WKB approximation of a Power Wall

Krishna Thapa

July 13, 2010

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Introduction

1. We consider a Power wall with $\alpha=2$

Introduction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- 1. We consider a Power wall with $\alpha=2$
- 2. We find action along different paths

Introduction

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 1. We consider a Power wall with $\alpha = 2$
- 2. We find action along different paths
- 3. We look at the amplitude

A Quantum Particle

Consider a quantum particle subject to a bounded potential V(x,t). The wavefunction of the particle can be written as

$$\psi(x,t) = A(x,t)e^{\frac{i}{\hbar}S(x,t)}$$

(日) (日) (日) (日) (日) (日) (日) (日)

where A(x,t) and S(x,t) are the amplitude and the action.

A Quantum Particle

Consider a quantum particle subject to a bounded potential V(x,t). The wavefunction of the particle can be written as

$$\psi(x,t) = A(x,t)e^{\frac{i}{\hbar}S(x,t)}$$

where A(x,t) and S(x,t) are the amplitude and the action. Substituting this into the time-dependent Schrödinger equation, we get, $A[\frac{\partial S}{\partial t} + \frac{1}{2m}(\nabla S)^2 + V] - i\hbar[\frac{\partial A}{\partial t} + \frac{1}{m}(\nabla A \cdot \nabla S) + \frac{1}{2m}A\Delta S] - \frac{\hbar^2}{2m}\Delta A = 0$

Imaginary:

Imaginary:

$$m rac{\partial A}{\partial t} + (\nabla A \cdot \nabla S) + rac{1}{2} A \Delta S = 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Imaginary:

$$m\frac{\partial A}{\partial t} + (\nabla A \cdot \nabla S) + \frac{1}{2}A\Delta S = 0$$

Real:

$$\frac{\partial S}{\partial t} + \frac{1}{2m} (\nabla S)^2 + V = \frac{(\hbar)^2}{2m} \frac{\Delta A}{A}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Imaginary:

$$m\frac{\partial A}{\partial t} + (\nabla A \cdot \nabla S) + \frac{1}{2}A\Delta S = 0$$

Real:

$$\frac{\partial S}{\partial t} + \frac{1}{2m} (\nabla S)^2 + V = \frac{(\hbar)^2}{2m} \frac{\Delta A}{A}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

If we take $\hbar \to 0$,

Imaginary:

$$m\frac{\partial A}{\partial t} + (\nabla A \cdot \nabla S) + \frac{1}{2}A\Delta S = 0$$

Real:

$$\frac{\partial S}{\partial t} + \frac{1}{2m} (\nabla S)^2 + V = \frac{(\hbar)^2}{2m} \frac{\Delta A}{A}$$

If we take $\hbar
ightarrow 0$,

$$\frac{\partial S}{\partial t} + \frac{1}{2m} (\nabla S)^2 + V(x,t) = 0.$$

This is the Hamilton-Jacobi equation. S(x,t) is interpreted as classical action.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let $\boldsymbol{x}(t)$ be the local curve. We assume that $\boldsymbol{x}(t)$ satisfies the equation:

Let x(t) be the local curve. We assume that x(t) satisfies the equation:

$$\frac{dx(t)}{dt} = \frac{\partial H}{\partial p} = \frac{1}{m} \nabla S(x(t), t)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let x(t) be the local curve. We assume that x(t) satisfies the equation:

$$\frac{dx(t)}{dt} = \frac{\partial H}{\partial p} = \frac{1}{m} \nabla S(x(t), t)$$

This enable us to construct the action S(x,t) from the knowledge of the classical solutions x(t).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let x(t) be the local curve. We assume that x(t) satisfies the equation:

$$\frac{dx(t)}{dt} = \frac{\partial H}{\partial p} = \frac{1}{m} \nabla S(x(t), t)$$

This enable us to construct the action S(x,t) from the knowledge of the classical solutions x(t).

 $H(x, p, t) = \frac{p^2}{2m} + V(x, t)$ is the classical Hamiltonian function.

