thapakrish@tamu.edu

WKB approximation of a Power Wall

Krishna Thapa

July 13, 2010

Introduction

1. We consider a Power wall with $\alpha=2$

Introduction

1. We consider a Power wall with $\alpha=2$
2. We find action along different paths

Introduction

1. We consider a Power wall with $\alpha=2$
2. We find action along different paths
3. We look at the amplitude

A Quantum Particle

Consider a quantum particle subject to a bounded potential $\mathrm{V}(\mathrm{x}, \mathrm{t})$. The wavefunction of the particle can be written as

$$
\psi(x, t)=A(x, t) e^{\frac{i}{\hbar} S(x, t)}
$$

where $A(x, t)$ and $S(x, t)$ are the amplitude and the action.

A Quantum Particle

Consider a quantum particle subject to a bounded potential $\mathrm{V}(\mathrm{x}, \mathrm{t})$. The wavefunction of the particle can be written as

$$
\psi(x, t)=A(x, t) e^{\frac{i}{\hbar} S(x, t)}
$$

where $A(x, t)$ and $S(x, t)$ are the amplitude and the action. Substituting this into the time-dependent Schrödinger equation, we get,
$A\left[\frac{\partial S}{\partial t}+\frac{1}{2 m}(\nabla S)^{2}+V\right]-i \hbar\left[\frac{\partial A}{\partial t}+\frac{1}{m}(\nabla A \cdot \nabla S)+\frac{1}{2 m} A \Delta S\right]-\frac{\hbar^{2}}{2 m} \Delta A=0$

Real and Imaginary part

Imaginary:

Real and Imaginary part

Imaginary:

$$
m \frac{\partial A}{\partial t}+(\nabla A \cdot \nabla S)+\frac{1}{2} A \Delta S=0
$$

Real and Imaginary part

Imaginary:

$$
m \frac{\partial A}{\partial t}+(\nabla A \cdot \nabla S)+\frac{1}{2} A \Delta S=0
$$

Real:

$$
\frac{\partial S}{\partial t}+\frac{1}{2 m}(\nabla S)^{2}+V=\frac{(\hbar)^{2}}{2 m} \frac{\Delta A}{A}
$$

Real and Imaginary part

Imaginary:

$$
m \frac{\partial A}{\partial t}+(\nabla A \cdot \nabla S)+\frac{1}{2} A \Delta S=0
$$

Real:

$$
\frac{\partial S}{\partial t}+\frac{1}{2 m}(\nabla S)^{2}+V=\frac{(\hbar)^{2}}{2 m} \frac{\Delta A}{A}
$$

If we take $\hbar \rightarrow 0$,

Real and Imaginary part

Imaginary:

$$
m \frac{\partial A}{\partial t}+(\nabla A \cdot \nabla S)+\frac{1}{2} A \Delta S=0
$$

Real:

$$
\frac{\partial S}{\partial t}+\frac{1}{2 m}(\nabla S)^{2}+V=\frac{(\hbar)^{2}}{2 m} \frac{\Delta A}{A}
$$

If we take $\hbar \rightarrow 0$,

$$
\frac{\partial S}{\partial t}+\frac{1}{2 m}(\nabla S)^{2}+V(x, t)=0
$$

This is the Hamilton-Jacobi equation. $\mathrm{S}(\mathrm{x}, \mathrm{t})$ is interpreted as classical action.

Classical Action

Let $x(t)$ be the local curve. We assume that $x(t)$ satisfies the equation:

Classical Action

Let $x(t)$ be the local curve. We assume that $x(t)$ satisfies the equation:

$$
\frac{d x(t)}{d t}=\frac{\partial H}{\partial p}=\frac{1}{m} \nabla S(x(t), t)
$$

Classical Action

Let $x(t)$ be the local curve. We assume that $x(t)$ satisfies the equation:

$$
\frac{d x(t)}{d t}=\frac{\partial H}{\partial p}=\frac{1}{m} \nabla S(x(t), t)
$$

This enable us to construct the action $S(x, t)$ from the knowledge of the classical solutions $\times(\mathrm{t})$.

