Solutions of Einstein's equations with cylindrical symmetry

Cynthia Trendafilova

Texas A&M University Department of Mathematics

July 9, 2010

• Goal: write a general expression for a static, cylindrically symmetric metric and solve the Einstein field equations for vacuum

- Goal: write a general expression for a static, cylindrically symmetric metric and solve the Einstein field equations for vacuum
- Solutions have been found previously by Weyl and Levi-Civita in the early 20th century, in slightly different form

- Goal: write a general expression for a static, cylindrically symmetric metric and solve the Einstein field equations for vacuum
- Solutions have been found previously by Weyl and Levi-Civita in the early 20th century, in slightly different form
- Relevant to describing the metric outside a cosmic string

- Goal: write a general expression for a static, cylindrically symmetric metric and solve the Einstein field equations for vacuum
- Solutions have been found previously by Weyl and Levi-Civita in the early 20th century, in slightly different form
- Relevant to describing the metric outside a cosmic string
- Perform calculations analogous to the textbook treatment of the spherically symmetric case

• The metric: $ds^2 = -e^{2\Phi}dt^2 + e^{2\Lambda}dr^2 + r^2d\phi^2 + e^{2\Psi}dz^2$

- The metric: $ds^2 = -e^{2\Phi}dt^2 + e^{2\Lambda}dr^2 + r^2d\phi^2 + e^{2\Psi}dz^2$
- Static (independent of t), axial symmetry (independent of φ), and translational symmetry along z (independent of z)

- The metric: $ds^2 = -e^{2\Phi}dt^2 + e^{2\Lambda}dr^2 + r^2d\phi^2 + e^{2\Psi}dz^2$
- Static (independent of t), axial symmetry (independent of φ), and translational symmetry along z (independent of z)
- Φ , Λ , and Ψ are unknown functions of r only

- The metric: $ds^2 = -e^{2\Phi}dt^2 + e^{2\Lambda}dr^2 + r^2d\phi^2 + e^{2\Psi}dz^2$
- Static (independent of t), axial symmetry (independent of φ), and translational symmetry along z (independent of z)
- Φ , Λ , and Ψ are unknown functions of r only
- Range of φ runs from 0 to φ_{*} (not necessarily 2π); can be made to be 0 to 2π by rescaling φ

• Calculate Christoffel symbols using standard definition

• Calculate Christoffel symbols using standard definition

•
$$\Gamma^{\gamma}_{\beta\mu} = \frac{1}{2}g^{\alpha\gamma}(g_{\alpha\beta,\mu} + g_{\alpha\beta,\mu} - g_{\beta\mu,\alpha})$$

• Calculate Christoffel symbols using standard definition

•
$$\Gamma^{\gamma}_{\beta\mu} = \frac{1}{2}g^{\alpha\gamma}(g_{\alpha\beta,\mu} + g_{\alpha\beta,\mu} - g_{\beta\mu,\alpha})$$

$$\Gamma^{t}_{tr} = \Gamma^{t}_{rt} = \Phi'$$

$$\Gamma^{r}_{tt} = \Phi' e^{2(\Phi - \Lambda)}$$

$$\Gamma^{r}_{rr} = \Lambda'$$

$$\Gamma^{r}_{\phi\phi} = -re^{-2\Lambda}$$

$$\Gamma^{r}_{zz} = -\Psi' e^{2(\Psi - \Lambda)}$$

$$\Gamma^{\phi}_{r\phi} = \Gamma^{\phi}_{\phi r} = \frac{1}{r}$$

$$\Gamma^{z}_{rz} = \Gamma^{z}_{zr} = \Psi'$$

• Calculate Riemann tensor using standard definition

• Calculate Riemann tensor using standard definition

•
$$R^{\alpha}_{\ \beta\mu\nu} = \Gamma^{\alpha}_{\ \beta\nu,\mu} - \Gamma^{\alpha}_{\ \beta\mu,\nu} + \Gamma^{\alpha}_{\ \sigma\mu}\Gamma^{\sigma}_{\ \beta\nu} - \Gamma^{\alpha}_{\ \sigma\nu}\Gamma^{\sigma}_{\ \beta\mu}$$

