The Casimir Effect for Generalized Piston Geometries

Guglielmo Fucci Department of Mathematics Baylor University

May 17, 2012

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへぐ

The Generalized Piston Geometry

Let \mathscr{N} be a smooth, compact Riemannian *d*-dimensional base manifold, $\mathcal{I} = [a, b] \subset \mathbb{R}$, and $f(r) \in C^{\infty}(\mathscr{M})$ with f(r) > 0 be a warping function. The generalized piston is defined as the D = d + 1 dimensional compact manifold $\mathscr{M} = \mathcal{I} \times_f \mathscr{N}$ locally described by the line element

$$\mathrm{d}s^2 = \mathrm{d}r^2 + f^2(r)\mathrm{d}\Sigma^2_{\mathscr{N}} \quad , \quad r \in \mathcal{I} \; .$$

Piston Configuration

- \mathcal{N}_R is a cross section of \mathcal{M} at $r = R \in (a, b)$.
- \mathcal{N}_R naturally divides \mathcal{M} in two regions
 - $M_I = [a, R] \times \mathcal{N}$, with $\partial M_I = \mathcal{N}_a \cup \mathcal{N}_R$,
 - $M_{II} = (R, b] \times \mathcal{N}$, with $\partial M_{II} = \mathcal{N}_R \cup \mathcal{N}_b$,
- The piston configuration is $M_I \cup_{\mathcal{N}_R} M_{II}$, where the piston itself is modelled by the cross section \mathcal{N}_a .

Remarks:

• M_I and M_{II} have different geometry unlike standard Casimir pistons.

• By setting f(r) = r one recovers the conical piston.

A 2-Dimensional Example: S^1 as Base Manifold Let g(r) be the warping function with $r \in [0, a]$ and let $\mathcal{N} = S^1$. By parametrizing the surface as

$$\Phi(r,\phi) = (f^{-1}(r)\cos\phi, f^{-1}(r)\sin\phi, g(f^{-1}(r)))$$

with $0 \leq \phi < 2\pi$ and

$$f(u) = \int_0^u \sqrt{1 + g'^2(\nu)} \mathrm{d}\nu \;, \quad 0 < u \le a \;,$$

the line element becomes

$$ds^{2} = dr^{2} + (f^{-1}(r))^{2} d\phi^{2} ,$$

Analysis on the Generalized Piston

Let $\varphi_p \in \mathcal{L}^2(\mathscr{M})$ with p = (I, II), we consider the eigenvalue equation

$$-\Delta_{\mathscr{M}}\varphi_p = \alpha_p^2\varphi_p \; .$$

By using separation of variables we represent the eigenfunctions as $\varphi_p(r, X) = u_{\alpha_p}(r)\Phi_p(X)$ where

$$\left(\frac{\mathrm{d}^2}{\mathrm{d}r^2} + d\frac{f'(r)}{f(r)}\frac{\mathrm{d}}{\mathrm{d}r} + \alpha_p^2 - \frac{\nu^2}{f^2(r)}\right)u_{\alpha_p}(r) = 0.$$

and

$$-\Delta_{\mathscr{N}}\Phi_p(X) = \nu^2 \Phi_p(X) \; .$$

The spectral zeta function associated with the generalized piston can be written as

$$\zeta(s) = \zeta_I(s) + \zeta_{II}(s)$$
, where $\zeta_p(s) = \sum_{\alpha_p} \alpha_p^{-2s}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

Casimir Energy and Force

In the framework of zeta function regularization the Casimir energy is

$$E_{\text{Cas}}(R) = \lim_{\varepsilon \to 0} \frac{\mu^{2\varepsilon}}{2} \zeta_M\left(\varepsilon - \frac{1}{2}, R\right)$$

In the limit $\varepsilon \to 0$, one finds the expression for the energy

$$E_{\text{Cas}}(R) = \frac{1}{2} \text{FP}\zeta\left(-\frac{1}{2}, R\right) + \frac{1}{2}\left(\frac{1}{\varepsilon} + \ln \mu^2\right) \text{Res}\,\zeta\left(-\frac{1}{2}, R\right) + O(\varepsilon) ,$$

while the corresponding force on the piston is

$$F_{\rm Cas}(R) = -\frac{\partial}{\partial R} E_{\rm Cas}(R) \; .$$

Remark: An unambiguous prediction of the force can be obtained only if $\frac{\partial}{\partial R} \operatorname{Res} \zeta\left(-\frac{1}{2}, R\right) = 0.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Spectral Zeta Function

An implicit equation for the eigenvalues α_p in region I and II is obtained by imposing boundary conditions. For Dirichlet BC's we set

$$u_{\alpha_{I}}(a,\nu) = u_{\alpha_{I}}(R,\nu) = 0$$
, and $u_{\alpha_{II}}(R,\nu) = u_{\alpha_{II}}(b,\nu) = 0$.