Classical Action

Let $x(t)$ be the local curve. We assume that $x(t)$ satisfies the equation:

$$
\frac{d x(t)}{d t}=\frac{\partial H}{\partial p}=\frac{1}{m} \nabla S(x(t), t)
$$

This enable us to construct the action $S(x, t)$ from the knowledge of the classical solutions $x(t)$.
$H(x, p, t)=\frac{p^{2}}{2 m}+V(x, t)$ is the classical Hamiltonian function.

Classical Action

Let $x(t)$ be the local curve. We assume that $x(t)$ satisfies the equation:

$$
\frac{d x(t)}{d t}=\frac{\partial H}{\partial p}=\frac{1}{m} \nabla S(x(t), t)
$$

This enable us to construct the action $S(x, t)$ from the knowledge of the classical solutions $x(\mathrm{t})$.
$H(x, p, t)=\frac{p^{2}}{2 m}+V(x, t)$ is the classical Hamiltonian function. Now if we take total time derivative of the action, we get, $\frac{d S(t, x(t))}{d t}=\frac{\partial S}{\partial t}+\dot{x} \cdot \nabla S=-H+\dot{x} \cdot p \equiv L(x(t), \dot{x}(t))$

Classical Action

Let $x(t)$ be the local curve. We assume that $x(t)$ satisfies the equation:

$$
\frac{d x(t)}{d t}=\frac{\partial H}{\partial p}=\frac{1}{m} \nabla S(x(t), t)
$$

This enable us to construct the action $S(x, t)$ from the knowledge of the classical solutions $x(\mathrm{t})$. $H(x, p, t)=\frac{p^{2}}{2 m}+V(x, t)$ is the classical Hamiltonian function. Now if we take total time derivative of the action, we get, $\frac{d S(t, x(t))}{d t}=\frac{\partial S}{\partial t}+\dot{x} \cdot \nabla S=-H+\dot{x} \cdot p \equiv L(x(t), \dot{x}(t))$
Conversely, define $S(x, y, t)=\int_{0}^{t} L(x(u), \dot{x}(u)) d u+S_{0}$. This also solves Hamilton-Jacobi.

Construction of action S

Case I

In this case, we look into a system where $x(t)$ lies on the left side of origin.

$$
V(x)= \begin{cases}0 & \text { if } x<0 \\ \frac{1}{4} \omega^{2} x^{2} & \text { if } x \geqslant 0\end{cases}
$$

Construction of action S

Case I
In this case, we look into a system where $\times(\mathrm{t})$ lies on the left side of origin.

$$
V(x)= \begin{cases}0 & \text { if } x<0 \\ \frac{1}{4} \omega^{2} x^{2} & \text { if } x \geqslant 0\end{cases}
$$

$\ddot{q}(\tau)=-\omega^{2} q^{2}$

Construction of action S

Case I
In this case, we look into a system where $\times(\mathrm{t})$ lies on the left side of origin.

$$
V(x)= \begin{cases}0 & \text { if } x<0 \\ \frac{1}{4} \omega^{2} x^{2} & \text { if } x \geqslant 0\end{cases}
$$

$\ddot{q}(\tau)=-\omega^{2} q^{2}$
$q(\tau)=A \cos (\omega \tau)+B \sin (\omega \tau)$

Construction of action S

Case I
In this case, we look into a system where $\times(\mathrm{t})$ lies on the left side of origin.

$$
V(x)= \begin{cases}0 & \text { if } x<0 \\ \frac{1}{4} \omega^{2} x^{2} & \text { if } x \geqslant 0\end{cases}
$$

$\ddot{q}(\tau)=-\omega^{2} q^{2}$
$q(\tau)=A \cos (\omega \tau)+B \sin (\omega \tau)$
$v_{1}=-\frac{y}{t_{1}} ; v_{2}=\frac{x}{t-t_{2}}$

Construction of action S

Case I
In this case, we look into a system where $\times(\mathrm{t})$ lies on the left side of origin.

$$
V(x)= \begin{cases}0 & \text { if } x<0 \\ \frac{1}{4} \omega^{2} x^{2} & \text { if } x \geqslant 0\end{cases}
$$

$\ddot{q}(\tau)=-\omega^{2} q^{2}$
$q(\tau)=A \cos (\omega \tau)+B \sin (\omega \tau)$
$v_{1}=-\frac{y}{t_{1}} ; v_{2}=\frac{x}{t-t_{2}}$
$q\left(t_{1}\right)=0 ; q\left(t_{2}\right)=0$
$\dot{q}\left(t_{1}\right)=v_{1} ; \dot{q}\left(t_{2}\right)=v_{2}$

