The Casimir Effect for Generalized Piston Geometries

Guglielmo Fucci
Department of Mathematics
Baylor University

May 17, 2012

The Generalized Piston Geometry

Let \mathscr{N} be a smooth, compact Riemannian d-dimensional base manifold, $\mathcal{I}=[a, b] \subset \mathbb{R}$, and $f(r) \in C^{\infty}(\mathscr{M})$ with $f(r)>0$ be a warping function. The generalized piston is defined as the $D=d+1$ dimensional compact manifold $\mathscr{M}=\mathcal{I} \times_{f} \mathscr{N}$ locally described by the line element

$$
\mathrm{d} s^{2}=\mathrm{d} r^{2}+f^{2}(r) \mathrm{d} \Sigma_{\mathscr{N}}^{2} \quad, \quad r \in \mathcal{I}
$$

Piston Configuration

- \mathscr{N}_{R} is a cross section of \mathscr{M} at $r=R \in(a, b)$.
- \mathscr{N}_{R} naturally divides \mathscr{M} in two regions
- $M_{I}=[a, R] \times \mathscr{N}$, with $\partial M_{I}=\mathscr{N}_{a} \cup \mathscr{N}_{R}$,
- $M_{I I}=(R, b] \times \mathscr{N}$, with $\partial M_{I I}=\mathscr{N}_{R} \cup \mathscr{N}_{b}$,
- The piston configuration is $M_{I} \cup_{\mathscr{N}_{R}} M_{I I}$, where the piston itself is modelled by the cross section \mathscr{N}_{a}.

Remarks:

- M_{I} and $M_{I I}$ have different geometry unlike standard Casimir pistons.
- By setting $f(r)=r$ one recovers the conical piston.

A 2-Dimensional Example: S^{1} as Base Manifold

Let $g(r)$ be the warping function with $r \in[0, a]$ and let $\mathscr{N}=S^{1}$. By parametrizing the surface as

$$
\Phi(r, \phi)=\left(f^{-1}(r) \cos \phi, f^{-1}(r) \sin \phi, g\left(f^{-1}(r)\right)\right)
$$

with $0 \leq \phi<2 \pi$ and

$$
f(u)=\int_{0}^{u} \sqrt{1+g^{\prime 2}(\nu)} \mathrm{d} \nu, \quad 0<u \leq a
$$

the line element becomes

$$
\mathrm{d} s^{2}=\mathrm{d} r^{2}+\left(f^{-1}(r)\right)^{2} \mathrm{~d} \phi^{2}
$$

Analysis on the Generalized Piston

Let $\varphi_{p} \in \mathcal{L}^{2}(\mathscr{M})$ with $p=(I, I I)$, we consider the eigenvalue equation

$$
-\Delta_{\mathscr{M}} \varphi_{p}=\alpha_{p}^{2} \varphi_{p}
$$

By using separation of variables we represent the eigenfunctions as $\varphi_{p}(r, X)=u_{\alpha_{p}}(r) \Phi_{p}(X)$ where

$$
\left(\frac{\mathrm{d}^{2}}{\mathrm{~d} r^{2}}+d \frac{f^{\prime}(r)}{f(r)} \frac{\mathrm{d}}{\mathrm{~d} r}+\alpha_{p}^{2}-\frac{\nu^{2}}{f^{2}(r)}\right) u_{\alpha_{p}}(r)=0
$$

and

$$
-\Delta_{\mathscr{N}} \Phi_{p}(X)=\nu^{2} \Phi_{p}(X)
$$

The spectral zeta function associated with the generalized piston can be written as

$$
\zeta(s)=\zeta_{I}(s)+\zeta_{I I}(s), \quad \text { where } \quad \zeta_{p}(s)=\sum_{\alpha_{p}} \alpha_{p}^{-2 s}
$$

Casimir Energy and Force

In the framework of zeta function regularization the Casimir energy is

$$
E_{\text {Cas }}(R)=\lim _{\varepsilon \rightarrow 0} \frac{\mu^{2 \varepsilon}}{2} \zeta_{M}\left(\varepsilon-\frac{1}{2}, R\right) .
$$

In the limit $\varepsilon \rightarrow 0$, one finds the expression for the energy

$$
E_{\text {Cas }}(R)=\frac{1}{2} \operatorname{FP} \zeta\left(-\frac{1}{2}, R\right)+\frac{1}{2}\left(\frac{1}{\varepsilon}+\ln \mu^{2}\right) \operatorname{Res} \zeta\left(-\frac{1}{2}, R\right)+O(\varepsilon),
$$

while the corresponding force on the piston is

$$
F_{\text {Cas }}(R)=-\frac{\partial}{\partial R} E_{\text {Cas }}(R) .
$$

Remark: An unambiguous prediction of the force can be obtained only if $\frac{\partial}{\partial R} \operatorname{Res} \zeta\left(-\frac{1}{2}, R\right)=0$.

