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@ Goal: write a general expression for a static, cylindrically
symmetric metric and solve the Einstein field equations for
vacuum

@ Solutions have been found previously by Weyl and Levi-Civita
in the early 20th century, in slightly different form

@ Relevant to describing the metric outside a cosmic string

@ Perform calculations analogous to the textbook treatment of
the spherically symmetric case
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The Metric

@ The metric: ds? = —e?®dt? + e dr? + r?d¢? + €2V dz?

@ Static (independent of t), axial symmetry (independent of ¢),
and translational symmetry along z (indepenent of z)

e &, A, and W are unknown functions of r only

@ Range of ¢ runs from 0 to ¢, (not necessarily 27); can be
made to be 0 to 27 by rescaling ¢
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@ Calculate Ricci tensor using standard definition

o Raﬂ = R'uguﬁ
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@ Einstein tensor: G, = R.g — %Rgaﬂ

@ Want to solve G,5 + Agag = kTop =0 (with A = 0)

@ It is straightforward to show that solving R,3 = 0 is
equivalent to solving G,3 =0

@ Results in four differential equations which are linear,
second-order ODEs easily solved by a substitution
(2 = ® + V) and separation of variables
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Solutions

@ Solutions:
® = In(r*) + In(a2)
W = In(rb) + In(by)
A = In(r1tb1) +In(c)
with the additional constraint that ajb; + a; + b1 = 0.

@ Thus the metric is:
ds? = —a3r?a1dt? + 2ri@tb)dr? 4 12dg? 4 b3r2Prdz?, with
0<¢ <o

@ After rescaling t, z, and r to absorb constants (and with
a:=a, b:=b):
ds? = —r?2dt? 4 r2@atb)dr2 4+ K2r2d¢? + r?Pdz? - leads to
two conventions for ¢
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Reduces to: ds?> = —dt? + dr? + r’d¢® + dz?
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Alternately, use rescaling: 7 = ERR
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@ From our form to Garfinkle's: 7 =
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Transforming Between Metric Forms

@ When does r = 0 in our metric form correspond to 7 = oo in
the alternate metric form?

: I 7B e c a+b+1
@ From our form to Garfinkle's: ¥ = —p—r
@ Exponent of r is negative whenever a + b < —1, which occurs

whenever b < —1 (or, equivalently, a < —1)

@ From our form to Weyl's: 7 = ;Clr"”*l

@ Exponent of r is negative whenever a < —1 (b < —1)

@ From our form to Rosen's: 7 = ﬁr“l

@ Exponent of r is negative whenever b < —1 (a < —1)

@ Thus in all three cases, r = 0 in our metric corresponds to

r = oo in the alternate metric whenever
a<-leb<-lesat+tbgs -1



Future Work

o Look at Ryg,s RV



Future Work

o Look at Ryg,s RV

@ Try connecting exterior solution to string of finite radius



Thank You

@ Questions?

AND OVER THERE WE HAVE THE LABYRINTH GUARDS.
ONE ALWAYS LIES, ONE ALWAYS TELS THE TRUTH, AND
ONE STABS PEOPLE WHO ASK TRICKY QUESTIONS.