• Calculate Riemann tensor using standard definition

•
$$R^{\alpha}_{\ \beta\mu\nu} = \Gamma^{\alpha}_{\ \beta\nu,\mu} - \Gamma^{\alpha}_{\ \beta\mu,\nu} + \Gamma^{\alpha}_{\ \sigma\mu}\Gamma^{\sigma}_{\ \beta\nu} - \Gamma^{\alpha}_{\ \sigma\nu}\Gamma^{\sigma}_{\ \beta\mu}$$

$$R^{t}_{\phi\phi t} = r\Phi' e^{-2\Lambda}$$

$$R^{r}_{\phi\phi r} = -r\Lambda' e^{-2\Lambda}$$

$$R^{r}_{zzr} = (\Psi'' + \Psi'^{2} - \Psi'\Lambda')e^{2(\Psi-\Lambda)}$$

$$R^{r}_{ttr} = -(\Phi'' + \Phi'^{2} - \Phi'\Lambda')e^{2(\Phi-\Lambda)}$$

$$R^{z}_{ttz} = -\Psi'\Phi' e^{2(\Phi-\Lambda)}$$

$$R^{z}_{\phi\phi z} = r\Psi' e^{-2\Lambda}$$

• Calculate Ricci tensor using standard definition

• Calculate Ricci tensor using standard definition

•
$$R_{\alpha\beta} = R^{\mu}_{\ \sigma\mu\beta}$$

- Calculate Ricci tensor using standard definition
- $R_{\alpha\beta} = R^{\mu}_{\ \sigma\mu\beta}$

$$R_{tt} = (\Phi'' + \Phi'^2 - \Phi'\Lambda' + \frac{1}{r}\Phi' + \Psi'\Phi')e^{2(\Phi-\Lambda)}$$

$$R_{rr} = -\Phi'' - \Phi'^2 + \Phi'\Lambda' + \frac{1}{r}\Lambda' - \Psi'' - \Psi'^2 + \Lambda'\Psi'$$

$$R_{\phi\phi} = r(\Lambda' - \Phi' - \Psi')e^{-2\Lambda}$$

$$R_{zz} = -(\Psi'' + \Psi'^2 - \Psi'\Lambda' + \Psi'\Phi' + \frac{1}{r}\Psi')e^{2(\Psi-\Lambda)}$$

• Einstein tensor: $G_{\alpha\beta} = R_{\alpha\beta} - \frac{1}{2}Rg_{\alpha\beta}$

- Einstein tensor: $G_{\alpha\beta} = R_{\alpha\beta} \frac{1}{2}Rg_{\alpha\beta}$
- Want to solve $G_{\alpha\beta} + \Lambda g_{\alpha\beta} = kT_{\alpha\beta} = 0$ (with $\Lambda = 0$)

- Einstein tensor: $G_{\alpha\beta} = R_{\alpha\beta} \frac{1}{2}Rg_{\alpha\beta}$
- Want to solve $G_{\alpha\beta} + \Lambda g_{\alpha\beta} = kT_{\alpha\beta} = 0$ (with $\Lambda = 0$)
- It is straightforward to show that solving $R_{\alpha\beta} = 0$ is equivalent to solving $G_{\alpha\beta} = 0$

- Einstein tensor: $G_{\alpha\beta} = R_{\alpha\beta} \frac{1}{2}Rg_{\alpha\beta}$
- Want to solve $G_{\alpha\beta} + \Lambda g_{\alpha\beta} = kT_{\alpha\beta} = 0$ (with $\Lambda = 0$)
- It is straightforward to show that solving $R_{\alpha\beta} = 0$ is equivalent to solving $G_{\alpha\beta} = 0$
- Results in four differential equations which are linear, second-order ODEs easily solved by a substitution $(\Omega = \Phi + \Psi)$ and separation of variables

