Solutions of Einstein's equations with cylindrical symmetry

Cynthia Trendafilova

Texas A\&M University
Department of Mathematics

$$
\text { July 9, } 2010
$$

Introduction

- Goal: write a general expression for a static, cylindrically symmetric metric and solve the Einstein field equations for vacuum

Introduction

- Goal: write a general expression for a static, cylindrically symmetric metric and solve the Einstein field equations for vacuum
- Solutions have been found previously by Weyl and Levi-Civita in the early 20th century, in slightly different form

Introduction

- Goal: write a general expression for a static, cylindrically symmetric metric and solve the Einstein field equations for vacuum
- Solutions have been found previously by Weyl and Levi-Civita in the early 20th century, in slightly different form
- Relevant to describing the metric outside a cosmic string

Introduction

- Goal: write a general expression for a static, cylindrically symmetric metric and solve the Einstein field equations for vacuum
- Solutions have been found previously by Weyl and Levi-Civita in the early 20th century, in slightly different form
- Relevant to describing the metric outside a cosmic string
- Perform calculations analogous to the textbook treatment of the spherically symmetric case

The Metric

- The metric: $d s^{2}=-e^{2 \Phi} d t^{2}+e^{2 \Lambda} d r^{2}+r^{2} d \phi^{2}+e^{2 \Psi} d z^{2}$

The Metric

- The metric: $d s^{2}=-e^{2 \Phi} d t^{2}+e^{2 \Lambda} d r^{2}+r^{2} d \phi^{2}+e^{2 \Psi} d z^{2}$
- Static (independent of t), axial symmetry (independent of ϕ), and translational symmetry along z (indepenent of z)

The Metric

- The metric: $d s^{2}=-e^{2 \Phi} d t^{2}+e^{2 \Lambda} d r^{2}+r^{2} d \phi^{2}+e^{2 \Psi} d z^{2}$
- Static (independent of t), axial symmetry (independent of ϕ), and translational symmetry along z (indepenent of z)
- Φ, Λ, and ψ are unknown functions of r only

The Metric

- The metric: $d s^{2}=-e^{2 \Phi} d t^{2}+e^{2 \Lambda} d r^{2}+r^{2} d \phi^{2}+e^{2 \Psi} d z^{2}$
- Static (independent of t), axial symmetry (independent of ϕ), and translational symmetry along z (indepenent of z)
- Φ, Λ, and Ψ are unknown functions of r only
- Range of ϕ runs from 0 to ϕ_{*} (not necessarily 2π); can be made to be 0 to 2π by rescaling ϕ

Calculations: Christoffel symbols

- Calculate Christoffel symbols using standard definition

Calculations: Christoffel symbols

- Calculate Christoffel symbols using standard definition
- $\Gamma^{\gamma}{ }_{\beta \mu}=\frac{1}{2} g^{\alpha \gamma}\left(g_{\alpha \beta, \mu}+g_{\alpha \beta, \mu}-g_{\beta \mu, \alpha}\right)$

Calculations: Christoffel symbols

- Calculate Christoffel symbols using standard definition
- $\Gamma^{\gamma}{ }_{\beta \mu}=\frac{1}{2} g^{\alpha \gamma}\left(g_{\alpha \beta, \mu}+g_{\alpha \beta, \mu}-g_{\beta \mu, \alpha}\right)$

$$
\begin{aligned}
& \Gamma_{t r}^{t}=\Gamma_{r t}^{t}=\Phi^{\prime} \\
& \Gamma^{r}{ }_{t t}=\Phi^{\prime} e^{2(\phi-\Lambda)} \\
& \Gamma_{r r}^{r}=\Lambda^{\prime} \\
& \Gamma^{r}{ }_{\phi \phi}=-r e^{-2 \Lambda} \\
& \Gamma^{r} \\
& { }_{z z}=-\Psi^{\prime} e^{2(\Psi-\Lambda)} \\
& \Gamma_{r \phi}^{\phi}=\Gamma^{\phi}{ }_{\phi r}=\frac{1}{r} \\
& \Gamma_{r z}^{z}=\Gamma_{z r}^{z}=\Psi^{\prime}
\end{aligned}
$$

