Calculation of Highly Oscillatory Integrals by Quadrature Methods

Krishna Thapa
Department of Physics \& Astronomy

Texas A\&M University College Station, TX

May 18, 2012

Outline

(9) Motivation

- Study of Vacuum Energy
- Oscillatory Integrals
- Earlier Literature
(2) Our Results
- Main Results
- Implementation

Outline

(1) Motivation

- Study of Vacuum Energy
- Oscillatory Integrals
- Earlier Literature
(2) Our Results
- Main Results
- Implementation

A model for Vacuum Energy

Our model of quantum vacuum energy density near the boundary has the form λz^{α}.

Figure: Steeply rising potential near the boundary

Why are we interested?

Spectral analysis of the rising potential gives Energy momentum tensor:

$$
\begin{equation*}
\bar{T}(z)=\frac{1}{\pi^{3}} \int_{0}^{\infty} d \rho \int_{0}^{1} d u \sqrt{1-u^{2}} \cos (2 z \rho u-2 \delta(\rho u)) \tag{1}
\end{equation*}
$$

where,

$$
\delta(u)=\operatorname{ArcTan}\left(-u\left(\frac{\operatorname{AiryAi}\left(-u^{2}\right)}{\operatorname{Airy} \mathrm{Ai}^{\prime}\left(-u^{2}\right)}\right)\right)
$$

What does it look like?

Figure: The oscillatory cosine function
left:u goes from 100 to 100.0002
right: u goes from 100 to 100.004

What does it look like?

Figure: The oscillatory cosine function
left:u goes from 100 to 100.0002
right: u goes from 100 to 100.004

Outline

(9) Motivation

- Study of Vacuum Energy
- Oscillatory Integrals
- Earlier Literature
(2) Our Results
- Main Results
- Implementation

$\bar{T}(z)$ is highly oscillatory.

- Takes hours, if not days to calculate.
- Only for $\alpha=1$
- We need to check for higher values of α.
- Similar $\bar{T}(z)$ for higher α values are bound to give more highly oscillatory integrals

$\bar{T}(z)$ is highly oscillatory.

- Takes hours, if not days to calculate.
- Only for $\alpha=1$.
- We need to check for higher values of α.
- Similar $T(z)$ for higher α values are bound to give more highly oscillatory integrals

$\bar{T}(z)$ is highly oscillatory.

- Takes hours, if not days to calculate.
- Only for $\alpha=1$.
- We need to check for higher values of α.
- Similar $\bar{T}(z)$ for higher α values are bound to give more highly oscillatory integrals
- We need systematic way to calculate these oscillatory integrals.

$\bar{T}(z)$ is highly oscillatory.

- Takes hours, if not days to calculate.
- Only for $\alpha=1$.
- We need to check for higher values of α.
- Similar $\bar{T}(z)$ for higher α values are bound to give more highly oscillatory integrals
- We need systematic way to calculate these oscillatory integrals.
- Check whether our model for potential is plausible.

$\bar{T}(z)$ is highly oscillatory.

- Takes hours, if not days to calculate.
- Only for $\alpha=1$.
- We need to check for higher values of α.
- Similar $\bar{T}(z)$ for higher α values are bound to give more highly oscillatory integrals
- We need systematic way to calculate these oscillatory integrals.
- Check whether our model for potential is plausible.

$\bar{T}(z)$ is highly oscillatory.

- Takes hours, if not days to calculate.
- Only for $\alpha=1$.
- We need to check for higher values of α.
- Similar $\bar{T}(z)$ for higher α values are bound to give more highly oscillatory integrals
- We need systematic way to calculate these oscillatory integrals.
- Check whether our model for potential is plausible.