- Einstein tensor: $G_{\alpha\beta} = R_{\alpha\beta} \frac{1}{2}Rg_{\alpha\beta}$
- Want to solve $G_{\alpha\beta} + \Lambda g_{\alpha\beta} = kT_{\alpha\beta} = 0$ (with $\Lambda = 0$)
- It is straightforward to show that solving $R_{\alpha\beta} = 0$ is equivalent to solving $G_{\alpha\beta} = 0$
- Results in four differential equations which are linear, second-order ODEs easily solved by a substitution $(\Omega = \Phi + \Psi)$ and separation of variables

$$\Lambda' = \Omega' = \Phi' + \Psi'$$

$$\Phi'' + \frac{1}{r}\Phi' = 0$$

$$\Psi'' + \frac{1}{r}\Psi' = 0$$

$$\Phi'\Psi' + \frac{1}{r}\Phi' + \frac{1}{r}\Psi' = 0$$

Solutions

• Solutions:

$$\Phi = \ln(r^{a_1}) + \ln(a_2)$$

$$\Psi = \ln(r^{b_1}) + \ln(b_2)$$

$$\Lambda = \ln(r^{a_1+b_1}) + \ln(c)$$

with the additional constraint that $a_1b_1 + a_1 + b_1 = 0$.

Solutions

• Solutions:

$$\Phi = \ln(r^{a_1}) + \ln(a_2)$$

$$\Psi = \ln(r^{b_1}) + \ln(b_2)$$

$$\Lambda = \ln(r^{a_1+b_1}) + \ln(c)$$

with the additional constraint that $a_1b_1 + a_1 + b_1 = 0$.

• Thus the metric is:

$$ds^2 = -a_2^2 r^{2a_1} dt^2 + c^2 r^{2(a_1+b_1)} dr^2 + r^2 d\phi^2 + b_2^2 r^{2b_1} dz^2, \text{ with } 0 \le \phi < \phi_*$$

Solutions

• Solutions:

$$\Phi = \ln(r^{a_1}) + \ln(a_2)$$

$$\Psi = \ln(r^{b_1}) + \ln(b_2)$$

$$\Lambda = \ln(r^{a_1+b_1}) + \ln(c)$$

with the additional constraint that $a_1b_1 + a_1 + b_1 = 0$.

- Thus the metric is: $ds^2 = -a_2^2 r^{2a_1} dt^2 + c^2 r^{2(a_1+b_1)} dr^2 + r^2 d\phi^2 + b_2^2 r^{2b_1} dz^2$, with $0 \le \phi < \phi_*$
- After rescaling t, z, and r to absorb constants (and with $a := a_1, b := b_1$): $ds^2 = -r^{2a}dt^2 + r^{2(a+b)}dr^2 + K^2r^2d\phi^2 + r^{2b}dz^2$ - leads to two conventions for ϕ

• Differential equations give the constraint ab + a + b = 0

- Differential equations give the constraint ab + a + b = 0
- Symmetric when *a* and *b* are switched, corresponding to interchanging the coordinates *t* and *z*

- Differential equations give the constraint ab + a + b = 0
- Symmetric when *a* and *b* are switched, corresponding to interchanging the coordinates *t* and *z*

• Point: a = b = 0

- Point: a = b = 0
- Metric: $ds^2 = -r^{2a}dt^2 + r^{2(a+b)}dr^2 + r^2d\phi^2 + r^{2b}dz^2$

- Point: a = b = 0
- Metric: $ds^2 = -r^{2a}dt^2 + r^{2(a+b)}dr^2 + r^2d\phi^2 + r^{2b}dz^2$
- Reduces to: $ds^2 = -dt^2 + dr^2 + r^2 d\phi^2 + dz^2$