Calculations: Riemann tensor

- Calculate Riemann tensor using standard definition

Calculations: Riemann tensor

- Calculate Riemann tensor using standard definition
- $R^{\alpha}{ }_{\beta \mu \nu}=\Gamma^{\alpha}{ }_{\beta \nu, \mu}-\Gamma^{\alpha}{ }_{\beta \mu, \nu}+\Gamma^{\alpha}{ }_{\sigma \mu} \Gamma^{\sigma}{ }_{\beta \nu}-\Gamma^{\alpha}{ }_{\sigma \nu} \Gamma^{\sigma}{ }_{\beta \mu}$

Calculations: Riemann tensor

- Calculate Riemann tensor using standard definition
- $R^{\alpha}{ }_{\beta \mu \nu}=\Gamma^{\alpha}{ }_{\beta \nu, \mu}-\Gamma^{\alpha}{ }_{\beta \mu, \nu}+\Gamma^{\alpha}{ }_{\sigma \mu} \Gamma^{\sigma}{ }_{\beta \nu}-\Gamma^{\alpha}{ }_{\sigma \nu} \Gamma^{\sigma}{ }_{\beta \mu}$

$$
\begin{aligned}
& R_{\phi \phi t}^{t}=r \Phi^{\prime} e^{-2 \Lambda} \\
& R_{\phi \phi r}^{r}=-r \Lambda^{\prime} e^{-2 \Lambda} \\
& R_{z z r}^{r}=\left(\Psi^{\prime \prime}+\Psi^{\prime 2}-\Psi^{\prime} \Lambda^{\prime}\right) e^{2(\Psi-\Lambda)} \\
& R_{t t r}^{r}=-\left(\Phi^{\prime \prime}+\Phi^{\prime 2}-\Phi^{\prime} \Lambda^{\prime}\right) e^{2(\Phi-\Lambda)} \\
& R_{t t z}^{z}=-\Psi^{\prime} \phi^{\prime} e^{2(\Phi-\Lambda)} \\
& R_{\phi \phi z}^{z}=r \Psi^{\prime} e^{-2 \Lambda}
\end{aligned}
$$

Calculations: Ricci tensor

- Calculate Ricci tensor using standard definition

Calculations: Ricci tensor

- Calculate Ricci tensor using standard definition
- $R_{\alpha \beta}=R^{\mu}{ }_{\sigma \mu \beta}$

Calculations: Ricci tensor

- Calculate Ricci tensor using standard definition
- $R_{\alpha \beta}=R^{\mu}{ }_{\sigma \mu \beta}$

$$
\begin{aligned}
& R_{t t}=\left(\Phi^{\prime \prime}+\Phi^{\prime 2}-\Phi^{\prime} \Lambda^{\prime}+\frac{1}{r} \phi^{\prime}+\Psi^{\prime} \Phi^{\prime}\right) e^{2(\Phi-\Lambda)} \\
& R_{r r}=-\Phi^{\prime \prime}-\Phi^{\prime 2}+\Phi^{\prime} \Lambda^{\prime}+\frac{1}{r} \Lambda^{\prime}-\Psi^{\prime \prime}-\psi^{\prime 2}+\Lambda^{\prime} \Psi^{\prime} \\
& R_{\phi \phi}=r\left(\Lambda^{\prime}-\Phi^{\prime}-\Psi^{\prime}\right) e^{-2 \Lambda} \\
& R_{z z}=-\left(\Psi^{\prime \prime}+\Psi^{\prime 2}-\Psi^{\prime} \Lambda^{\prime}+\Psi^{\prime} \Phi^{\prime}+\frac{1}{r} \Psi^{\prime}\right) e^{2(\Psi-\Lambda)}
\end{aligned}
$$

Calculations: differential equations

- Einstein tensor: $G_{\alpha \beta}=R_{\alpha \beta}-\frac{1}{2} R g_{\alpha \beta}$

