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Introduction

1. We consider a Power wall with α = 2

2. We find action along different paths

3. We look at the amplitude
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A Quantum Particle

Consider a quantum particle subject to a bounded potential V(x,t).
The wavefunction of the particle can be written as

ψ(x , t) = A(x , t)e
i
~S(x ,t)

where A(x,t) and S(x,t) are the amplitude and the action.

Substituting this into the time-dependent Schrödinger equation,
we get,
A[∂S∂t + 1

2m (∇S)2+V ]−i~[∂A∂t + 1
m (∇A·∇S)+ 1

2mA∆S ]− ~2
2m∆A = 0
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Real and Imaginary part
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m
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2
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Real:
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+

1

2m
(∇S)2 + V =

(~)2

2m

∆A

A

If we take ~→ 0,

∂S

∂t
+

1

2m
(∇S)2 + V (x , t) = 0.

This is the Hamilton-Jacobi equation. S(x,t) is interpreted as
classical action.
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Classical Action

Let x(t) be the local curve. We assume that x(t) satisfies the
equation:

dx(t)

dt
=
∂H

∂p
=

1

m
∇S(x(t), t)

This enable us to construct the action S(x,t) from the knowledge
of the classical solutions x(t).

H(x , p, t) = p2

2m + V (x , t) is the classical Hamiltonian function.
Now if we take total time derivative of the action, we get,
dS(t,x(t))

dt = ∂S
∂t + ẋ · ∇S = −H + ẋ · p ≡ L(x(t), ẋ(t))

Conversely, define S(x , y , t) =
∫ t
0 L(x(u), ẋ(u))du + S0 . This also

solves Hamilton-Jacobi.
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Construction of action S

Case I
In this case, we look into a system where x(t) lies on the left side
of origin.

V (x) =

{
0 if x < 0
1
4ω

2x2 if x > 0

q̈(τ) = −ω2q2

q(τ) = A cos(ωτ) + B sin(ωτ)
v1 = − y

t1
; v2 = x

t−t2
q(t1) = 0; q(t2) = 0
q̇(t1) = v1; q̇(t2) = v2
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Calculating S

Total time for path 2,T = t2 − t1

ω(t2 − t1) = π
Applying all these boundry conditions, we end up with

x
t−(t1+

π
ω
) = y

t1

Now, we can calculate S
S =

∫ t
0 Ldt =

∫ t1
0 Ldt +

∫ t2
t1

Ldt +
∫ t
t2
Ldt

Since V (x) = 0 for path 1 and 3, L = T
For path 2, L = 1

4 [q̇2 − ω2q2]
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Amplitude

S for path 2 comes out to be 0.
Total S is some function of t1 and t2.

A2 = ∂2S
∂x∂y

t1, t2 depend on x and y .
−∂S
∂y = P0 = 2v1

Result:
A2 = 2

t−( π
ω
)

This constant A agrees with what Fernando Mera was talking
about in earlier presentation.
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Case II

Next, we look into a system where x lies to the right side of the
origin at time t, with same potential as in case I.
q(τ) = A cos(ωτ) + B sin(ωτ)

v1 = −y
t1
, q(t1) = 0⇒ q(τ) = B sin(ωτ)

Bω cos(ω(t1 − t1)) = − y
t1
⇒ B = − y

t1
1
ω

q(t) = x ⇒ x = − y
t1

1
ω sin(ω(t − t1))

Let Ω = ωt1, ρ = − y
x ,T = ωt

Then, ωt1 = −y
x sin(ωt − ωt1)

i.e. Ω = ρ sin(T − Ω)
Now, let T − Ω = Ω̃. Then, T − Ω̃ = ρ sin Ω̃
t1 < t < t1 + π

ω . So, Ω < T < Ω + π

So, 0 < Ω̃ < π
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Conclusion

Unlike in case I, action along path 2 is not 0.

S = y2

t1
+ 1

8ω[sin(2tω)− sin(2t1ω)]

∂t1
∂x = t1

y(cos(ω(t−t1))−x)
∂t1
∂y = − x

y
∂t1
∂x

∂S
∂x∂y = A2
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