Let x(t) be the local curve. We assume that x(t) satisfies the equation:

$$\frac{dx(t)}{dt} = \frac{\partial H}{\partial p} = \frac{1}{m} \nabla S(x(t), t)$$

This enable us to construct the action S(x,t) from the knowledge of the classical solutions x(t).

$$\begin{split} H(x,p,t) &= \frac{p^2}{2m} + V(x,t) \text{ is the classical Hamiltonian function.} \\ \text{Now if we take total time derivative of the action, we get,} \\ \frac{dS(t,x(t))}{dt} &= \frac{\partial S}{\partial t} + \dot{x} \cdot \nabla S = -H + \dot{x} \cdot p \equiv L(x(t), \dot{x}(t)) \end{split}$$

Let x(t) be the local curve. We assume that x(t) satisfies the equation:

$$\frac{dx(t)}{dt} = \frac{\partial H}{\partial p} = \frac{1}{m} \nabla S(x(t), t)$$

This enable us to construct the action S(x,t) from the knowledge of the classical solutions x(t).

$$\begin{split} H(x,p,t) &= \frac{p^2}{2m} + V(x,t) \text{ is the classical Hamiltonian function.} \\ \text{Now if we take total time derivative of the action, we get,} \\ \frac{dS(t,x(t))}{dt} &= \frac{\partial S}{\partial t} + \dot{x} \cdot \nabla S = -H + \dot{x} \cdot p \equiv L(x(t), \dot{x}(t)) \\ \text{Conversely, define } S(x,y,t) &= \int_0^t L(x(u), \dot{x}(u)) du + S_0 \\ \text{.} \end{split}$$
 This also solves Hamilton-Jacobi.

Case I

In this case, we look into a system where x(t) lies on the left side of origin.

$$V(x) = \begin{cases} 0 & \text{if } x < 0\\ \frac{1}{4}\omega^2 x^2 & \text{if } x \ge 0 \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Case I

In this case, we look into a system where x(t) lies on the left side of origin.

$$V(x) = \begin{cases} 0 & \text{if } x < 0\\ \frac{1}{4}\omega^2 x^2 & \text{if } x \ge 0 \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $\ddot{q}(au) = -\omega^2 q^2$

Case I

In this case, we look into a system where x(t) lies on the left side of origin.

$$V(x) = \begin{cases} 0 & \text{if } x < 0\\ \frac{1}{4}\omega^2 x^2 & \text{if } x \geqslant 0 \end{cases}$$

 $\ddot{q}(\tau) = -\omega^2 q^2$ $q(\tau) = A\cos(\omega\tau) + B\sin(\omega\tau)$

Case I

In this case, we look into a system where x(t) lies on the left side of origin.

$$V(x) = \begin{cases} 0 & \text{if } x < 0\\ \frac{1}{4}\omega^2 x^2 & \text{if } x \geqslant 0 \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\begin{aligned} \ddot{q}(\tau) &= -\omega^2 q^2 \\ q(\tau) &= A\cos(\omega\tau) + B\sin(\omega\tau) \\ v_1 &= -\frac{y}{t_1}; v_2 = \frac{x}{t-t_2} \end{aligned}$$

Case I

In this case, we look into a system where x(t) lies on the left side of origin.

$$V(x) = \begin{cases} 0 & \text{if } x < 0\\ \frac{1}{4}\omega^2 x^2 & \text{if } x \geqslant 0 \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\ddot{q}(\tau) = -\omega^2 q^2 q(\tau) = A\cos(\omega\tau) + B\sin(\omega\tau) v_1 = -\frac{y}{t_1}; v_2 = \frac{x}{t-t_2} q(t_1) = 0; q(t_2) = 0 \dot{q}(t_1) = v_1; \dot{q}(t_2) = v_2$$

Total time for path 2, $T = t_2 - t_1$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Total time for path 2, $T = t_2 - t_1$ $\omega(t_2 - t_1) = \pi$

Total time for path 2, $T = t_2 - t_1$ $\omega(t_2 - t_1) = \pi$ Applying all these boundry conditions, we end up with $\frac{x}{t - (t_1 + \frac{\pi}{\omega})} = \frac{y}{t_1}$

Total time for path 2, $T = t_2 - t_1$ $\omega(t_2 - t_1) = \pi$ Applying all these boundry conditions, we end up with $\frac{x}{t-(t_1+\frac{\pi}{\omega})} = \frac{y}{t_1}$ Now, we can calculate S $S = \int_0^t Ldt = \int_0^{t_1} Ldt + \int_{t_1}^{t_2} Ldt + \int_{t_2}^t Ldt$ Since V(x) = 0 for path 1 and 3, L = T

Total time for path 2, $T = t_2 - t_1$ $\omega(t_2 - t_1) = \pi$ Applying all these boundry conditions, we end up with $\frac{x}{t-(t_1+\frac{\pi}{\omega})} = \frac{y}{t_1}$ Now, we can calculate S $S = \int_0^t Ldt = \int_0^{t_1} Ldt + \int_{t_1}^{t_2} Ldt + \int_{t_2}^t Ldt$ Since V(x) = 0 for path 1 and 3, L = TFor path 2, $L = \frac{1}{4}[\dot{q}^2 - \omega^2 q^2]$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

S for path 2 comes out to be 0. Total S is some function of t_1 and t_2 .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