Calculations: differential equations

- Einstein tensor: $G_{\alpha \beta}=R_{\alpha \beta}-\frac{1}{2} R g_{\alpha \beta}$
- Want to solve $G_{\alpha \beta}+\Lambda g_{\alpha \beta}=k T_{\alpha \beta}=0($ with $\Lambda=0)$

Calculations: differential equations

- Einstein tensor: $G_{\alpha \beta}=R_{\alpha \beta}-\frac{1}{2} R g_{\alpha \beta}$
- Want to solve $G_{\alpha \beta}+\Lambda g_{\alpha \beta}=k T_{\alpha \beta}=0$ (with $\Lambda=0$)
- It is straightforward to show that solving $R_{\alpha \beta}=0$ is equivalent to solving $G_{\alpha \beta}=0$

Calculations: differential equations

- Einstein tensor: $G_{\alpha \beta}=R_{\alpha \beta}-\frac{1}{2} R g_{\alpha \beta}$
- Want to solve $G_{\alpha \beta}+\Lambda g_{\alpha \beta}=k T_{\alpha \beta}=0$ (with $\Lambda=0$)
- It is straightforward to show that solving $R_{\alpha \beta}=0$ is equivalent to solving $G_{\alpha \beta}=0$
- Results in four differential equations which are linear, second-order ODEs easily solved by a substitution $(\Omega=\Phi+\Psi)$ and separation of variables

Calculations: differential equations

- Einstein tensor: $G_{\alpha \beta}=R_{\alpha \beta}-\frac{1}{2} R g_{\alpha \beta}$
- Want to solve $G_{\alpha \beta}+\Lambda g_{\alpha \beta}=k T_{\alpha \beta}=0$ (with $\Lambda=0$)
- It is straightforward to show that solving $R_{\alpha \beta}=0$ is equivalent to solving $G_{\alpha \beta}=0$
- Results in four differential equations which are linear, second-order ODEs easily solved by a substitution $(\Omega=\Phi+\Psi)$ and separation of variables

$$
\begin{aligned}
& \Lambda^{\prime}=\Omega^{\prime}=\Phi^{\prime}+\Psi^{\prime} \\
& \Phi^{\prime \prime}+\frac{1}{r} \Phi^{\prime}=0 \\
& \Psi^{\prime \prime}+\frac{1}{r} \Psi^{\prime}=0 \\
& \Phi^{\prime} \Psi^{\prime}+\frac{1}{r} \phi^{\prime}+\frac{1}{r} \Psi^{\prime}=0
\end{aligned}
$$

Solutions

- Solutions:

$$
\begin{aligned}
& \Phi=\ln \left(r^{a_{1}}\right)+\ln \left(a_{2}\right) \\
& \Psi=\ln \left(r^{b_{1}}\right)+\ln \left(b_{2}\right) \\
& \Lambda=\ln \left(r^{a_{1}+b_{1}}\right)+\ln (c)
\end{aligned}
$$

with the additional constraint that $a_{1} b_{1}+a_{1}+b_{1}=0$.

Solutions

- Solutions:

$$
\begin{aligned}
& \Phi=\ln \left(r^{a_{1}}\right)+\ln \left(a_{2}\right) \\
& \Psi=\ln \left(r^{b_{1}}\right)+\ln \left(b_{2}\right) \\
& \Lambda=\ln \left(r^{a_{1}+b_{1}}\right)+\ln (c)
\end{aligned}
$$

$$
\text { with the additional constraint that } a_{1} b_{1}+a_{1}+b_{1}=0
$$

- Thus the metric is: $d s^{2}=-a_{2}^{2} r^{2 a_{1}} d t^{2}+c^{2} r^{2\left(a_{1}+b_{1}\right)} d r^{2}+r^{2} d \phi^{2}+b_{2}^{2} r^{2 b_{1}} d z^{2}$, with $0 \leq \phi<\phi_{*}$

Solutions

- Solutions:

$$
\begin{aligned}
& \Phi=\ln \left(r^{a_{1}}\right)+\ln \left(a_{2}\right) \\
& \Psi=\ln \left(r^{b_{1}}\right)+\ln \left(b_{2}\right) \\
& \Lambda=\ln \left(r^{a_{1}+b_{1}}\right)+\ln (c)
\end{aligned}
$$

with the additional constraint that $a_{1} b_{1}+a_{1}+b_{1}=0$.