Calculating S

Total time for path $2, T=t_{2}-t_{1}$

Calculating S

Total time for path $2, T=t_{2}-t_{1}$ $\omega\left(t_{2}-t_{1}\right)=\pi$

Calculating S

Total time for path $2, T=t_{2}-t_{1}$ $\omega\left(t_{2}-t_{1}\right)=\pi$
Applying all these boundry conditions, we end up with $\frac{x}{t-\left(t_{1}+\frac{\pi}{\omega}\right)}=\frac{y}{t_{1}}$

Calculating S

Total time for path $2, T=t_{2}-t_{1}$
$\omega\left(t_{2}-t_{1}\right)=\pi$
Applying all these boundry conditions, we end up with
$\frac{x}{t-\left(t_{1}+\frac{\pi}{\omega}\right)}=\frac{y}{t_{1}}$
Now, we can calculate S
$S=\int_{0}^{t} L d t=\int_{0}^{t_{1}} L d t+\int_{t_{1}}^{t_{2}} L d t+\int_{t_{2}}^{t} L d t$
Since $V(x)=0$ for path 1 and $3, L=T$

Calculating S

Total time for path $2, T=t_{2}-t_{1}$
$\omega\left(t_{2}-t_{1}\right)=\pi$
Applying all these boundry conditions, we end up with
$\frac{x}{t-\left(t_{1}+\frac{\pi}{\omega}\right)}=\frac{y}{t_{1}}$
Now, we can calculate S
$S=\int_{0}^{t} L d t=\int_{0}^{t_{1}} L d t+\int_{t_{1}}^{t_{2}} L d t+\int_{t_{2}}^{t} L d t$
Since $V(x)=0$ for path 1 and $3, L=T$
For path 2, $L=\frac{1}{4}\left[\dot{q}^{2}-\omega^{2} q^{2}\right]$

Amplitude

S for path 2 comes out to be 0 .
Total S is some function of t_{1} and t_{2}.

Amplitude

S for path 2 comes out to be 0 .
Total S is some function of t_{1} and t_{2}. $A^{2}=\frac{\partial^{2} S}{\partial x \partial y}$

Amplitude

S for path 2 comes out to be 0 .
Total S is some function of t_{1} and t_{2}.
$A^{2}=\frac{\partial^{2} S}{\partial x \partial y}$
t_{1}, t_{2} depend on x and y.
$-\frac{\partial S}{\partial y}=P_{0}=2 v_{1}$

Amplitude

S for path 2 comes out to be 0 .
Total S is some function of t_{1} and t_{2}.
$A^{2}=\frac{\partial^{2} S}{\partial x \partial y}$
t_{1}, t_{2} depend on x and y.
$-\frac{\partial S}{\partial y}=P_{0}=2 v_{1}$
Result:
$A^{2}=\frac{2}{t-\left(\frac{\pi}{\omega}\right)}$

Amplitude

S for path 2 comes out to be 0 .
Total S is some function of t_{1} and t_{2}.
$A^{2}=\frac{\partial^{2} S}{\partial x \partial y}$
t_{1}, t_{2} depend on x and y.
$-\frac{\partial S}{\partial y}=P_{0}=2 v_{1}$
Result:
$A^{2}=\frac{2}{t-\left(\frac{\pi}{\omega}\right)}$
This constant A agrees with what Fernando Mera was talking about in earlier presentation.

Case II

Next, we look into a system where x lies to the right side of the origin at time t, with same potential as in case I.
$q(\tau)=A \cos (\omega \tau)+B \sin (\omega \tau)$

Case II

Next, we look into a system where x lies to the right side of the origin at time t, with same potential as in case I.

$$
\begin{aligned}
& q(\tau)=A \cos (\omega \tau)+B \sin (\omega \tau) \\
& v_{1}=\frac{-y}{t_{1}}, q\left(t_{1}\right)=0 \Rightarrow q(\tau)=B \sin (\omega \tau)
\end{aligned}
$$

