Zeta Function	Analytic Continuation	Casimir Energy and Force
	00000	00	000
Characteristic Function			

Thus,

$$F(iy) \sim \left(w - \left(rac{1}{2y} + rac{d_V}{4y^2}
ight)
ight) e^{y(L-w)}$$

where

$$d_V = \sigma + c_V$$

depends only on the potential V(x) and is independent of a.

BAYLOR

・ロト ・四ト ・ヨト ・ヨト

Pedro Fernando Morales Potentials with Compact Support

 \equiv Math Department

5900

Therefore, we have the asymptotics of the logarithm

$$\ln F(iy) \sim y(L-w) + \ln w - \sum_{k=1}^{\infty} y^{-k} \sum_{j=0}^{\lfloor \frac{k}{2} \rfloor} {\binom{k-j}{j}} 2^{-k} w^{j-k} d_V^j$$

BAYLOR

イロト イポト イヨト イヨト

Pedro Fernando Morales Potentials with Compact Support

Э Math Department

590

Therefore, we have the asymptotics of the logarithm

$$\ln F(iy) \sim y(L-w) + \ln w - \sum_{k=1}^{\infty} y^{-k} \sum_{j=0}^{\lfloor \frac{k}{2} \rfloor} \binom{k-j}{j} 2^{-k} w^{j-k} d_V^j$$

Remark

In the limit when w = 0 the asymptotic expansion contains a logarithmic term in y recovering the semitransparent result

BAY LORR

イロト イポト イヨト イヨト

The problem 00 0 0	Zeta Function 00 00000	Analytic Continuation	Casimir Energy and Force 0 000
General Setting			
$[0,L] imes \mathcal{N}$ se	etting		

Considering the problem in $[0, L] \times N$, where N is a (D-1)-dimensional compact Riemannian manifold possibly with boundary, we have that

$$\zeta(s) = \sum_{\lambda,\ell} \left(\lambda^2 + \eta_\ell^2
ight)^{-s} \quad ext{ for } \Re(s) > rac{D}{2}$$

where η_ℓ is the spectrum in ${\mathcal N}$

BAYLOR

Э

Math Department

イロト 人間ト イヨト イヨト

Pedro Fernando Morales

Potentials with Compact Support

The problem	Zeta Function	Analytic Continuation	Casimir Energy and Force
	00000	•0	000
Analytic Continuation			

Therefore

Pedro Fernando Morales Potentials with Compact Support

The problem	Zeta Function	Analytic Continuation	Casimir Energy and Force
	00000	0•	000
Analytic Continuation			

where

$$d_0 = d_V$$
 and $d_k = \sum_{j=0}^{\left\lfloor rac{k}{2}
ight
ceil} {k-j \choose j} 2^{-k} w^{j-k} d_V^j$

BAY LOR R

Pedro Fernando Morales Potentials with Compact Support

The problem	Zeta Function 00 00000	Analytic Continuation 0 00	Casin 000
 Determinant and Energy 			

Functional Determinant and Casimir Energy

Letting N = D - 1 we can calculate $\zeta'(0)$ which gives the functional determinant

 $\exp(\zeta'(0))$

Pedro Fernando Morales Potentials with Compact Support Math Department

nir Energy and Force

The problem 00 0 0	Zeta Function 00 00000	Analytic Continuation 0 00	Casimir Energy and Force
Determinant and Energy			

Functional Determinant and Casimir Energy

Letting N = D - 1 we can calculate $\zeta'(0)$ which gives the functional determinant

$\exp\left(\zeta'(0) ight)$

and setting N = D leads to the Casimir energy

$$\zeta\left(-\frac{1}{2}\right)$$

Pedro Fernando Morales Potentials with Compact Support Math Department

RAYI()R

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 うのの

The problem 00 0 0	Zeta Function 00 00000	Analytic Continuation 0 00	Casimir Energy and Force ○ ●○○
Force			
Casimir Fo	orce		

In order to calculate the Casimir Force, we can compute

$$-\frac{1}{2}\frac{\partial}{\partial a}\zeta\left(-\frac{1}{2}\right)$$

Pedro Fernando Morales Potentials with Compact Support

The problem	Zeta Function	Analytic Continuation	Casimir Energy and Force
	00000		000
Force			

Attractive or repulsive?

• For some specific potentials, the force is attractive to the closest wall (delta, rectangular)

Pedro Fernando Morales Potentials with Compact Support

The problem 00 0	Zeta Function 00 00000	Analytic Continuation 0 00	Casimir Energy and Force ○ ○●○
Force			

Attractive or repulsive?

- For some specific potentials, the force is attractive to the closest wall (delta, rectangular)
- Attractive for all potentials? (It seems to be the case)

The	problem
Foro	•

Zeta Function

Analytic Continuation

Casimir Energy and Force $\circ \\ \circ \circ \bullet$

Thank You!

BAYL OR R

Pedro Fernando Morales Potentials with Compact Support