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Lateral Casimir force
Consider potential
\/,-(Z,y):)\,-5(z—a,'—h,-(y)), i:]-aza 3232—31>0,

where, the functions h;(y) describe the corrugations on the plate.
Casimir energy for a configuration when one of the plate is laterally shifted
by an amount yp,
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hl(y+y0)7 h2(_)/), I
can be written in the form ’lzl/\/\/\/\/ J
T !

ko

AE(Q, hinO) =E - E(O)(a) — El(a7 hl) + E (a7 h2) + E12(a7 hi)yO)a

where Ej; isolates the interaction energy due to the lateral shift.
Lateral Casimir force is defined as the negative change in energy due to
the lateral shift:

Fiat(a, hi,yo) = =5 —AE = ————.
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Motivation

1997-2010: Starting with first theoretical study by Golestanian et. al. in
1997, various theoretical and experimental analysis of lateral Casimir force
has been done till now. One remarkable theoretical calculation for lateral
Casimir force between dielectric gratings was done exactly by Lambrecht
and Marachevsky, which shows 0.1% accuracy between theory and
experiment.

In noncontact Gears | and Il (PRD 78, 065018, 065019) we presented
next-to-leading order contibution to the lateral Casimir force in planar
geometry and leading order contribution in cylinderical geometry due to
scalar field interacting with semi-transparent delta potential.
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Leading order perturbation-Dirichlet and Weak

Leading order contribution to the lateral Casimir force in Dirichlet limit
and weak limit for sinusoidal corrugations are
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Next-to-leading order perturbation - Dirichlet
Next-to-Leading order contribution to the lateral Casimir force in the
Dirichlet limit for sinusoidal corrugations is
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Next-to-leading order perturbation - Weak
The next correction to the lateral Casimir force for the the weak coupling
case is
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Analysis

Weak coupling limit - Non-perturbative results
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We observe that the perturbative results, when the next-to-leading order is
included, compares with the exact result remarkably well for kgh < 1 and
2h < a. Similar results should hold for the Dirichlet limit also.
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Electromagnetic case: Statement of the problem
We consider two dielectric slabs

Vi(z,yiw) = w(ei(w) = 1) [0(z — a; = hi(y)) = 0(z = b; — hi(y))],

where i = 1,2

hq ha

where, the thickness of the individual slabs is d; = b; — a;, such that
a = ap — by > 0 represents the distance between the slabs.
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Lateral Casimir force

The vacuum energy arising from the fluctuation of the electromagnetic
field in presence of the potential is given by

i dw 1
E = —5 /%Trlnrro 5
where T is the Green's dyadic which obeys
[V x V x +w’1 + Vi(x) + Vo(x)] T(x,x;w) = —w?15(x — x'),

and Iy is the Green's dyadic for the free space.
As shown earlier Casimir energy for a configuration when one of the slab is
laterally shifted by an amount yy is

AE(a, hj,y0) = E — EO(a) = Ei(a, h1) + Ex(a, h2) + E1a(a, hi, o).
Lateral Casimir force is defined as the negative change in energy due to
the lateral shift

0 0E1»

Fioe(a, hiy yo) = ——AE = 2512,
Lat(av )/0) 8)/0 ayo
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Formalism(contd.)
Interaction energy Eis is given by
Eir = /Trln (1-T1 AV T2 AV:) .
where T'; is the Green's dyadic when one slab has corrugations.
r,=[1-10av] 1,

where AV, =V, — V§°) is the deviation from the background potential
VEO) given by

Vi (z,0) = (ei(w) — 1) [6(z — 27) — (z — b))

I'(® is the Green's dyadic for no corrugation configuration.
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Leading order contribution - perturbative expansion

Formally expanding the log and keeping terms to second order in
corrugation amplitude (which requires expanding potential for small
corrugation amplitude) we get

Q-1 / % T T@ AVY 1O ATV,
2 ) 2w

where

AV (z2,y:i¢) = —hily) ((i€) — 1) [6(z — &) — 6(z — by)],

is the first term in expansion of potential for small corrugation amplitude.
') is translationally invariant in x and y direction. So we can Fourier
transform x and y directions

E(2) dk! . i}
/ / —L hi(ky — k) (K}, — ky) LP)(ky, K)),

where Ly is the length in x direction and /~1,-(ky) are the Fourier transforms
of the corrugation amplitude functions h;(y).
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Leading order contribution(cont.)

Kernel L) (k,, ky) is given by

2 _ 2
L®(ky, k) = —= / / 213 (ky, ¢, ky, Ky,
where,

12 (ke, G, Ky ky) = (e2(i€) = 1) (e2(i€) — 1)
{f‘gp)(az, a1; ky, ky,w) 1"(0)(317 a; ke, ky,,w)
_1(0) . (0)
F~~ (b2, ai, kX, ky, w) I‘,. (317 b2 kx, ky, w)
—1"40’(;,;2,131 ke ky, w) T8 (b1, a2 ke, K} )
() (b, br; ks kyyw) T (b1, b ks ky,w)]
So the quantity we need to evaluate is the Green's dyadic for the
background potential, which is the slabs without corrugation.
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Evaluation of the reduced Green's dyadic

The Green’s dyadic T'(©) obeys
{—V x V x +uw?l + o? V(lo)(x) + w? Vgo)(x)} rOx,x;w) = —w?16(x — x').

For planar geometry the problem reduces to solving for two scalar Green's
function gf(z,7') and g"(z, z') which satisfies

2
[_% = k2 + C2e(z):| gE(Z,Z/) _ 5(2_2/)7

_2 1 2 K2 2 HZZ/ — 5z — 7
[aze(z)az+€(z)+é]g(,) o( ),

where €(z) = 1+ V/(z) and k = k, since we can choose k, = 0.
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Evaluation of the reduced Green's dyadic(cont.)