Case II

Next, we look into a system where x lies to the right side of the origin at time t, with same potential as in case l.
$q(\tau)=A \cos (\omega \tau)+B \sin (\omega \tau)$
$v_{1}=\frac{-y}{t_{1}}, q\left(t_{1}\right)=0 \Rightarrow q(\tau)=B \sin (\omega \tau)$
$B \omega \cos \left(\omega\left(t_{1}-t_{1}\right)\right)=-\frac{y}{t_{1}} \Rightarrow B=-\frac{y}{t_{1}} \frac{1}{\omega}$

Case II

Next, we look into a system where x lies to the right side of the origin at time t, with same potential as in case I.
$q(\tau)=A \cos (\omega \tau)+B \sin (\omega \tau)$
$v_{1}=\frac{-y}{t_{1}}, q\left(t_{1}\right)=0 \Rightarrow q(\tau)=B \sin (\omega \tau)$
$B \omega \cos \left(\omega\left(t_{1}-t_{1}\right)\right)=-\frac{y}{t_{1}} \Rightarrow B=-\frac{y}{t_{1}} \frac{1}{\omega}$
$q(t)=x \Rightarrow x=-\frac{y}{t_{1}} \frac{1}{\omega} \sin \left(\omega\left(t-t_{1}\right)\right)$

Case II

Next, we look into a system where x lies to the right side of the origin at time t, with same potential as in case I.
$q(\tau)=A \cos (\omega \tau)+B \sin (\omega \tau)$
$v_{1}=\frac{-y}{t_{1}}, q\left(t_{1}\right)=0 \Rightarrow q(\tau)=B \sin (\omega \tau)$
$B \omega \cos \left(\omega\left(t_{1}-t_{1}\right)\right)=-\frac{y}{t_{1}} \Rightarrow B=-\frac{y}{t_{1}} \frac{1}{\omega}$
$q(t)=x \Rightarrow x=-\frac{y}{t_{1}} \frac{1}{\omega} \sin \left(\omega\left(t-t_{1}\right)\right)$
Let $\Omega=\omega t_{1}, \rho=-\frac{y}{x}, T=\omega t$

Case II

Next, we look into a system where x lies to the right side of the origin at time t, with same potential as in case I.
$q(\tau)=A \cos (\omega \tau)+B \sin (\omega \tau)$
$v_{1}=\frac{-y}{t_{1}}, q\left(t_{1}\right)=0 \Rightarrow q(\tau)=B \sin (\omega \tau)$
$B \omega \cos \left(\omega\left(t_{1}-t_{1}\right)\right)=-\frac{y}{t_{1}} \Rightarrow B=-\frac{y}{t_{1}} \frac{1}{\omega}$
$q(t)=x \Rightarrow x=-\frac{y}{t_{1}} \frac{1}{\omega} \sin \left(\omega\left(t-t_{1}\right)\right)$
Let $\Omega=\omega t_{1}, \rho=-\frac{y}{x}, T=\omega t$
Then, $\omega t_{1}=\frac{-y}{x} \sin \left(\omega t-\omega t_{1}\right)$
i.e. $\Omega=\rho \sin (T-\Omega)$

Case II

Next, we look into a system where x lies to the right side of the origin at time t, with same potential as in case I.
$q(\tau)=A \cos (\omega \tau)+B \sin (\omega \tau)$
$v_{1}=\frac{-y}{t_{1}}, q\left(t_{1}\right)=0 \Rightarrow q(\tau)=B \sin (\omega \tau)$
$B \omega \cos \left(\omega\left(t_{1}-t_{1}\right)\right)=-\frac{y}{t_{1}} \Rightarrow B=-\frac{y}{t_{1}} \frac{1}{\omega}$
$q(t)=x \Rightarrow x=-\frac{y}{t_{1}} \frac{1}{\omega} \sin \left(\omega\left(t-t_{1}\right)\right)$
Let $\Omega=\omega t_{1}, \rho=-\frac{y}{x}, T=\omega t$
Then, $\omega t_{1}=\frac{-y}{x} \sin \left(\omega t-\omega t_{1}\right)$
i.e. $\Omega=\rho \sin (T-\Omega)$

Now, let $T-\Omega=\tilde{\Omega}$. Then, $T-\tilde{\Omega}=\rho \sin \tilde{\Omega}$

