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Introduction

Goal: write a general expression for a static, cylindrically
symmetric metric and solve the Einstein field equations for
vacuum

Solutions have been found previously by Weyl and Levi-Civita
in the early 20th century, in slightly different form

Relevant to describing the metric outside a cosmic string

Perform calculations analogous to the textbook treatment of
the spherically symmetric case
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The Metric

The metric: ds2 = −e2Φdt2 + e2Λdr2 + r2dφ2 + e2Ψdz2

Static (independent of t), axial symmetry (independent of φ),
and translational symmetry along z (indepenent of z)

Φ, Λ, and Ψ are unknown functions of r only

Range of φ runs from 0 to φ∗ (not necessarily 2π); can be
made to be 0 to 2π by rescaling φ
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Calculations: Christoffel symbols

Calculate Christoffel symbols using standard definition

Γγβµ = 1
2g

αγ(gαβ,µ + gαβ,µ − gβµ,α)

Γt
tr = Γt

rt = Φ′

Γr
tt = Φ′e2(Φ−Λ)

Γr
rr = Λ′

Γr
φφ = −re−2Λ

Γr
zz = −Ψ′e2(Ψ−Λ)

Γφrφ = Γφφr =
1

r
Γz

rz = Γz
zr = Ψ′
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Calculations: Riemann tensor

Calculate Riemann tensor using standard definition

Rαβµν = Γαβν,µ − Γαβµ,ν + ΓασµΓσβν − ΓασνΓσβµ
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Calculations: Ricci tensor

Calculate Ricci tensor using standard definition

Rαβ = Rµσµβ
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Calculations: differential equations

Einstein tensor: Gαβ = Rαβ − 1
2Rgαβ

Want to solve Gαβ + Λgαβ = kTαβ = 0 (with Λ = 0)

It is straightforward to show that solving Rαβ = 0 is
equivalent to solving Gαβ = 0

Results in four differential equations which are linear,
second-order ODEs easily solved by a substitution
(Ω = Φ + Ψ) and separation of variables

Λ′ = Ω′ = Φ′ + Ψ′

Φ′′ +
1

r
Φ′ = 0

Ψ′′ +
1

r
Ψ′ = 0

Φ′Ψ′ +
1

r
Φ′ +

1

r
Ψ′ = 0
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Solutions

Solutions:
Φ = ln(ra1) + ln(a2)
Ψ = ln(rb1) + ln(b2)
Λ = ln(ra1+b1) + ln(c)
with the additional constraint that a1b1 + a1 + b1 = 0.

Thus the metric is:
ds2 = −a2

2r
2a1dt2 + c2r2(a1+b1)dr2 + r2dφ2 + b2

2r
2b1dz2, with

0 ≤ φ < φ∗

After rescaling t, z , and r to absorb constants (and with
a := a1, b := b1):
ds2 = −r2adt2 + r2(a+b)dr2 + K 2r2dφ2 + r2bdz2 - leads to
two conventions for φ
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Relationship Between a and b

Differential equations give the constraint ab + a + b = 0

Symmetric when a and b are switched, corresponding to
interchanging the coordinates t and z
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Special Points

Point: a = b = 0

Metric: ds2 = −r2adt2 + r2(a+b)dr2 + r2dφ2 + r2bdz2

Reduces to: ds2 = −dt2 + dr2 + r2dφ2 + dz2

This describes a cone - flat space missing a wedge of deficit
angle ∆φ = 2π − φ∗

Alternately, use rescaling: r̄ = c
a+b+1 r

a+b+1

New metric: ds2 = −r̄
2a

a+b+1 dt̄2 + dr̄2 + r̄
2

a+b+1 d φ̄2 + r̄
2b

a+b+1 dz̄2

Form used by Garfinkle

Also reduces to: ds2 = −dt̄2 + dr̄2 + r̄2d φ̄2 + dz̄2
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Special Points

Point: b = −1, a→∞

Use rescaling: r̄ = c
a+1 r

a+1

New metric:
ds2 = −r̄−2bdt̄2 + r̄2(1+b)d φ̄2 + r̄2b(1+b)(dr̄2 + dz̄2)

Form used by Weyl and Levi-Civita

Reduces to: ds2 = −r̄2dt̄2 + d φ̄2 + dr̄2 + dz̄2

Use transformation: T = r̄ sinh t̄, R = r̄ cosh t̄

New metric: ds2 = −dT 2 + d φ̄2 + dR2 + dz̄2

This looks locally like flat space, with φ̄ a periodic coordinate
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Use transformation: Z = r̄ sin z̄ , R = r̄ cos z̄

New metric: ds2 = −dt̄2 + d φ̄2 + dR2 + dZ 2

This looks locally like flat space, with φ̄ a periodic coordinate
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Transforming Between Metric Forms

When does r = 0 in our metric form correspond to r̄ =∞ in
the alternate metric form?

From our form to Garfinkle’s: r̄ = c
a+b+1 r

a+b+1

Exponent of r is negative whenever a + b < −1, which occurs
whenever b < −1 (or, equivalently, a < −1)

From our form to Weyl’s: r̄ = c
a+1 r

a+1

Exponent of r is negative whenever a < −1 (b < −1)

From our form to Rosen’s: r̄ = c
b+1 r

b+1

Exponent of r is negative whenever b < −1 (a < −1)

Thus in all three cases, r = 0 in our metric corresponds to
r̄ =∞ in the alternate metric whenever
a < −1⇔ b < −1⇔ a + b < −1
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Future Work

Look at RαβγδR
αβγδ

Try connecting exterior solution to string of finite radius
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Thank You

Questions?