Outline

(9) Motivation

- Study of Vacuum Energy
- Oscillatory Integrals
- Earlier Literature
(2) Our Results
- Main Results
- Implementation

Newton-Cotes Rule

- Trapezoidal rule

Figure: Plot showing integration by trapezoidal rule

Newton-Cotes Rule

- Trapezoidal rule
- Simpson's rule

Figure: Plot showing integration by trapezoidal rule

Newton-Cotes Rule

- Trapezoidal rule
- Simpson's rule

Figure: Plot showing integration by trapezoidal rule

Newton-Cotes Rule

- Trapezoidal rule
- Simpson's rule

Figure: Plot showing integration by trapezoidal rule

Newton-Cotes Rule

- Trapezoidal rule
- Simpson's rule

Figure: Plot showing integration by trapezoidal rule

$$
\int_{a}^{b} f(x) d x \approx c_{1} f(a)+c_{2} f(b)=\frac{(b-a)}{2}(f(a)+f(b))
$$

Gauss-Quadrature

- $\int_{a}^{b} f(x) d x \approx c_{1} f\left(x_{1}\right)+c_{2} f\left(x_{2}\right)$.
- Here, c_{1}, c_{2}, x_{1}, and x_{2} are all unknowns.
- In this case, these four constants are found by integrating third order polynomials and equating the coefficients.

Gauss-Quadrature

- $\int_{a}^{b} f(x) d x \approx c_{1} f\left(x_{1}\right)+c_{2} f\left(x_{2}\right)$.
- Here, c_{1}, c_{2}, x_{1}, and x_{2} are all unknowns.
- In this case, these four constants are found by integrating third order polynomials and equating the coefficients.

A ${ }^{M}$

Gauss-Quadrature

- $\int_{a}^{b} f(x) d x \approx c_{1} f\left(x_{1}\right)+c_{2} f\left(x_{2}\right)$.
- Here, c_{1}, c_{2}, x_{1}, and x_{2} are all unknowns.
- In this case, these four constants are found by integrating third order polynomials and equating the coefficients.

Gauss-Quadrature

- $\int_{a}^{b} f(x) d x \approx c_{1} f\left(x_{1}\right)+c_{2} f\left(x_{2}\right)$.
- Here, c_{1}, c_{2}, x_{1}, and x_{2} are all unknowns.
- In this case, these four constants are found by integrating third order polynomials and equating the coefficients.

Gauss-Quadrature

- $\int_{a}^{b} f(x) d x \approx c_{1} f\left(x_{1}\right)+c_{2} f\left(x_{2}\right)$.
- Here, c_{1}, c_{2}, x_{1}, and x_{2} are all unknowns.
- In this case, these four constants are found by integrating third order polynomials and equating the coefficients.

$$
\begin{gathered}
x_{1}=\frac{b-a-1}{2} \frac{b+a}{\sqrt{3}}+\frac{b+a}{2} \\
x_{2}=\frac{b-a}{2} \frac{1}{\sqrt{3}}+\frac{b+a}{2} \\
c_{1}=\frac{b-a}{2}, \text { and } c_{2}=\frac{b-a}{2} .
\end{gathered}
$$

Filon's method

Filon's method

$$
\int_{a}^{b} f(x) \sin \omega x d x \text { and } \int_{0}^{\infty} \frac{f(x)}{x} \sin \omega x
$$

$$
m_{\mu}\left(x_{\mu}\right)=f\left(x_{\mu}\right), m_{\mu+1}\left(x_{\mu+1}\right)=f\left(x_{\mu+1}\right), \text { and } m_{\mu+2}\left(x_{\mu+2}\right)=f\left(x_{\mu+2}\right)
$$

Filon's method

$$
\begin{gathered}
\int_{a}^{b} f(x) \sin \omega x d x \text { and } \int_{0}^{\infty} \frac{f(x)}{x} \sin \omega x \\
\int f(x) \sin (\omega x) d x=\sum_{m=\mu}^{2 \mu+2} f(x) \sin (\omega x) \\
m_{\mu}\left(x_{\mu}\right)=f\left(x_{\mu}\right), m_{\mu+1}\left(x_{\mu+1}\right)=f\left(x_{\mu+1}\right), \text { and } m_{\mu+2}\left(x_{\mu+2}\right)=f\left(x_{\mu+2}\right) .
\end{gathered}
$$

