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The Generalized Piston Geometry

Let N be a smooth, compact Riemannian d-dimensional base manifold,
I = [a, b] ⊂ R, and f(r) ∈ C∞(M ) with f(r) > 0 be a warping function.
The generalized piston is defined as the D = d+ 1 dimensional compact
manifold M = I ×f N locally described by the line element

ds2 = dr2 + f2(r)dΣ2
N , r ∈ I .

Piston Configuration

• NR is a cross section of M at r = R ∈ (a, b).

• NR naturally divides M in two regions

• MI = [a,R]× N , with ∂MI = Na ∪ NR,
• MII = (R, b]× N , with ∂MII = NR ∪ Nb,

• The piston configuration is MI ∪NR
MII , where the piston itself is

modelled by the cross section Na.

Remarks:

• MI and MII have different geometry unlike standard Casimir pistons.

• By setting f(r) = r one recovers the conical piston.



A 2-Dimensional Example: S1 as Base Manifold
Let g(r) be the warping function with r ∈ [0, a] and let N = S1. By
parametrizing the surface as

Φ(r, φ) = (f−1(r) cosφ, f−1(r) sinφ, g(f−1(r)))

with 0 ≤ φ < 2π and

f(u) =

∫ u

0

√

1 + g′2(ν)dν , 0 < u ≤ a ,

the line element becomes

ds2 = dr2 +
(

f−1(r)
)2

dφ2 ,
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Analysis on the Generalized Piston

Let ϕp ∈ L2(M ) with p = (I, II), we consider the eigenvalue equation

−∆Mϕp = α2
pϕp .

By using separation of variables we represent the eigenfunctions as
ϕp(r,X) = uαp(r)Φp(X) where

(

d2

dr2
+ d

f ′(r)

f(r)

d

dr
+ α2

p − ν2

f2(r)

)

uαp (r) = 0 .

and
−∆N Φp(X) = ν2Φp(X) .

The spectral zeta function associated with the generalized piston can be
written as

ζ(s) = ζI(s) + ζII(s) , where ζp(s) =
∑

αp

α−2s
p .



Casimir Energy and Force

In the framework of zeta function regularization the Casimir energy is

ECas(R) = lim
ε→0

µ2ε

2
ζM

(

ε− 1

2
, R

)

.

In the limit ε → 0, one finds the expression for the energy

ECas(R) =
1

2
FPζ

(

−1

2
, R

)

+
1

2

(

1

ε
+ lnµ2

)

Res ζ

(

−1

2
, R

)

+O(ε) ,

while the corresponding force on the piston is

FCas(R) = − ∂

∂R
ECas(R) .

Remark: An unambiguous prediction of the force can be obtained only if
∂
∂R

Res ζ
(

− 1
2
, R

)

= 0.



Spectral Zeta Function

An implicit equation for the eigenvalues αp in region I and II is obtained
by imposing boundary conditions. For Dirichlet BC’s we set

uαI
(a, ν) = uαI

(R, ν) = 0 , and uαII
(R, ν) = uαII

(b, ν) = 0 .

The spectral zeta function for the piston can be written as

ζ(s) =
∑

p∈{I,II}

∑

ν

d(ν)ζνp (s) ,

where, by using Cauchy residue theorem, ζνp (s) has the following integral
representation (with xI = R and xII = b)

ζνp (s) =
sin πs

π

∫ ∞

m
ν

dz(ν2z2 −m2)−s ∂

∂z
ln uiνz(xp, ν) .

Remarks:

• The above integral representation is valid for 1/2 < ℜ(s) < 1 and,
hence, the analytic continuation to the region ℜ(s) ≤ 1/2 needs to be
performed.

• For a general warping function f(r) the eigenfunctions uαp are not

known explicitly!



Asymptotic Expansion of the Eigenfunctions
For the analytic continuation of ζ(s) the explicit knowledge of the
eigenfunctions is not necessary. We only need their uniform asymptotic

expansion. Let us consider the following ansatz for the eigenfunctions of the
radial equation

uiνz(r, ν) = f−d(r)Ψν(z, r) .

The function Ψν(z, r) satisfies the equation
(

d2

dr2
+ q(ν, z, r)

)

Ψν(z, r) = 0 ,

with

q(ν, z, r) = −ν2

(

z2 +
1

f2(r)

)

− d

2

f ′′(r)

f(r)
− d(d− 2)

4

f ′2(r)

f2(r)
.

To find the asymptotic expansion of Ψ and, in turn, of u for ν → ∞ we
utilize the WKB method. We introduce the function

S(ν, z, r) = ∂

∂r
lnΨν(z, r) ,

which satisfies the non-linear differential equation

S ′(ν, z, r) = −q(ν, z, r)− S2(ν, z, r) .