The spectral zeta function for the piston can be written as

$$\zeta(s) = \sum_{p \in \{I, II\}} \sum_{\nu} d(\nu) \zeta_p^{\nu}(s) ,$$

where, by using Cauchy residue theorem, $\zeta_p^{\nu}(s)$ has the following integral representation (with $x_I = R$ and $x_{II} = b$)

$$\zeta_p^{\nu}(s) = \frac{\sin \pi s}{\pi} \int_{\frac{m}{\nu}}^{\infty} dz (\nu^2 z^2 - m^2)^{-s} \frac{\partial}{\partial z} \ln u_{i\nu z}(x_p, \nu) .$$

Remarks:

- The above integral representation is valid for $1/2 < \Re(s) < 1$ and, hence, the analytic continuation to the region $\Re(s) \le 1/2$ needs to be performed.
- For a general warping function f(r) the eigenfunctions u_{α_p} are not known explicitly!

Asymptotic Expansion of the Eigenfunctions

For the analytic continuation of $\zeta(s)$ the explicit knowledge of the eigenfunctions is not necessary. We only need their uniform asymptotic expansion. Let us consider the following ansatz for the eigenfunctions of the radial equation

$$u_{i\nu z}(r,\nu) = f^{-d}(r)\Psi_{\nu}(z,r)$$

The function $\Psi_{\nu}(z,r)$ satisfies the equation

$$\left(\frac{\mathrm{d}^2}{\mathrm{d}r^2} + q(\nu, z, r)\right)\Psi_\nu(z, r) = 0 \; ,$$

with

$$q(\nu, z, r) = -\nu^2 \left(z^2 + \frac{1}{f^2(r)} \right) - \frac{d}{2} \frac{f''(r)}{f(r)} - \frac{d(d-2)}{4} \frac{f'^2(r)}{f^2(r)} \,.$$

To find the asymptotic expansion of Ψ and, in turn, of u for $\nu \to \infty$ we utilize the <u>WKB method</u>. We introduce the function

$$S(\nu, z, r) = \frac{\partial}{\partial r} \ln \Psi_{\nu}(z, r) ,$$

which satisfies the non-linear differential equation

$$\mathcal{S}'(
u,z,r) = -q(
u,z,r) - \mathcal{S}^2(
u,z,r) \; .$$

∃ ► ∃ <> <</p>

Asymptotic Expansion of the Eigenfunctions

We consider the following form for asymptotic expansion of the function ${\mathcal S}$

$$S(\nu, z, r) \sim \nu S_{-1}(z, r) + S_0(z, r) + \sum_{i=1}^{\infty} \frac{S_i(z, r)}{\nu^i}$$
.

The terms of the expansion satisfy the recursion relation for $i \ge 1$

$$S_{i+1}^{\pm}(z,r) = -\frac{1}{2S_{-1}^{\pm}(z,r)} \left[S_i^{\prime \pm}(z,r) + \sum_{n=0}^{i} S_n^{\pm}(z,r) S_{i-n}^{\pm}(z,r) \right] ,$$

with

$$S_{-1}^{\pm}(z,r) = \pm \sqrt{z^2 + \frac{1}{f^2(r)}} , \qquad S_0^{\pm}(z,r) = -\frac{1}{2} \frac{\partial}{\partial r} \ln S_{-1}^{\pm}(z,r) ,$$
$$S_1^{\pm}(z,r) = -\frac{1}{2S_{-1}^{\pm}(z,r)} \left[-\frac{d}{2} \frac{f''(r)}{f(r)} - \frac{d(d-2)}{4} \frac{f'^2(r)}{f^2(r)} + S_0^2(z,r) + S_0'(z,r) \right] .$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Asymptotic Expansion of the Eigenfunctions

The large- ν asymptotic expansion of the eigenfunctions $u_{i\nu z}$ is then given by

$$u_{i\nu z}(r,\nu) = f^{-d}(r) \left[A \exp\left\{ \int_{a}^{r} \mathcal{S}^{+}(\nu,z,t) \mathrm{d}t \right\} + B \exp\left\{ \int_{a}^{r} \mathcal{S}^{-}(\nu,z,t) \mathrm{d}t \right\} \right]$$

By imposing Dirichlet boundary conditions in region I we obtain

$$\ln u_{i\nu z}(R,\nu) = -\ln 2\nu - \frac{1}{2}\ln\left(z^2 + \frac{1}{f^2(a)}\right) + \frac{1}{4}\ln\left[\frac{1+z^2f^2(a)}{1+z^2f^2(R)}\right] + \frac{d-1}{2}\ln\frac{f(a)}{f(R)} + \nu \int_a^R S^+_{-1}(z,t)dt + \sum_{i=1}^\infty \frac{\mathcal{M}_i(z,a,R)}{\nu^i}$$

Remark:

• The uniform asymptotic expansion for the eigenfunctions in region II is obtained from the above with the replacement $a \to R$ and $R \to b$.