Filon's method

$$
\begin{gathered}
\int_{a}^{b} f(x) \sin \omega x d x \text { and } \int_{0}^{\infty} \frac{f(x)}{x} \sin \omega x \\
\int f(x) \sin (\omega x) d x=\sum_{m=\mu}^{2 \mu+2} f(x) \sin (\omega x) \\
m_{\mu}\left(x_{\mu}\right)=f\left(x_{\mu}\right), m_{\mu+1}\left(x_{\mu+1}\right)=f\left(x_{\mu+1}\right), \text { and } m_{\mu+2}\left(x_{\mu+2}\right)=f\left(x_{\mu+2}\right) .
\end{gathered}
$$

Filon's method

$$
\begin{gathered}
\int_{a}^{b} f(x) \sin \omega x d x \text { and } \int_{0}^{\infty} \frac{f(x)}{x} \sin \omega x \\
\int f(x) \sin (\omega x) d x=\sum_{m=\mu}^{2 \mu+2} f(x) \sin (\omega x) \\
m_{\mu}\left(x_{\mu}\right)=f\left(x_{\mu}\right), m_{\mu+1}\left(x_{\mu+1}\right)=f\left(x_{\mu+1}\right), \text { and } m_{\mu+2}\left(x_{\mu+2}\right)=f\left(x_{\mu+2}\right) \\
\int_{a}^{b} f(x) \sin \omega x d x \approx \sum_{\mu=0}^{n-1} \int_{x_{2 \mu}}^{x_{2 \mu+2}} m_{\mu}(x) \sin \omega x d x
\end{gathered}
$$

Filon's method

$$
\begin{gathered}
\int_{a}^{b} f(x) \sin \omega x d x \text { and } \int_{0}^{\infty} \frac{f(x)}{x} \sin \omega x \\
\int f(x) \sin (\omega x) d x=\sum_{m=\mu}^{2 \mu+2} f(x) \sin (\omega x) \\
m_{\mu}\left(x_{\mu}\right)=f\left(x_{\mu}\right), m_{\mu+1}\left(x_{\mu+1}\right)=f\left(x_{\mu+1}\right), \text { and } m_{\mu+2}\left(x_{\mu+2}\right)=f\left(x_{\mu+2}\right) \\
\int_{a}^{b} f(x) \sin \omega x d x \approx \sum_{\mu=0}^{n-1} \int_{x_{2 \mu}}^{x_{2 \mu+2}} m_{\mu}(x) \sin \omega x d x
\end{gathered}
$$

ClenshawCurtis Method

C.W.Clenshaw and A.R. Curtis in 1960. Expand $f(x)$ in

 Chebyshev polynomials.$f(x)=F(t)=\frac{1}{2} a_{0}+a_{1} T_{1}(t)+a_{2} T_{2}(t)+\ldots+\frac{1}{2} a_{n} T_{n}(t),(a \leq x \leq b)$ (2)
where,

and this eventually reduces to

ClenshawCurtis Method

C.W.Clenshaw and A.R. Curtis in 1960. Expand $f(x)$ in Chebyshev polynomials.
$f(x)=F(t)=\frac{1}{2} a_{0}+a_{1} T_{1}(t)+a_{2} T_{2}(t)+\ldots+\frac{1}{2} a_{n} T_{n}(t),(a \leq x \leq b)$
where,

and this eventually reduces to

ClenshawCurtis Method

C.W.Clenshaw and A.R. Curtis in 1960. Expand $f(x)$ in Chebyshev polynomials.