S for path 2 comes out to be 0. Total S is some function of t_1 and t_2 . $A^2 = \frac{\partial^2 S}{\partial x \partial y}$

S for path 2 comes out to be 0. Total S is some function of t_1 and t_2 . $A^2 = \frac{\partial^2 S}{\partial x \partial y}$ t_1 , t_2 depend on x and y. $-\frac{\partial S}{\partial y} = P_0 = 2v_1$

S for path 2 comes out to be 0. Total S is some function of t_1 and t_2 . $A^2 = \frac{\partial^2 S}{\partial x \partial y}$ t_1 , t_2 depend on x and y. $-\frac{\partial S}{\partial y} = P_0 = 2v_1$ Result: $A^2 = \frac{2}{t - (\frac{\pi}{u})}$

S for path 2 comes out to be 0. Total S is some function of t_1 and t_2 . $A^2 = \frac{\partial^2 S}{\partial x \partial y}$ t_1 , t_2 depend on x and y. $-\frac{\partial S}{\partial y} = P_0 = 2v_1$ Result: $A^2 = \frac{2}{t - (\frac{\pi}{\omega})}$ This constant A agrees with what Fernando Mera was talking

about in earlier presentation.

Next, we look into a system where x lies to the right side of the origin at time t, with same potential as in case I. $q(\tau) = A\cos(\omega\tau) + B\sin(\omega\tau)$

Next, we look into a system where x lies to the right side of the origin at time t, with same potential as in case I. $q(\tau) = A\cos(\omega\tau) + B\sin(\omega\tau)$ $v_1 = \frac{-y}{t_1}, q(t_1) = 0 \Rightarrow q(\tau) = B\sin(\omega\tau)$

Next, we look into a system where x lies to the right side of the origin at time t, with same potential as in case I. $q(\tau) = A\cos(\omega\tau) + B\sin(\omega\tau)$ $v_1 = \frac{-y}{t_1}, q(t_1) = 0 \Rightarrow q(\tau) = B\sin(\omega\tau)$ $B\omega\cos(\omega(t_1 - t_1)) = -\frac{y}{t_1} \Rightarrow B = -\frac{y}{t_1}\frac{1}{\omega}$

Next, we look into a system where x lies to the right side of the origin at time t, with same potential as in case I. $q(\tau) = A\cos(\omega\tau) + B\sin(\omega\tau)$ $v_1 = \frac{-y}{t_1}, q(t_1) = 0 \Rightarrow q(\tau) = B\sin(\omega\tau)$ $B\omega\cos(\omega(t_1 - t_1)) = -\frac{y}{t_1} \Rightarrow B = -\frac{y}{t_1}\frac{1}{\omega}$ $q(t) = x \Rightarrow x = -\frac{y}{t_1}\frac{1}{\omega}\sin(\omega(t - t_1))$

Next, we look into a system where x lies to the right side of the origin at time t, with same potential as in case I. $q(\tau) = A\cos(\omega\tau) + B\sin(\omega\tau)$ $v_1 = \frac{-y}{t_1}, q(t_1) = 0 \Rightarrow q(\tau) = B\sin(\omega\tau)$ $B\omega\cos(\omega(t_1 - t_1)) = -\frac{y}{t_1} \Rightarrow B = -\frac{y}{t_1}\frac{1}{\omega}$ $q(t) = x \Rightarrow x = -\frac{y}{t_1}\frac{1}{\omega}\sin(\omega(t - t_1))$ Let $\Omega = \omega t_1, \ \rho = -\frac{y}{x}, T = \omega t$

Next, we look into a system where x lies to the right side of the origin at time t, with same potential as in case I. $q(\tau) = A\cos(\omega\tau) + B\sin(\omega\tau)$ $v_1 = \frac{-y}{t_1}, q(t_1) = 0 \Rightarrow q(\tau) = B\sin(\omega\tau)$ $B\omega\cos(\omega(t_1 - t_1)) = -\frac{y}{t_1} \Rightarrow B = -\frac{y}{t_1}\frac{1}{\omega}$ $q(t) = x \Rightarrow x = -\frac{y}{t_1}\frac{1}{\omega}\sin(\omega(t - t_1))$ Let $\Omega = \omega t_1, \ \rho = -\frac{y}{x}, T = \omega t$ Then, $\omega t_1 = \frac{-y}{x}\sin(\omega t - \omega t_1)$ i.e. $\Omega = \rho\sin(T - \Omega)$