The reduced Green's dyadic in terms of gf(z,2’) and gH(z,2') is

e(i/) % e%) 5% 8"(z,7) 0 e(z)i:(z’) % g"(z,2')
0 —2gf(z,7) 0
g 2
e %€ (27 0 @ € (27)

where we have dropped the delta functions, which do not contribute.
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Evaluation of the reduced Green's dyadic(cont.)

Denoting I' matrix components as [';, we can write the general form as

K2 ky kyk kyk k
ol + zlhe 37 Tn — 52T Fls

(0) /. — | kek Kk K} K2 k
(2,2 ke ky, €) = =T — 5T Zlha + Bl Flis

ke k
El31 +l31 33
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Green's function regions
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General result for the leading order term

Using solutions to the electric and the magnetic Green's function we can evaluate
/(2)(k><a C7 kl,V7 kz)’) as

el b [;;M( a1, —ay)M(—az, —ab) (k2 + kyk})2¢?

+ 2 EM(—0n, & )M(—az, a5 )k2(k, — K} )? <2 2
+ a7 M(6a, —a1)M (G2, —a5) ki (ky — ky)*CPk

+
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General result for the leading order term(cont.)

/@,2 S

Ki = H,’/E,'

ai = (ki — K)/(Kki + k)

Quantities with primes are obtained by replacing k, — k}’, everywhere.
Quatities with bar are defined in similar way with x replaced with

— K
Rj — Rj = —
€
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Conductor limit

In the conductor limit € — oo

2 2 212
i W [1+{" 12 = (hy — k)%

1P (kK ky — k) = —

sinh ka sinh x’a 4 12!

For the case of sinusoidal corrugations described by
hi(y) = hisin[ko(y + yo)]

h2(y) = hesin[koy]

the lateral force is evaluated to be

= ALY (kya),

E—00

hi h
F?)__ = 2koa sin(koyo) ‘F((ng ; 3
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Conductor limit cont.

15 [ o0 s s 1 (s®+5s2 —t3)?
ALY (1) = —/ dt/ 5ds A S U
ool fo) ™ ) Jo sinhssinhs, |2 * 85253

where s?2 =52+ t2 and s2 =52 + (t + tp)?. The first term corresponds to
the Dirichlet scalar case.
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Figure: Plot of Ag;lc)x;(koa) versus kpa. The dotted curve represents 2 times the
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Conductor limit cont.

We can evaluate one of the integrals to get

15 [  sin(2tou/n) | sinh®u (7
A () = 2 [" T giok?
€—>oo( 0) 4 J, u (2tou/7r) coshtu \ 2 sinh” u

1 <2t0>2 sinh? u L1 <2t0>4 sinh? u )
2\ 7 ) cosh*u 16 \ 7 cosh? u |’
which reproduces the result in Emig et. al. apart from an overall factor of

2.

The double integral representation is more useful for numerical evaluation

because of the oscillatory nature of the function sin x/x the above
expression.
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Thin plate limit

It is under construction.......
It is interesting to analyze d; — 0 limit. If we set

W (e —1) = "*’;29,-

\i = wp dj = fixed as d; — 0,
then we can write our potential as
V,' = A,‘ (5(2 — aj — h,(y))

This should model 2D sheets. However, if a ~ 10~"m and w, ~ 10'°Hz,
then for conductor case

wida>1=d>10""m,

which is not exactly a single atom thin layer. This limit can work for weak
case.
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Conclusion and things to do

© We have obtained result for leading order contribution to the lateral
Casimir force for corrugated dielectric slabs and obtained conductor
limit for the same.

© Obtain thin plate limit and get exact results in weak case.

© Calculate next-to-leading order contribution and compare results with
experiment as well as various numerical /analytical exact results
(Mohideen, Reynaud, Emig, Marachevsky).
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© Thanks to Jef Wagner, Elom Albalo and Nima Pourtolami for useful
comments and discussion.

© Thank you all for listening.

Prachi Parashar (University of Oklahoma) Non-contact gears IIl:EM Case QV: July 9, 2010 25/ 26



References

@ |. Cavero-Pelaez, K. A. Milton, P. Parashar and K. V. Shajesh, Phys.
Rev. D 78, 065018 (2008) [arXiv:0805.2776 [hep-th]].

@ |. Cavero-Pelaez, K. A. Milton, P. Parashar and K. V. Shajesh, Phys.
Rev. D 78, 065019 (2008) [arXiv:0805.2777 [hep-th]].

M T Emig, A. Hanke, R. Golestanian and M. Kardar, Phys. Rev. A 67,
022114 (2003).

@ K. A. Milton, P. Parashar and J. Wagner, Phys. Rev. Lett. 101,
160402 (2008) [arXiv:0806.2880 [hep-th]].

@ K. A. Milton, P. Parashar and J. Wagner, arXiv:0811.0128 [math-ph].

@ J.S. Schwinger, L. L. . DeRaad and K. A. Milton, Annals Phys. 115,
1 (1979).

Prachi Parashar (University of Oklahoma) Non-contact gears IIl:EM Case QV: July 9, 2010 26 / 26



	Lateral Casimir force
	Motivation
	Scalar case: Review of Noncontact Gears I and II

	Formalism
	Electromagnetic case: Statement of the problem

	Leading order contribution
	Evaluation of the reduced Green's dyadic
	General result for the leading order term

	Limits
	Conductor limit
	Thin plate limit

	Conclusions and things to do