Spectral Zeta Function

An implicit equation for the eigenvalues α_{p} in region I and $I I$ is obtained by imposing boundary conditions. For Dirichlet BC's we set

$$
u_{\alpha_{I}}(a, \nu)=u_{\alpha_{I}}(R, \nu)=0, \quad \text { and } \quad u_{\alpha_{I I}}(R, \nu)=u_{\alpha_{I I}}(b, \nu)=0
$$

The spectral zeta function for the piston can be written as

$$
\zeta(s)=\sum_{p \in\{I, I I\}} \sum_{\nu} d(\nu) \zeta_{p}^{\nu}(s)
$$

where, by using Cauchy residue theorem, $\zeta_{p}^{\nu}(s)$ has the following integral representation (with $x_{I}=R$ and $x_{I I}=b$)

$$
\zeta_{p}^{\nu}(s)=\frac{\sin \pi s}{\pi} \int_{\frac{m}{\nu}}^{\infty} d z\left(\nu^{2} z^{2}-m^{2}\right)^{-s} \frac{\partial}{\partial z} \ln u_{i \nu z}\left(x_{p}, \nu\right)
$$

Remarks:

- The above integral representation is valid for $1 / 2<\Re(s)<1$ and, hence, the analytic continuation to the region $\Re(s) \leq 1 / 2$ needs to be performed.
- For a general warping function $f(r)$ the eigenfunctions $u_{\alpha_{p}}$ are not known explicitly!

Asymptotic Expansion of the Eigenfunctions

For the analytic continuation of $\zeta(s)$ the explicit knowledge of the eigenfunctions is not necessary. We only need their uniform asymptotic expansion. Let us consider the following ansatz for the eigenfunctions of the radial equation

$$
u_{i \nu z}(r, \nu)=f^{-d}(r) \Psi_{\nu}(z, r)
$$

The function $\Psi_{\nu}(z, r)$ satisfies the equation

$$
\left(\frac{\mathrm{d}^{2}}{\mathrm{~d} r^{2}}+q(\nu, z, r)\right) \Psi_{\nu}(z, r)=0
$$

with

$$
q(\nu, z, r)=-\nu^{2}\left(z^{2}+\frac{1}{f^{2}(r)}\right)-\frac{d}{2} \frac{f^{\prime \prime}(r)}{f(r)}-\frac{d(d-2)}{4} \frac{f^{\prime 2}(r)}{f^{2}(r)}
$$

To find the asymptotic expansion of Ψ and, in turn, of u for $\nu \rightarrow \infty$ we utilize the WKB method. We introduce the function

$$
\mathcal{S}(\nu, z, r)=\frac{\partial}{\partial r} \ln \Psi_{\nu}(z, r)
$$

which satisfies the non-linear differential equation

$$
\mathcal{S}^{\prime}(\nu, z, r)=-q(\nu, z, r)-\mathcal{S}^{2}(\nu, z, r)
$$

Asymptotic Expansion of the Eigenfunctions

We consider the following form for asymptotic expansion of the function \mathcal{S}

$$
\mathcal{S}(\nu, z, r) \sim \nu S_{-1}(z, r)+S_{0}(z, r)+\sum_{i=1}^{\infty} \frac{S_{i}(z, r)}{\nu^{i}} .
$$

The terms of the expansion satisfy the recursion relation for $i \geq 1$

$$
S_{i+1}^{ \pm}(z, r)=-\frac{1}{2 S_{-1}^{ \pm}(z, r)}\left[S_{i}^{\prime \pm}(z, r)+\sum_{n=0}^{i} S_{n}^{ \pm}(z, r) S_{i-n}^{ \pm}(z, r)\right],
$$

with

$$
\begin{gathered}
S_{-1}^{ \pm}(z, r)= \pm \sqrt{z^{2}+\frac{1}{f^{2}(r)}}, \quad S_{0}^{ \pm}(z, r)=-\frac{1}{2} \frac{\partial}{\partial r} \ln S_{-1}^{ \pm}(z, r), \\
S_{1}^{ \pm}(z, r)=-\frac{1}{2 S_{-1}^{ \pm}(z, r)}\left[-\frac{d}{2} \frac{f^{\prime \prime}(r)}{f(r)}-\frac{d(d-2)}{4} \frac{f^{\prime 2}(r)}{f^{2}(r)}+S_{0}^{2}(z, r)+S_{0}^{\prime}(z, r)\right] .
\end{gathered}
$$

Asymptotic Expansion of the Eigenfunctions

The large- ν asymptotic expansion of the eigenfunctions $u_{i \nu z}$ is then given by
$u_{i \nu z}(r, \nu)=f^{-d}(r)\left[A \exp \left\{\int_{a}^{r} \mathcal{S}^{+}(\nu, z, t) \mathrm{d} t\right\}+B \exp \left\{\int_{a}^{r} \mathcal{S}^{-}(\nu, z, t) \mathrm{d} t\right\}\right]$.
By imposing Dirichlet boundary conditions in region I we obtain

$$
\begin{aligned}
\ln u_{i \nu z}(R, \nu) & =-\ln 2 \nu-\frac{1}{2} \ln \left(z^{2}+\frac{1}{f^{2}(a)}\right)+\frac{1}{4} \ln \left[\frac{1+z^{2} f^{2}(a)}{1+z^{2} f^{2}(R)}\right] \\
& +\frac{d-1}{2} \ln \frac{f(a)}{f(R)}+\nu \int_{a}^{R} S_{-1}^{+}(z, t) \mathrm{d} t+\sum_{i=1}^{\infty} \frac{\mathcal{M}_{i}(z, a, R)}{\nu^{i}} .
\end{aligned}
$$

Remark:

- The uniform asymptotic expansion for the eigenfunctions in region $I I$ is obtained from the above with the replacement $a \rightarrow R$ and $R \rightarrow b$.