- Thus the metric is: $d s^{2}=-a_{2}^{2} r^{2 a_{1}} d t^{2}+c^{2} r^{2\left(a_{1}+b_{1}\right)} d r^{2}+r^{2} d \phi^{2}+b_{2}^{2} r^{2 b_{1}} d z^{2}$, with $0 \leq \phi<\phi_{*}$
- After rescaling t, z, and r to absorb constants (and with $\left.a:=a_{1}, b:=b_{1}\right)$: $d s^{2}=-r^{2 a} d t^{2}+r^{2(a+b)} d r^{2}+K^{2} r^{2} d \phi^{2}+r^{2 b} d z^{2}$ - leads to two conventions for ϕ

Relationship Between a and b

- Differential equations give the constraint $a b+a+b=0$

Relationship Between a and b

- Differential equations give the constraint $a b+a+b=0$
- Symmetric when a and b are switched, corresponding to interchanging the coordinates t and z

Relationship Between a and b

- Differential equations give the constraint $a b+a+b=0$
- Symmetric when a and b are switched, corresponding to interchanging the coordinates t and z

Special Points

- Point: $a=b=0$

Special Points

- Point: $a=b=0$
- Metric: $d s^{2}=-r^{2 a} d t^{2}+r^{2(a+b)} d r^{2}+r^{2} d \phi^{2}+r^{2 b} d z^{2}$

Special Points

- Point: $a=b=0$
- Metric: $d s^{2}=-r^{2 a} d t^{2}+r^{2(a+b)} d r^{2}+r^{2} d \phi^{2}+r^{2 b} d z^{2}$
- Reduces to: $d s^{2}=-d t^{2}+d r^{2}+r^{2} d \phi^{2}+d z^{2}$

Special Points

- Point: $a=b=0$
- Metric: $d s^{2}=-r^{2 a} d t^{2}+r^{2(a+b)} d r^{2}+r^{2} d \phi^{2}+r^{2 b} d z^{2}$
- Reduces to: $d s^{2}=-d t^{2}+d r^{2}+r^{2} d \phi^{2}+d z^{2}$
- This describes a cone - flat space missing a wedge of deficit angle $\Delta \phi=2 \pi-\phi_{*}$

Special Points

- Point: $a=b=0$
- Metric: $d s^{2}=-r^{2 a} d t^{2}+r^{2(a+b)} d r^{2}+r^{2} d \phi^{2}+r^{2 b} d z^{2}$
- Reduces to: $d s^{2}=-d t^{2}+d r^{2}+r^{2} d \phi^{2}+d z^{2}$
- This describes a cone - flat space missing a wedge of deficit angle $\Delta \phi=2 \pi-\phi_{*}$
- Alternately, use rescaling: $\bar{r}=\frac{c}{a+b+1} r^{a+b+1}$

Special Points

- Point: $a=b=0$
- Metric: $d s^{2}=-r^{2 a} d t^{2}+r^{2(a+b)} d r^{2}+r^{2} d \phi^{2}+r^{2 b} d z^{2}$
- Reduces to: $d s^{2}=-d t^{2}+d r^{2}+r^{2} d \phi^{2}+d z^{2}$
- This describes a cone - flat space missing a wedge of deficit angle $\Delta \phi=2 \pi-\phi_{*}$
- Alternately, use rescaling: $\bar{r}=\frac{c}{a+b+1} r^{a+b+1}$
- New metric: $d s^{2}=-\bar{r}^{\frac{2 a}{a+b+1}} d \bar{t}^{2}+d \bar{r}^{2}+\bar{r}^{\frac{2}{a+b+1}} d \bar{\phi}^{2}+\bar{r}^{\frac{2 b}{a+b+1}} d \bar{z}^{2}$

