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A Quantum Particle

Consider a quantum particle subject to a bounded potential V(x,t).
The wavefunction of the particle can be written as

B(x, t) = A(x, t)enStot)

where A(x,t) and S(x,t) are the amplitude and the action.



A Quantum Particle

Consider a quantum particle subject to a bounded potential V(x,t).
The wavefunction of the particle can be written as

B(x, t) = A(x, t)enStot)

where A(x,t) and S(x,t) are the amplitude and the action.
Substituting this into the time-dependent Schrodinger equation,
we get, ,
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Imaginary:
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If we take h — 0,

0S
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T —|— (VS) + V(x,t) =0.

This is the Hamilton-Jacobi equation. S(x,t) is interpreted as
classical action.
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Classical Action

Let x(t) be the local curve. We assume that x(t) satisfies the

equation:
dx(t) OH 1
i " op = VS(x(t), t)

This enable us to construct the action S(x,t) from the knowledge
of the classical solutions x(t).

H(x,p,t) = % + V(x, t) is the classical Hamiltonian function.
Now if we take total time derivative of the action, we get,

Bl — 98 4 % VS——H+x p—L( (£), X(t))

Conversely, define S(x, y, t fo (u))du+ So . This also
solves Hamilton-Jacobi.
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Construction of action S

Case |
In this case, we look into a system where x(t) lies on the left side
of origin.
0 if x <0
V(x) =
(x) {}lw2x2 if x>0
4(r) = —w?q’

Q

(1) = Acos(wt) + Bsin(wT)
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Calculating S

Total time for path 2, T =t — t4
w(tz — tl) =T
Applying all these boundry conditions, we end up with
_y
oD T h
Now, we can calculate S
t t; t; t
S = [, Ldt = ;' Ldt + ftf Ldt + ft2 Ldt
Since V(x) =0 for path 1and 3, L=T
For path 2, L = 2[4 — w?q?
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S for path 2 comes out to be 0.
Total S is some function of t; and t.
A2 _ 9%s

 Ox0dy
t1, tp depend on x and y.

9S
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Amplitude

S for path 2 comes out to be 0.
Total S is some function of t; and t.
A2 _ 9%s

 Ox0dy
t1, tp depend on x and y.

oS
_87y = PO = 2V1

A=
t—(Z=
This constant A agrees with what Fernando Mera was talking

about in earlier presentation.
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Case Il

Next, we look into a system where x lies to the right side of the
origin at time t, with same potential as in case I.
q(7) = Acos(wt) + Bsin(wT)

vi=25,q(t) =0= q(T) = Bsin(wT)
Bwcos(w(ti —t1)) = —¢ = B=—{

g(t) =x = x=— l%s ( (t—t1))
Let Q =wty, p= — y T =wt

Then, wty = - sm( t—wty)

ie. Q= psm(T Q)

Now, let T—Q =Q. Then, T —Q = psinQ

1 <t<ti+Z.5, Q< T<Q+m

So,0< Q<
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Conclusion

Unlike in case I, action along path 2 is not 0.

S = % + %w[sin(2tw) —sin(2tw)]
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