- Point: *a* = *b* = 0
- Metric: $ds^2 = -r^{2a}dt^2 + r^{2(a+b)}dr^2 + r^2d\phi^2 + r^{2b}dz^2$
- Reduces to: $ds^2 = -dt^2 + dr^2 + r^2 d\phi^2 + dz^2$
- This describes a cone flat space missing a wedge of deficit angle $\Delta\phi=2\pi-\phi_*$

- Point: *a* = *b* = 0
- Metric: $ds^2 = -r^{2a}dt^2 + r^{2(a+b)}dr^2 + r^2d\phi^2 + r^{2b}dz^2$
- Reduces to: $ds^2 = -dt^2 + dr^2 + r^2 d\phi^2 + dz^2$
- This describes a cone flat space missing a wedge of deficit angle $\Delta\phi=2\pi-\phi_*$
- Alternately, use rescaling: $\bar{r} = \frac{c}{a+b+1}r^{a+b+1}$

- Point: *a* = *b* = 0
- Metric: $ds^2 = -r^{2a}dt^2 + r^{2(a+b)}dr^2 + r^2d\phi^2 + r^{2b}dz^2$
- Reduces to: $ds^2 = -dt^2 + dr^2 + r^2 d\phi^2 + dz^2$
- This describes a cone flat space missing a wedge of deficit angle $\Delta\phi=2\pi-\phi_*$
- Alternately, use rescaling: $\bar{r} = \frac{c}{a+b+1}r^{a+b+1}$
- New metric: $ds^2 = -\overline{r}^{\frac{2a}{a+b+1}}d\overline{t}^2 + d\overline{r}^2 + \overline{r}^{\frac{2}{a+b+1}}d\overline{\phi}^2 + \overline{r}^{\frac{2b}{a+b+1}}d\overline{z}^2$

- Point: *a* = *b* = 0
- Metric: $ds^2 = -r^{2a}dt^2 + r^{2(a+b)}dr^2 + r^2d\phi^2 + r^{2b}dz^2$
- Reduces to: $ds^2 = -dt^2 + dr^2 + r^2 d\phi^2 + dz^2$
- This describes a cone flat space missing a wedge of deficit angle $\Delta\phi=2\pi-\phi_*$
- Alternately, use rescaling: $\bar{r} = \frac{c}{a+b+1}r^{a+b+1}$
- New metric: $ds^2 = -\overline{r}^{\frac{2a}{a+b+1}}d\overline{t}^2 + d\overline{r}^2 + \overline{r}^{\frac{2}{a+b+1}}d\overline{\phi}^2 + \overline{r}^{\frac{2b}{a+b+1}}d\overline{z}^2$
- Form used by Garfinkle

- Point: *a* = *b* = 0
- Metric: $ds^2 = -r^{2a}dt^2 + r^{2(a+b)}dr^2 + r^2d\phi^2 + r^{2b}dz^2$
- Reduces to: $ds^2 = -dt^2 + dr^2 + r^2 d\phi^2 + dz^2$
- This describes a cone flat space missing a wedge of deficit angle $\Delta\phi=2\pi-\phi_*$
- Alternately, use rescaling: $\bar{r} = \frac{c}{a+b+1}r^{a+b+1}$
- New metric: $ds^2 = -\overline{r}^{\frac{2a}{a+b+1}}d\overline{t}^2 + d\overline{r}^2 + \overline{r}^{\frac{2}{a+b+1}}d\overline{\phi}^2 + \overline{r}^{\frac{2b}{a+b+1}}d\overline{z}^2$
- Form used by Garfinkle
- Also reduces to: $ds^2 = -d\bar{t}^2 + d\bar{r}^2 + \bar{r}^2d\bar{\phi}^2 + d\bar{z}^2$

• Point: b = -1, $a \to \infty$

- Point: b = -1, $a \to \infty$
- Use rescaling: $\bar{r} = \frac{c}{a+1}r^{a+1}$

- Point: b = -1, $a \to \infty$
- Use rescaling: $\bar{r} = \frac{c}{a+1}r^{a+1}$
- New metric: $ds^2 = -\bar{r}^{-2b}d\bar{t}^2 + \bar{r}^{2(1+b)}d\bar{\phi}^2 + \bar{r}^{2b(1+b)}(d\bar{r}^2 + d\bar{z}^2)$