Special Points

- Point: $a=b=0$
- Metric: $d s^{2}=-r^{2 a} d t^{2}+r^{2(a+b)} d r^{2}+r^{2} d \phi^{2}+r^{2 b} d z^{2}$
- Reduces to: $d s^{2}=-d t^{2}+d r^{2}+r^{2} d \phi^{2}+d z^{2}$
- This describes a cone - flat space missing a wedge of deficit angle $\Delta \phi=2 \pi-\phi_{*}$
- Alternately, use rescaling: $\bar{r}=\frac{c}{a+b+1} r^{a+b+1}$
- New metric: $d s^{2}=-\bar{r}^{\frac{2 a}{a+b+1}} d \bar{t}^{2}+d \bar{r}^{2}+\bar{r}^{\frac{2}{a+b+1}} d \bar{\phi}^{2}+\bar{r}^{\frac{2 b}{a+b+1}} d \bar{z}^{2}$
- Form used by Garfinkle

Special Points

- Point: $a=b=0$
- Metric: $d s^{2}=-r^{2 a} d t^{2}+r^{2(a+b)} d r^{2}+r^{2} d \phi^{2}+r^{2 b} d z^{2}$
- Reduces to: $d s^{2}=-d t^{2}+d r^{2}+r^{2} d \phi^{2}+d z^{2}$
- This describes a cone - flat space missing a wedge of deficit angle $\Delta \phi=2 \pi-\phi_{*}$
- Alternately, use rescaling: $\bar{r}=\frac{c}{a+b+1} r^{a+b+1}$
- New metric: $d s^{2}=-\bar{r}^{\frac{2 a}{a+b+1}} d \bar{t}^{2}+d \bar{r}^{2}+\bar{r}^{\frac{2}{a+b+1}} d \bar{\phi}^{2}+\bar{r}^{\frac{2 b}{a+b+1}} d \bar{z}^{2}$
- Form used by Garfinkle
- Also reduces to: $d s^{2}=-d \bar{t}^{2}+d \bar{r}^{2}+\bar{r}^{2} d \bar{\phi}^{2}+d \bar{z}^{2}$

Special Points

- Point: $b=-1, a \rightarrow \infty$

Special Points

- Point: $b=-1, a \rightarrow \infty$
- Use rescaling: $\bar{r}=\frac{c}{a+1} r^{a+1}$

Special Points

- Point: $b=-1, a \rightarrow \infty$
- Use rescaling: $\bar{r}=\frac{c}{a+1} r^{a+1}$
- New metric:

$$
d s^{2}=-\bar{r}^{-2 b} d \bar{t}^{2}+\bar{r}^{2(1+b)} d \bar{\phi}^{2}+\bar{r}^{2 b(1+b)}\left(d \bar{r}^{2}+d \bar{z}^{2}\right)
$$

Special Points

- Point: $b=-1, a \rightarrow \infty$
- Use rescaling: $\bar{r}=\frac{c}{a+1} r^{a+1}$
- New metric:

$$
d s^{2}=-\bar{r}^{-2 b} d \bar{t}^{2}+\bar{r}^{2(1+b)} d \bar{\phi}^{2}+\bar{r}^{2 b(1+b)}\left(d \bar{r}^{2}+d \bar{z}^{2}\right)
$$

- Form used by Weyl and Levi-Civita

Special Points

- Point: $b=-1, a \rightarrow \infty$
- Use rescaling: $\bar{r}=\frac{c}{a+1} r^{a+1}$
- New metric: $d s^{2}=-\bar{r}^{-2 b} d \bar{t}^{2}+\bar{r}^{2(1+b)} d \bar{\phi}^{2}+\bar{r}^{2 b(1+b)}\left(d \bar{r}^{2}+d \bar{z}^{2}\right)$
- Form used by Weyl and Levi-Civita
- Reduces to: $d s^{2}=-\bar{r}^{2} d \bar{t}^{2}+d \bar{\phi}^{2}+d \bar{r}^{2}+d \bar{z}^{2}$