Asymptotic Expansion of the Eigenfunctions

We consider the following form for asymptotic expansion of the function S

S(ν, z, r) ∼ ν S−1(z, r) + S0(z, r) +
∞
∑

i=1

Si(z, r)

νi
.

The terms of the expansion satisfy the recursion relation for i ≥ 1

S±
i+1(z, r) = − 1

2S±
−1(z, r)

[

S′
i
±
(z, r) +

i
∑

n=0

S±
n (z, r)S±

i−n(z, r)

]

,

with

S±
−1(z, r) = ±

√

z2 +
1

f2(r)
, S±

0 (z, r) = −1

2

∂

∂r
lnS±

−1(z, r) ,

S±
1 (z, r) = − 1

2S±
−1(z, r)

[

−d

2

f ′′(r)

f(r)
− d(d− 2)

4

f ′2(r)

f2(r)
+ S2

0(z, r) + S′
0(z, r)

]

.



Asymptotic Expansion of the Eigenfunctions

The large-ν asymptotic expansion of the eigenfunctions uiνz is then given by

uiνz(r, ν) = f−d(r)

[

A exp

{
∫ r

a

S+(ν, z, t)dt

}

+B exp

{
∫ r

a

S−(ν, z, t)dt

}]

.

By imposing Dirichlet boundary conditions in region I we obtain

ln uiνz(R, ν) = − ln 2ν − 1

2
ln

(

z2 +
1

f2(a)

)

+
1

4
ln

[

1 + z2f2(a)

1 + z2f2(R)

]

+
d− 1

2
ln

f(a)

f(R)
+ ν

∫ R

a

S+
−1(z, t)dt+

∞
∑

i=1

Mi(z, a,R)

νi
.

Remark:

• The uniform asymptotic expansion for the eigenfunctions in region II
is obtained from the above with the replacement a → R and R → b.



Analytic Continuation of the Spectral Zeta Function
From the integral representation of ζ(s) we add and subtract L leading
terms of the asymptotic expansion to obtain, in region I ,

ζI(s) = ZI(s) +
L
∑

i=−1

A
(I)
i (s) ,

with ZI(s) analytic for ℜs > (d− L− 1)/2. By defining ζN (s) =
∑

ν ν
−2s

we find

A
(I)
−1(s) =

1

2
√
π

Γ
(

s− 1
2

)

Γ(s)
ζN

(

s− 1

2

)
∫ R

a

f2s−1(t)dt ,

A
(I)
0 (s) = −1

4
ζN (s)

[

f2s(a) + f2s(R)
]

,

A
(I)
i (s) = − 1

Γ(s)
ζN

(

s+
i

2

)

Ωi(s, a,R) , i ≥ 1 .

Remarks:

• Once again similar results are obtained in region II once the
replacement a → R and R → b is performed.

• The spectral zeta function on M depends explicitly on the spectral zeta
function on N .



The Casimir Force on the Piston

The Casimir energy for the generalized piston is obtained as

ECas(R) = −1

2
lim
ε→0

[

ζI

(

ε− 1

2
, R

)

+ ζII

(

ε− 1

2
, R

)]

,

and the corresponding force on the piston has the form

FCas(R) = −1

2
Z′

I

(

−1

2
, R

)

− 1

2
Z′

I

(

−1

2
, R

)

+

[D/2]
∑

n=1

[

FPζN

(

n− 1

2

)

A(R) + ResζN

(

n− 1

2

)

B(R)

]

−
(

1

ε
+ lnµ2

)



ResζN

(

n− 1

2

)

f ′(R)

f2(R)
−

[D/2]
∑

n=1

ResζN

(

n− 1

2

)

C(R)



 .

Remarks:

• The Casimir force is divergence-free if dimN = 2k and ∂N = ∅.
• A(R), B(R), and C(R) depend on f (n)(R), n ≥ 1. The Casimir force is
always unambiguous when f(r) is constant (i.e. a generalized cylinder).



Concluding Remarks

• The behavior of the Casimir force as a function of the position of the
piston can be studied (at least numerically) once a warping function
and a base manifold have been specified.

• The formalism can be modified in order to study the generalized piston
configuration when Neumann or Hybrid boundary conditions are
imposed.

• It would be interesting to consider a modification of the warped
product geometry to include the warped torus, a compact manifold
T = S1 ×f N with and the periodic condition f(0) = f(2π). One could
study the Casimir force between two cross-sections of the warped torus
(generalization of the annular pistons).
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