- Point: b = -1, $a \to \infty$
- Use rescaling: $\bar{r} = \frac{c}{a+1}r^{a+1}$
- New metric: $ds^2 = -\bar{r}^{-2b}d\bar{t}^2 + \bar{r}^{2(1+b)}d\bar{\phi}^2 + \bar{r}^{2b(1+b)}(d\bar{r}^2 + d\bar{z}^2)$
- Form used by Weyl and Levi-Civita

- Point: b = -1, $a \to \infty$
- Use rescaling: $\bar{r} = \frac{c}{a+1}r^{a+1}$
- New metric: $ds^2 = -\bar{r}^{-2b}d\bar{t}^2 + \bar{r}^{2(1+b)}d\bar{\phi}^2 + \bar{r}^{2b(1+b)}(d\bar{r}^2 + d\bar{z}^2)$
- Form used by Weyl and Levi-Civita
- Reduces to: $ds^2 = -\bar{r}^2 d\bar{t}^2 + d\bar{\phi}^2 + d\bar{r}^2 + d\bar{z}^2$

- Point: b = -1, $a \to \infty$
- Use rescaling: $\bar{r} = \frac{c}{a+1}r^{a+1}$
- New metric: $ds^2 = -\bar{r}^{-2b}d\bar{t}^2 + \bar{r}^{2(1+b)}d\bar{\phi}^2 + \bar{r}^{2b(1+b)}(d\bar{r}^2 + d\bar{z}^2)$
- Form used by Weyl and Levi-Civita
- Reduces to: $ds^2 = -\bar{r}^2 d\bar{t}^2 + d\bar{\phi}^2 + d\bar{r}^2 + d\bar{z}^2$
- Use transformation: $T = \overline{r} \sinh \overline{t}$, $R = \overline{r} \cosh \overline{t}$

- Point: b = -1, $a \to \infty$
- Use rescaling: $\bar{r} = \frac{c}{a+1}r^{a+1}$
- New metric: $ds^2 = -\bar{r}^{-2b}d\bar{t}^2 + \bar{r}^{2(1+b)}d\bar{\phi}^2 + \bar{r}^{2b(1+b)}(d\bar{r}^2 + d\bar{z}^2)$
- Form used by Weyl and Levi-Civita
- Reduces to: $ds^2 = -\bar{r}^2 d\bar{t}^2 + d\bar{\phi}^2 + d\bar{r}^2 + d\bar{z}^2$
- Use transformation: $T = \overline{r} \sinh \overline{t}$, $R = \overline{r} \cosh \overline{t}$
- New metric: $ds^2 = -dT^2 + d\bar{\phi}^2 + dR^2 + d\bar{z}^2$

- Point: b = -1, $a \to \infty$
- Use rescaling: $\bar{r} = \frac{c}{a+1}r^{a+1}$
- New metric: $ds^2 = -\bar{r}^{-2b}d\bar{t}^2 + \bar{r}^{2(1+b)}d\bar{\phi}^2 + \bar{r}^{2b(1+b)}(d\bar{r}^2 + d\bar{z}^2)$
- Form used by Weyl and Levi-Civita
- Reduces to: $ds^2 = -\bar{r}^2 d\bar{t}^2 + d\bar{\phi}^2 + d\bar{r}^2 + d\bar{z}^2$
- Use transformation: $T = \overline{r} \sinh \overline{t}$, $R = \overline{r} \cosh \overline{t}$
- New metric: $ds^2 = -dT^2 + d\bar{\phi}^2 + dR^2 + d\bar{z}^2$
- This looks locally like flat space, with $ar{\phi}$ a periodic coordinate

• Point: a = -1, $b \to \infty$

- Point: a = -1, $b \to \infty$
- Use rescaling: $\overline{r} = \frac{c}{b+1}r^{b+1}$