Special Points

- Point: $b=-1, a \rightarrow \infty$
- Use rescaling: $\bar{r}=\frac{c}{a+1} r^{a+1}$
- New metric: $d s^{2}=-\bar{r}^{-2 b} d \bar{t}^{2}+\bar{r}^{2(1+b)} d \bar{\phi}^{2}+\bar{r}^{2 b(1+b)}\left(d \bar{r}^{2}+d \bar{z}^{2}\right)$
- Form used by Weyl and Levi-Civita
- Reduces to: $d s^{2}=-\bar{r}^{2} d \bar{t}^{2}+d \bar{\phi}^{2}+d \bar{r}^{2}+d \bar{z}^{2}$
- Use transformation: $T=\bar{r} \sinh \bar{t}, R=\bar{r} \cosh \bar{t}$

Special Points

- Point: $b=-1, a \rightarrow \infty$
- Use rescaling: $\bar{r}=\frac{c}{a+1} r^{a+1}$
- New metric: $d s^{2}=-\bar{r}^{-2 b} d \bar{t}^{2}+\bar{r}^{2(1+b)} d \bar{\phi}^{2}+\bar{r}^{2 b(1+b)}\left(d \bar{r}^{2}+d \bar{z}^{2}\right)$
- Form used by Weyl and Levi-Civita
- Reduces to: $d s^{2}=-\bar{r}^{2} d \bar{t}^{2}+d \bar{\phi}^{2}+d \bar{r}^{2}+d \bar{z}^{2}$
- Use transformation: $T=\bar{r} \sinh \bar{t}, R=\bar{r} \cosh \bar{t}$
- New metric: $d s^{2}=-d T^{2}+d \bar{\phi}^{2}+d R^{2}+d \bar{z}^{2}$

Special Points

- Point: $b=-1, a \rightarrow \infty$
- Use rescaling: $\bar{r}=\frac{c}{a+1} r^{a+1}$
- New metric: $d s^{2}=-\bar{r}^{-2 b} d \bar{t}^{2}+\bar{r}^{2(1+b)} d \bar{\phi}^{2}+\bar{r}^{2 b(1+b)}\left(d \bar{r}^{2}+d \bar{z}^{2}\right)$
- Form used by Weyl and Levi-Civita
- Reduces to: $d s^{2}=-\bar{r}^{2} d \bar{t}^{2}+d \bar{\phi}^{2}+d \bar{r}^{2}+d \bar{z}^{2}$
- Use transformation: $T=\bar{r} \sinh \bar{t}, R=\bar{r} \cosh \bar{t}$
- New metric: $d s^{2}=-d T^{2}+d \bar{\phi}^{2}+d R^{2}+d \bar{z}^{2}$
- This looks locally like flat space, with $\bar{\phi}$ a periodic coordinate

Special Points

- Point: $a=-1, b \rightarrow \infty$

Special Points

- Point: $a=-1, b \rightarrow \infty$
- Use rescaling: $\bar{r}=\frac{c}{b+1} r^{b+1}$

Special Points

- Point: $a=-1, b \rightarrow \infty$
- Use rescaling: $\bar{r}=\frac{c}{b+1} r^{b+1}$
- New metric:

$$
d s^{2}=-\bar{r}^{2 a^{2}+2 a}\left(-d \bar{t}^{2}+d \bar{r}^{2}\right)+\bar{r}^{2+2 a} d \bar{\phi}^{2}+\bar{r}^{-2 a} d \bar{z}^{2}
$$

Special Points

- Point: $a=-1, b \rightarrow \infty$
- Use rescaling: $\bar{r}=\frac{c}{b+1} r^{b+1}$
- New metric: $d s^{2}=-\bar{r}^{2 a^{2}+2 a}\left(-d \bar{t}^{2}+d \bar{r}^{2}\right)+\bar{r}^{2+2 a} d \bar{\phi}^{2}+\bar{r}^{-2 a} d \bar{z}^{2}$
- Form used by Rosen