Analytic Continuation of the Spectral Zeta Function

From the integral representation of $\zeta(s)$ we add and subtract L leading terms of the asymptotic expansion to obtain, in region I,

$$
\zeta_{I}(s)=Z_{I}(s)+\sum_{i=-1}^{L} A_{i}^{(I)}(s)
$$

with $Z_{I}(s)$ analytic for $\Re s>(d-L-1) / 2$. By defining $\zeta_{\mathscr{N}}(s)=\sum_{\nu} \nu^{-2 s}$ we find

$$
\begin{gathered}
A_{-1}^{(I)}(s)=\frac{1}{2 \sqrt{\pi}} \frac{\Gamma\left(s-\frac{1}{2}\right)}{\Gamma(s)} \zeta_{\mathscr{N}}\left(s-\frac{1}{2}\right) \int_{a}^{R} f^{2 s-1}(t) \mathrm{d} t \\
A_{0}^{(I)}(s)=-\frac{1}{4} \zeta_{\mathscr{N}}(s)\left[f^{2 s}(a)+f^{2 s}(R)\right] \\
A_{i}^{(I)}(s)=-\frac{1}{\Gamma(s)} \zeta_{\mathscr{N}}\left(s+\frac{i}{2}\right) \Omega_{i}(s, a, R), \quad i \geq 1
\end{gathered}
$$

Remarks:

- Once again similar results are obtained in region $I I$ once the replacement $a \rightarrow R$ and $R \rightarrow b$ is performed.
- The spectral zeta function on M depends explicitly on the spectral zeta function on \mathscr{N}.

The Casimir Force on the Piston

The Casimir energy for the generalized piston is obtained as

$$
E_{\mathrm{Cas}}(R)=-\frac{1}{2} \lim _{\varepsilon \rightarrow 0}\left[\zeta_{I}\left(\varepsilon-\frac{1}{2}, R\right)+\zeta_{I I}\left(\varepsilon-\frac{1}{2}, R\right)\right]
$$

and the corresponding force on the piston has the form

$$
\begin{aligned}
& F_{\text {Cas }}(R)=-\frac{1}{2} Z_{I}^{\prime}\left(-\frac{1}{2}, R\right)-\frac{1}{2} Z_{I}^{\prime}\left(-\frac{1}{2}, R\right) \\
& \quad+\sum_{n=1}^{[D / 2]}\left[\operatorname{FP} \zeta_{\mathscr{N}}\left(n-\frac{1}{2}\right) \mathcal{A}(R)+\operatorname{Res} \zeta_{\mathscr{N}}\left(n-\frac{1}{2}\right) \mathcal{B}(R)\right] \\
& \quad-\left(\frac{1}{\varepsilon}+\ln \mu^{2}\right)\left[\operatorname{Res} \zeta_{\mathscr{N}}\left(n-\frac{1}{2}\right) \frac{f^{\prime}(R)}{f^{2}(R)}-\sum_{n=1}^{[D / 2]} \operatorname{Res} \zeta_{\mathscr{N}}\left(n-\frac{1}{2}\right) \mathcal{C}(R)\right]
\end{aligned}
$$

Remarks:

- The Casimir force is divergence-free if $\operatorname{dim} \mathscr{N}=2 k$ and $\partial \mathscr{N}=\emptyset$.
- $\mathcal{A}(R), \mathcal{B}(R)$, and $\mathcal{C}(R)$ depend on $f^{(n)}(R), n \geq 1$. The Casimir force is always unambiguous when $f(r)$ is constant (i.e. a generalized cylinder).

Concluding Remarks

- The behavior of the Casimir force as a function of the position of the piston can be studied (at least numerically) once a warping function and a base manifold have been specified.
- The formalism can be modified in order to study the generalized piston configuration when Neumann or Hybrid boundary conditions are imposed.
- It would be interesting to consider a modification of the warped product geometry to include the warped torus, a compact manifold $\mathcal{T}=S^{1} \times_{f} \mathscr{N}$ with and the periodic condition $f(0)=f(2 \pi)$. One could study the Casimir force between two cross-sections of the warped torus (generalization of the annular pistons).

References

- (with K. Kirsten)

The Casimir Effect for Generalized Piston Geometries, to appear in Int. J. Mod. Phys. proceedings of QFEXT11, arXiv: 1203.6522 [hep-th]

- (with K. Kirsten)

Spectral Zeta Function for Laplace Operators on Warped Product Manifolds of the Type $I \times_{f} M$,
to appear in Comm. Math. Phys., arXiv: 1111.2010 [math-ph]