- Point: a = -1, $b \to \infty$
- Use rescaling: $\bar{r} = \frac{c}{b+1}r^{b+1}$
- New metric: $ds^2 = -\overline{r}^{2a^2+2a}(-d\overline{t}^2 + d\overline{r}^2) + \overline{r}^{2+2a}d\overline{\phi}^2 + \overline{r}^{-2a}d\overline{z}^2$

- Point: a = -1, $b \to \infty$
- Use rescaling: $\bar{r} = \frac{c}{b+1}r^{b+1}$
- New metric: $ds^2 = -\overline{r}^{2a^2+2a}(-d\overline{t}^2 + d\overline{r}^2) + \overline{r}^{2+2a}d\overline{\phi}^2 + \overline{r}^{-2a}d\overline{z}^2$
- Form used by Rosen

- Point: a = -1, $b \to \infty$
- Use rescaling: $\bar{r} = \frac{c}{b+1}r^{b+1}$
- New metric: $ds^2 = -\overline{r}^{2a^2+2a}(-d\overline{t}^2 + d\overline{r}^2) + \overline{r}^{2+2a}d\overline{\phi}^2 + \overline{r}^{-2a}d\overline{z}^2$
- Form used by Rosen
- Reduces to: $ds^2 = -d\bar{t}^2 + d\bar{r}^2 + d\bar{\phi}^2 + d\bar{z}^2$

- Point: a = -1, $b \to \infty$
- Use rescaling: $\bar{r} = \frac{c}{b+1}r^{b+1}$
- New metric: $ds^2 = -\bar{r}^{2a^2+2a}(-d\bar{t}^2 + d\bar{r}^2) + \bar{r}^{2+2a}d\bar{\phi}^2 + \bar{r}^{-2a}d\bar{z}^2$
- Form used by Rosen
- Reduces to: $ds^2 = -d\bar{t}^2 + d\bar{r}^2 + d\bar{\phi}^2 + d\bar{z}^2$
- Use transformation: $Z = \overline{r} \sin \overline{z}$, $R = \overline{r} \cos \overline{z}$

- Point: a = -1, $b \to \infty$
- Use rescaling: $\bar{r} = \frac{c}{b+1}r^{b+1}$
- New metric: $ds^2 = -\bar{r}^{2a^2+2a}(-d\bar{t}^2 + d\bar{r}^2) + \bar{r}^{2+2a}d\bar{\phi}^2 + \bar{r}^{-2a}d\bar{z}^2$
- Form used by Rosen
- Reduces to: $ds^2 = -d\bar{t}^2 + d\bar{r}^2 + d\bar{\phi}^2 + d\bar{z}^2$
- Use transformation: $Z = \overline{r} \sin \overline{z}$, $R = \overline{r} \cos \overline{z}$
- New metric: $ds^2 = -d\bar{t}^2 + d\bar{\phi}^2 + dR^2 + dZ^2$

- Point: a = -1, $b \to \infty$
- Use rescaling: $\bar{r} = \frac{c}{b+1}r^{b+1}$
- New metric: $ds^2 = -\bar{r}^{2a^2+2a}(-d\bar{t}^2 + d\bar{r}^2) + \bar{r}^{2+2a}d\bar{\phi}^2 + \bar{r}^{-2a}d\bar{z}^2$
- Form used by Rosen
- Reduces to: $ds^2 = -d\bar{t}^2 + d\bar{r}^2 + d\bar{\phi}^2 + d\bar{z}^2$
- Use transformation: $Z = \overline{r} \sin \overline{z}$, $R = \overline{r} \cos \overline{z}$
- New metric: $ds^2 = -d\bar{t}^2 + d\bar{\phi}^2 + dR^2 + dZ^2$
- This looks locally like flat space, with $ar{\phi}$ a periodic coordinate

• When does r = 0 in our metric form correspond to $\overline{r} = \infty$ in the alternate metric form?