Special Points

- Point: $a=-1, b \rightarrow \infty$
- Use rescaling: $\bar{r}=\frac{c}{b+1} r^{b+1}$
- New metric: $d s^{2}=-\bar{r}^{2 a^{2}+2 a}\left(-d \bar{t}^{2}+d \bar{r}^{2}\right)+\bar{r}^{2+2 a} d \bar{\phi}^{2}+\bar{r}^{-2 a} d \bar{z}^{2}$
- Form used by Rosen
- Reduces to: $d s^{2}=-d \bar{t}^{2}+d \bar{r}^{2}+d \bar{\phi}^{2}+d \bar{z}^{2}$

Special Points

- Point: $a=-1, b \rightarrow \infty$
- Use rescaling: $\bar{r}=\frac{c}{b+1} r^{b+1}$
- New metric:

$$
d s^{2}=-\bar{r}^{2 a^{2}+2 a}\left(-d \bar{t}^{2}+d \bar{r}^{2}\right)+\bar{r}^{2+2 a} d \bar{\phi}^{2}+\bar{r}^{-2 a} d \bar{z}^{2}
$$

- Form used by Rosen
- Reduces to: $d s^{2}=-d \bar{t}^{2}+d \bar{r}^{2}+d \bar{\phi}^{2}+d \bar{z}^{2}$
- Use transformation: $Z=\bar{r} \sin \bar{z}, R=\bar{r} \cos \bar{z}$

Special Points

- Point: $a=-1, b \rightarrow \infty$
- Use rescaling: $\bar{r}=\frac{c}{b+1} r^{b+1}$
- New metric:

$$
d s^{2}=-\bar{r}^{2 a^{2}+2 a}\left(-d \bar{t}^{2}+d \bar{r}^{2}\right)+\bar{r}^{2+2 a} d \bar{\phi}^{2}+\bar{r}^{-2 a} d \bar{z}^{2}
$$

- Form used by Rosen
- Reduces to: $d s^{2}=-d \bar{t}^{2}+d \bar{r}^{2}+d \bar{\phi}^{2}+d \bar{z}^{2}$
- Use transformation: $Z=\bar{r} \sin \bar{z}, R=\bar{r} \cos \bar{z}$
- New metric: $d s^{2}=-d \bar{t}^{2}+d \bar{\phi}^{2}+d R^{2}+d Z^{2}$

Special Points

- Point: $a=-1, b \rightarrow \infty$
- Use rescaling: $\bar{r}=\frac{c}{b+1} r^{b+1}$
- New metric:

$$
d s^{2}=-\bar{r}^{2 a^{2}+2 a}\left(-d \bar{t}^{2}+d \bar{r}^{2}\right)+\bar{r}^{2+2 a} d \bar{\phi}^{2}+\bar{r}^{-2 a} d \bar{z}^{2}
$$

- Form used by Rosen
- Reduces to: $d s^{2}=-d \bar{t}^{2}+d \bar{r}^{2}+d \bar{\phi}^{2}+d \bar{z}^{2}$
- Use transformation: $Z=\bar{r} \sin \bar{z}, R=\bar{r} \cos \bar{z}$
- New metric: $d s^{2}=-d \bar{t}^{2}+d \bar{\phi}^{2}+d R^{2}+d Z^{2}$
- This looks locally like flat space, with $\bar{\phi}$ a periodic coordinate

Transforming Between Metric Forms

- When does $r=0$ in our metric form correspond to $\bar{r}=\infty$ in the alternate metric form?