▲日▼ ▲□▼ ▲日▼ ▲日▼ □ ● ○○○

Next, we look into a system where x lies to the right side of the origin at time t, with same potential as in case I. $q(\tau) = A\cos(\omega\tau) + B\sin(\omega\tau)$ $v_1 = \frac{-y}{t_1}, q(t_1) = 0 \Rightarrow q(\tau) = B\sin(\omega\tau)$ $B\omega\cos(\omega(t_1-t_1)) = -\frac{y}{t_1} \Rightarrow B = -\frac{y}{t_1}\frac{1}{\omega}$ $q(t) = x \Rightarrow x = -\frac{y}{t_1} \frac{1}{\omega} \sin(\omega(t-t_1))$ Let $\Omega = \omega t_1$, $\rho = -\frac{y}{y}$, $T = \omega t$ Then, $\omega t_1 = \frac{-y}{z} \sin(\omega t - \omega t_1)$ i.e. $\Omega = \rho \sin(T - \Omega)$ Now, let $T - \Omega = \tilde{\Omega}$. Then, $T - \tilde{\Omega} = \rho \sin \tilde{\Omega}$

Next, we look into a system where x lies to the right side of the origin at time t, with same potential as in case I. $q(\tau) = A\cos(\omega\tau) + B\sin(\omega\tau)$ $v_1 = \frac{-y}{t_1}, q(t_1) = 0 \Rightarrow q(\tau) = B\sin(\omega\tau)$ $B\omega\cos(\omega(t_1-t_1)) = -\frac{y}{t_1} \Rightarrow B = -\frac{y}{t_1}\frac{1}{\omega}$ $q(t) = x \Rightarrow x = -\frac{y}{t_1} \frac{1}{\omega} \sin(\omega(t-t_1))$ Let $\Omega = \omega t_1$, $\rho = -\frac{y}{y}$, $T = \omega t$ Then, $\omega t_1 = \frac{-y}{z} \sin(\omega t - \omega t_1)$ i.e. $\Omega = \rho \sin(T - \Omega)$ Now, let $T - \Omega = \tilde{\Omega}$. Then, $T - \tilde{\Omega} = \rho \sin \tilde{\Omega}$ $t_1 < t < t_1 + \frac{\pi}{\omega}$. So, $\Omega < T < \Omega + \pi$

Next, we look into a system where x lies to the right side of the origin at time t, with same potential as in case I. $q(\tau) = A\cos(\omega\tau) + B\sin(\omega\tau)$ $v_1 = \frac{-y}{t_1}, q(t_1) = 0 \Rightarrow q(\tau) = B\sin(\omega\tau)$ $B\omega\cos(\omega(t_1-t_1)) = -\frac{y}{t_1} \Rightarrow B = -\frac{y}{t_1}\frac{1}{\omega}$ $q(t) = x \Rightarrow x = -\frac{y}{t_1} \frac{1}{\omega} \sin(\omega(t-t_1))$ Let $\Omega = \omega t_1$, $\rho = -\frac{y}{y}$, $T = \omega t$ Then, $\omega t_1 = \frac{-y}{z} \sin(\omega t - \omega t_1)$ i.e. $\Omega = \rho \sin(T - \Omega)$ Now, let $T - \Omega = \tilde{\Omega}$. Then, $T - \tilde{\Omega} = \rho \sin \tilde{\Omega}$ $t_1 < t < t_1 + rac{\pi}{\omega}$. So, $\Omega < T < \Omega + \pi$ So. $0 < \tilde{\Omega} < \pi$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Unlike in case I, action along path 2 is not 0. $S = \frac{y^2}{t_1} + \frac{1}{8}\omega[\sin(2t\omega) - \sin(2t_1\omega)]$

Unlike in case I, action along path 2 is not 0.

$$S = \frac{y^2}{t_1} + \frac{1}{8}\omega[\sin(2t\omega) - \sin(2t_1\omega)]$$

$$\frac{\partial t_1}{\partial x} = \frac{t_1}{y(\cos(\omega(t-t_1))-x)}$$

Unlike in case I, action along path 2 is not 0.

$$S = \frac{y^2}{t_1} + \frac{1}{8}\omega[\sin(2t\omega) - \sin(2t_1\omega)]$$

$$\frac{\partial t_1}{\partial x} = \frac{t_1}{y(\cos(\omega(t-t_1))-x)}$$

$$\frac{\partial t_1}{\partial y} = -\frac{x}{y}\frac{\partial t_1}{\partial x}$$

Unlike in case I, action along path 2 is not 0.

$$S = \frac{y^2}{t_1} + \frac{1}{8}\omega[\sin(2t\omega) - \sin(2t_1\omega)]$$

$$\frac{\partial t_1}{\partial x} = \frac{t_1}{y(\cos(\omega(t-t_1))-x)}$$

$$\frac{\partial t_1}{\partial y} = -\frac{x}{y}\frac{\partial t_1}{\partial x}$$

$$\frac{\partial S}{\partial x \partial y} = A^2$$