- When does r = 0 in our metric form correspond to $\overline{r} = \infty$ in the alternate metric form?
- From our form to Garfinkle's: $\bar{r} = \frac{c}{a+b+1}r^{a+b+1}$

- When does r = 0 in our metric form correspond to $\overline{r} = \infty$ in the alternate metric form?
- From our form to Garfinkle's: $\bar{r} = \frac{c}{a+b+1}r^{a+b+1}$
- Exponent of *r* is negative whenever *a* + *b* < −1, which occurs whenever *b* < −1 (or, equivalently, *a* < −1)

- When does r = 0 in our metric form correspond to $\overline{r} = \infty$ in the alternate metric form?
- From our form to Garfinkle's: $\bar{r} = \frac{c}{a+b+1}r^{a+b+1}$
- Exponent of *r* is negative whenever *a* + *b* < −1, which occurs whenever *b* < −1 (or, equivalently, *a* < −1)
- From our form to Weyl's: $\bar{r} = \frac{c}{a+1}r^{a+1}$

- When does r = 0 in our metric form correspond to $\overline{r} = \infty$ in the alternate metric form?
- From our form to Garfinkle's: $\bar{r} = \frac{c}{a+b+1}r^{a+b+1}$
- Exponent of *r* is negative whenever *a* + *b* < −1, which occurs whenever *b* < −1 (or, equivalently, *a* < −1)
- From our form to Weyl's: $\bar{r} = \frac{c}{a+1}r^{a+1}$
- Exponent of r is negative whenever a < -1 (b < -1)

- When does r = 0 in our metric form correspond to $\overline{r} = \infty$ in the alternate metric form?
- From our form to Garfinkle's: $\bar{r} = \frac{c}{a+b+1}r^{a+b+1}$
- Exponent of *r* is negative whenever *a* + *b* < −1, which occurs whenever *b* < −1 (or, equivalently, *a* < −1)
- From our form to Weyl's: $\bar{r} = \frac{c}{a+1}r^{a+1}$
- Exponent of r is negative whenever a < -1 (b < -1)
- From our form to Rosen's: $\bar{r} = \frac{c}{b+1}r^{b+1}$

- When does r = 0 in our metric form correspond to $\overline{r} = \infty$ in the alternate metric form?
- From our form to Garfinkle's: $\bar{r} = \frac{c}{a+b+1}r^{a+b+1}$
- Exponent of *r* is negative whenever *a* + *b* < −1, which occurs whenever *b* < −1 (or, equivalently, *a* < −1)
- From our form to Weyl's: $\bar{r} = \frac{c}{a+1}r^{a+1}$
- Exponent of r is negative whenever a < -1 (b < -1)
- From our form to Rosen's: $\bar{r} = \frac{c}{b+1}r^{b+1}$
- Exponent of r is negative whenever b < -1 (a < -1)

- When does r = 0 in our metric form correspond to $\overline{r} = \infty$ in the alternate metric form?
- From our form to Garfinkle's: $\bar{r} = \frac{c}{a+b+1}r^{a+b+1}$
- Exponent of *r* is negative whenever *a* + *b* < −1, which occurs whenever *b* < −1 (or, equivalently, *a* < −1)
- From our form to Weyl's: $\bar{r} = \frac{c}{a+1}r^{a+1}$
- Exponent of r is negative whenever a < -1 (b < -1)
- From our form to Rosen's: $\bar{r} = \frac{c}{b+1}r^{b+1}$
- Exponent of r is negative whenever b < -1 (a < -1)
- Thus in all three cases, r = 0 in our metric corresponds to $\bar{r} = \infty$ in the alternate metric whenever

 $a < -1 \Leftrightarrow b < -1 \Leftrightarrow a + b < -1$

• Look at
$$R_{\alpha\beta\gamma\delta}R^{\alpha\beta\gamma\delta}$$

- Look at $R_{\alpha\beta\gamma\delta}R^{lpha\beta\gamma\delta}$
- Try connecting exterior solution to string of finite radius

Thank You

• Questions?