Transforming Between Metric Forms

- When does $r=0$ in our metric form correspond to $\bar{r}=\infty$ in the alternate metric form?
- From our form to Garfinkle's: $\bar{r}=\frac{c}{a+b+1} r^{a+b+1}$

Transforming Between Metric Forms

- When does $r=0$ in our metric form correspond to $\bar{r}=\infty$ in the alternate metric form?
- From our form to Garfinkle's: $\bar{r}=\frac{c}{a+b+1} r^{a+b+1}$
- Exponent of r is negative whenever $a+b<-1$, which occurs whenever $b<-1$ (or, equivalently, $a<-1$)

Transforming Between Metric Forms

- When does $r=0$ in our metric form correspond to $\bar{r}=\infty$ in the alternate metric form?
- From our form to Garfinkle's: $\bar{r}=\frac{c}{a+b+1} r^{a+b+1}$
- Exponent of r is negative whenever $a+b<-1$, which occurs whenever $b<-1$ (or, equivalently, $a<-1$)
- From our form to Weyl's: $\bar{r}=\frac{c}{a+1} r^{a+1}$

Transforming Between Metric Forms

- When does $r=0$ in our metric form correspond to $\bar{r}=\infty$ in the alternate metric form?
- From our form to Garfinkle's: $\bar{r}=\frac{c}{a+b+1} r^{a+b+1}$
- Exponent of r is negative whenever $a+b<-1$, which occurs whenever $b<-1$ (or, equivalently, $a<-1$)
- From our form to Weyl's: $\bar{r}=\frac{c}{a+1} r^{a+1}$
- Exponent of r is negative whenever $a<-1(b<-1)$

Transforming Between Metric Forms

- When does $r=0$ in our metric form correspond to $\bar{r}=\infty$ in the alternate metric form?
- From our form to Garfinkle's: $\bar{r}=\frac{c}{a+b+1} r^{a+b+1}$
- Exponent of r is negative whenever $a+b<-1$, which occurs whenever $b<-1$ (or, equivalently, $a<-1$)
- From our form to Weyl's: $\bar{r}=\frac{c}{a+1} r^{a+1}$
- Exponent of r is negative whenever $a<-1(b<-1)$
- From our form to Rosen's: $\bar{r}=\frac{c}{b+1} r^{b+1}$

Transforming Between Metric Forms

- When does $r=0$ in our metric form correspond to $\bar{r}=\infty$ in the alternate metric form?
- From our form to Garfinkle's: $\bar{r}=\frac{c}{a+b+1} r^{a+b+1}$
- Exponent of r is negative whenever $a+b<-1$, which occurs whenever $b<-1$ (or, equivalently, $a<-1$)
- From our form to Weyl's: $\bar{r}=\frac{c}{a+1} r^{a+1}$
- Exponent of r is negative whenever $a<-1(b<-1)$
- From our form to Rosen's: $\bar{r}=\frac{c}{b+1} r^{b+1}$
- Exponent of r is negative whenever $b<-1(a<-1)$

Transforming Between Metric Forms

- When does $r=0$ in our metric form correspond to $\bar{r}=\infty$ in the alternate metric form?
- From our form to Garfinkle's: $\bar{r}=\frac{c}{a+b+1} r^{a+b+1}$
- Exponent of r is negative whenever $a+b<-1$, which occurs whenever $b<-1$ (or, equivalently, $a<-1$)
- From our form to Weyl's: $\bar{r}=\frac{c}{a+1} r^{a+1}$
- Exponent of r is negative whenever $a<-1(b<-1)$
- From our form to Rosen's: $\bar{r}=\frac{c}{b+1} r^{b+1}$
- Exponent of r is negative whenever $b<-1(a<-1)$
- Thus in all three cases, $r=0$ in our metric corresponds to $\bar{r}=\infty$ in the alternate metric whenever $a<-1 \Leftrightarrow b<-1 \Leftrightarrow a+b<-1$

Future Work

- Look at $R_{\alpha \beta \gamma \delta} R^{\alpha \beta \gamma \delta}$

Future Work

- Look at $R_{\alpha \beta \gamma \delta} R^{\alpha \beta \gamma \delta}$
- Try connecting exterior solution to string of finite radius

Thank You

- Questions?

AND OVER THERE WE HAVE THE LABYRINTH GUARDS. ONE ALWAYS LIES, ONE ALWAYS TELLS THE TRUTH, AND ONE STABS PEOPLE WHO ASK TRICKY QUESTIONS.