Case II

Next, we look into a system where x lies to the right side of the origin at time t, with same potential as in case I.
$q(\tau)=A \cos (\omega \tau)+B \sin (\omega \tau)$
$v_{1}=\frac{-y}{t_{1}}, q\left(t_{1}\right)=0 \Rightarrow q(\tau)=B \sin (\omega \tau)$
$B \omega \cos \left(\omega\left(t_{1}-t_{1}\right)\right)=-\frac{y}{t_{1}} \Rightarrow B=-\frac{y}{t_{1}} \frac{1}{\omega}$
$q(t)=x \Rightarrow x=-\frac{y}{t_{1}} \frac{1}{\omega} \sin \left(\omega\left(t-t_{1}\right)\right)$
Let $\Omega=\omega t_{1}, \rho=-\frac{y}{x}, T=\omega t$
Then, $\omega t_{1}=\frac{-y}{x} \sin \left(\omega t-\omega t_{1}\right)$
i.e. $\Omega=\rho \sin (T-\Omega)$

Now, let $T-\Omega=\tilde{\Omega}$. Then, $T-\tilde{\Omega}=\rho \sin \tilde{\Omega}$
$t_{1}<t<t_{1}+\frac{\pi}{\omega}$. So, $\Omega<T<\Omega+\pi$

Case II

Next, we look into a system where x lies to the right side of the origin at time t, with same potential as in case I.
$q(\tau)=A \cos (\omega \tau)+B \sin (\omega \tau)$
$v_{1}=\frac{-y}{t_{1}}, q\left(t_{1}\right)=0 \Rightarrow q(\tau)=B \sin (\omega \tau)$
$B \omega \cos \left(\omega\left(t_{1}-t_{1}\right)\right)=-\frac{y}{t_{1}} \Rightarrow B=-\frac{y}{t_{1}} \frac{1}{\omega}$
$q(t)=x \Rightarrow x=-\frac{y}{t_{1}} \frac{1}{\omega} \sin \left(\omega\left(t-t_{1}\right)\right)$
Let $\Omega=\omega t_{1}, \rho=-\frac{y}{x}, T=\omega t$
Then, $\omega t_{1}=\frac{-y}{x} \sin \left(\omega t-\omega t_{1}\right)$
i.e. $\Omega=\rho \sin (T-\Omega)$

Now, let $T-\Omega=\tilde{\Omega}$. Then, $T-\tilde{\Omega}=\rho \sin \tilde{\Omega}$
$t_{1}<t<t_{1}+\frac{\pi}{\omega}$. So, $\Omega<T<\Omega+\pi$
So, $0<\tilde{\Omega}<\pi$

Conclusion

Unlike in case I, action along path 2 is not 0 . $S=\frac{y^{2}}{t_{1}}+\frac{1}{8} \omega\left[\sin (2 t \omega)-\sin \left(2 t_{1} \omega\right)\right]$

Conclusion

Unlike in case I, action along path 2 is not 0 .
$S=\frac{y^{2}}{t_{1}}+\frac{1}{8} \omega\left[\sin (2 t \omega)-\sin \left(2 t_{1} \omega\right)\right]$
$\frac{\partial t_{1}}{\partial x}=\frac{t_{1}}{y\left(\cos \left(\omega\left(t-t_{1}\right)\right)-x\right)}$

Conclusion

Unlike in case I, action along path 2 is not 0 .
$S=\frac{y^{2}}{t_{1}}+\frac{1}{8} \omega\left[\sin (2 t \omega)-\sin \left(2 t_{1} \omega\right)\right]$

$$
\begin{aligned}
& \frac{\partial t_{1}}{\partial x}=\frac{1}{y(\cos (\omega)} \\
& \frac{\partial t_{1}}{\partial y}=-\frac{x}{y} \frac{\partial t_{1}}{\partial x}
\end{aligned}
$$

Conclusion

Unlike in case I, action along path 2 is not 0 .
$S=\frac{y^{2}}{t_{1}}+\frac{1}{8} \omega\left[\sin (2 t \omega)-\sin \left(2 t_{1} \omega\right)\right]$
$\frac{\partial t_{1}}{\partial x}=\frac{t_{1}}{y\left(\cos \left(\omega\left(t-t_{1}\right)\right)-x\right)}$
$\frac{\partial t_{1}}{\partial y}=-\frac{x}{y} \frac{\partial t_{1}}{\partial x}$
$\frac{\partial S}{\partial x \partial y}=A^{2}$