ション ふゆ くち くち くち くち くち

Analytic Continuation of the Spectral Zeta Function

From the integral representation of $\zeta(s)$ we add and subtract L leading terms of the asymptotic expansion to obtain, in region I,

$$\zeta_I(s) = Z_I(s) + \sum_{i=-1}^{L} A_i^{(I)}(s) ,$$

with $Z_I(s)$ analytic for $\Re s > (d - L - 1)/2$. By defining $\zeta_{\mathscr{N}}(s) = \sum_{\nu} \nu^{-2s}$ we find

$$\begin{split} A_{-1}^{(I)}(s) &= \frac{1}{2\sqrt{\pi}} \frac{\Gamma\left(s - \frac{1}{2}\right)}{\Gamma(s)} \zeta_{\mathscr{N}} \left(s - \frac{1}{2}\right) \int_{a}^{R} f^{2s-1}(t) \mathrm{d}t \,, \\ A_{0}^{(I)}(s) &= -\frac{1}{4} \zeta_{\mathscr{N}}(s) \left[f^{2s}(a) + f^{2s}(R)\right] \,, \\ A_{i}^{(I)}(s) &= -\frac{1}{\Gamma(s)} \zeta_{\mathscr{N}} \left(s + \frac{i}{2}\right) \Omega_{i}(s, a, R) \,, \quad i \ge 1 \,. \end{split}$$

Remarks:

- Once again similar results are obtained in region II once the replacement $a \to R$ and $R \to b$ is performed.
- The spectral zeta function on M depends *explicitly* on the spectral zeta function on \mathcal{N} .

The Casimir Force on the Piston

The Casimir energy for the generalized piston is obtained as

$$E_{\text{Cas}}(R) = -\frac{1}{2} \lim_{\varepsilon \to 0} \left[\zeta_I \left(\varepsilon - \frac{1}{2}, R \right) + \zeta_{II} \left(\varepsilon - \frac{1}{2}, R \right) \right] ,$$

and the corresponding force on the piston has the form

$$F_{\text{Cas}}(R) = -\frac{1}{2}Z'_{I}\left(-\frac{1}{2},R\right) - \frac{1}{2}Z'_{I}\left(-\frac{1}{2},R\right)$$
$$+ \sum_{n=1}^{[D/2]} \left[\text{FP}\zeta_{\mathscr{N}}\left(n-\frac{1}{2}\right)\mathcal{A}(R) + \text{Res}\zeta_{\mathscr{N}}\left(n-\frac{1}{2}\right)\mathcal{B}(R)\right]$$
$$- \left(\frac{1}{\varepsilon} + \ln\mu^{2}\right) \left[\text{Res}\zeta_{\mathscr{N}}\left(n-\frac{1}{2}\right)\frac{f'(R)}{f^{2}(R)} - \sum_{n=1}^{[D/2]}\text{Res}\zeta_{\mathscr{N}}\left(n-\frac{1}{2}\right)\mathcal{C}(R)\right]$$

Remarks:

- The Casimir force is divergence-free if $\dim \mathcal{N} = 2k$ and $\partial \mathcal{N} = \emptyset$.
- $\mathcal{A}(R)$, $\mathcal{B}(R)$, and $\mathcal{C}(R)$ depend on $f^{(n)}(R)$, $n \ge 1$. The Casimir force is always unambiguous when f(r) is constant (i.e. a generalized cylinder).

Concluding Remarks

- The behavior of the Casimir force as a function of the position of the piston can be studied (at least numerically) once a warping function and a base manifold have been specified.
- The formalism can be modified in order to study the generalized piston configuration when Neumann or Hybrid boundary conditions are imposed.
- It would be interesting to consider a modification of the warped product geometry to include the *warped torus*, a compact manifold $\mathcal{T} = S^1 \times_f \mathcal{N}$ with and the *periodic condition* $f(0) = f(2\pi)$. One could study the Casimir force between two cross-sections of the warped torus (generalization of the annular pistons).

うして ふゆう ふほう ふほう ふしつ

References

 (with K. Kirsten) The Casimir Effect for Generalized Piston Geometries, to appear in *Int. J. Mod. Phys.* proceedings of QFEXT11, arXiv: 1203.6522 [hep-th]

 (with K. Kirsten)
 Spectral Zeta Function for Laplace Operators on Warped Product Manifolds of the Type I ×_f M, to appear in Comm. Math. Phys., arXiv: 1111.2010 [math-ph]

うして ふゆう ふほう ふほう ふしつ