$$
\begin{equation*}
f(x)=F(t)=\frac{1}{2} a_{0}+a_{1} T_{1}(t)+a_{2} T_{2}(t)+\ldots+\frac{1}{2} a_{n} T_{n}(t),(a \leq x \leq b) \tag{2}
\end{equation*}
$$

where,

$$
\begin{equation*}
T_{n}(t)=\cos \left(\mathrm{n} \cos ^{-1}(t), t=\frac{2 x-(b+a)}{b-a}\right. \tag{3}
\end{equation*}
$$

and this eventually reduces to

$$
\begin{equation*}
f(x)=\frac{a_{0}}{2} T_{0}(x)+\sum_{n=1}^{\infty} a_{n} T_{n}(x), x_{n}=\cos \left(\frac{n \pi}{N}\right) \tag{4}
\end{equation*}
$$

Levin-Iserles' Method

Improvement over Filon's method

Levin-Iserles' Method

Improvement over Filon's method

$$
\begin{align*}
Q_{2}^{F}[f] & =\left(-\frac{1}{i \omega}-6 \frac{1+e^{i \omega}}{i \omega^{3}}+12 \frac{1-e^{i \omega}}{\omega^{4}}\right) f(0) \tag{5}\\
& +\left(\frac{e^{i \omega}}{i \omega}+6 \frac{1+e^{i \omega}}{i \omega^{3}}-12 \frac{1-e^{i \omega}}{\omega^{4}}\right) f(1) \\
& +\left(-\frac{1}{\omega^{2}}-2 \frac{2+e^{i \omega}}{i \omega^{3}}+6 \frac{1-e^{i \omega}}{\omega^{4}}\right) f^{\prime}(0) \\
& +\left(\frac{e^{i \omega}}{\omega^{2}}-2 \frac{1+e^{i \omega}}{i \omega^{3}}+6 \frac{1-e^{i \omega}}{\omega^{4}}\right) f^{\prime}(1)
\end{align*}
$$

Outline

(1)

 Motivation

 Motivation
 - Study of Vacuum Energy
 - Oscillatory Integrals
 - Earlier Literature

(2) Our Results

- Main Results
- Implementation

Was it worth the time?

- Yes, and No.
- Iserles' method did not work for our $\bar{T}(z)$ integral.
- Were able to calculate integrals much faster.
- Not very consistent.

Was it worth the time?

- Yes, and No.
- Iserles' method did not work for our $\bar{T}(z)$ integral.
- Were able to calculate integrals much faster.
- Not very consistent.

Was it worth the time?

- Yes, and No.
- Iserles' method did not work for our $\bar{T}(z)$ integral.
- Were able to calculate integrals much faster.
- Not very consistent.

Was it worth the time?

- Yes, and No.
- Iserles' method did not work for our $\bar{T}(z)$ integral.
- Were able to calculate integrals much faster.
- Not very consistent.

Outline

(1) Motivation
 - Study of Vacuum Energy
 - Oscillatory Integrals
 - Earlier Literature

(2) Our Results

- Main Results
- Implementation

What quadrature method to choose?

- Levin-Iserles' method seems more promising.
- Clenshawcurtis' qudrature method also works well.

Figure: $\bar{T}(z)$ using Levin and Clenshawcurtis method

Summary

- Highly oscillatory integrals can be calculatedmuch faster than by conventional methods.
- choose methods judiciously.
- Reduce error for integrands with large frequency.
- Outlook
- Not enough data for conclusion.
- Check for higher values of α.

Summary

- Highly oscillatory integrals can be calculatedmuch faster than by conventional methods.
- choose methods judiciously.
- Reduce error for integrands with large frequency.
- Outlook
- Not enough data for conclusion.
- Check for higher values of α.

NSF-0554849 and PHY-0968269.

For Further Reading I

© J. D. Bouas and S. A. Fulling and F. D. Mera and K. Thapa and C. S. Trendafilova and and J. Wagner Investigating the Spectral Geometry of a Soft Wall Proceedings of Symposia in Pure Mathematics, 2011.
Q Arieh Iserles and Syvert P. Norsett
Quadrature methods for multivariate highly oscillatory integrals using derivatives. Mathematics of Computation, 2006.

Q Louis Napoleon George Filon
On a quadrature formula for trigonometric integrals Proc. Roy soc. Edinburgh, 1928.

