Calculation of Highly Oscillatory Integrals by Quadrature Methods

Krishna Thapa Department of Physics & Astronomy

Texas A&M University College Station, TX

May 18, 2012

ĀГм

▲ 글 ▶ ▲ 글 ▶ 글 날

Outline

Motivation

- Study of Vacuum Energy
- Oscillatory Integrals
- Earlier Literature

2 Our Results

- Main Results
- Implementation

코 > 포

Study of Vacuum Energy Oscillatory Integrals Earlier Literature

Outline

Study of Vacuum Energy

- Oscillatory Integrals
- Earlier Literature

- Main Results
- Implementation

A model for Vacuum Energy

Our model of quantum vacuum energy density near the boundary has the form λz^{α} .

Figure: Steeply rising potential near the boundary

ĀТм

프 🖌 🛪 프 🕨

Study of Vacuum Energy Oscillatory Integrals Earlier Literature

ĀГм

문 / 문 / 문 님

Why are we interested?

Spectral analysis of the rising potential gives Energy momentum tensor:

$$\overline{T}(z) = \frac{1}{\pi^3} \int_0^\infty d\rho \int_0^1 du \sqrt{1 - u^2} \cos(2z\rho u - 2\delta(\rho u))$$
(1)

where,

$$\delta(u) = \operatorname{ArcTan}\left(-u\left(\frac{\operatorname{AiryAi}(-u^2)}{\operatorname{AiryAi}'(-u^2)}\right)\right)$$

Study of Vacuum Energy Oscillatory Integrals Earlier Literature

ĀГм

문 / 문 / 문 님

What does it look like?

Figure: The oscillatory cosine function

left:u goes from 100 to 100.0002 right: u goes from 100 to 100.004

Study of Vacuum Energy Oscillatory Integrals Earlier Literature

ĀГм

·문 ▶ · 문/님

What does it look like?

Figure: The oscillatory cosine function

left:u goes from 100 to 100.0002 right: u goes from 100 to 100.004

Study of Vacuum Energy Oscillatory Integrals Earlier Literature

Outline

- Study of Vacuum Energy
- Oscillatory Integrals
- Earlier Literature

Study of Vacuum Energy Oscillatory Integrals Earlier Literature

$\overline{T}(z)$ is highly oscillatory.

• Takes hours, if not days to calculate.

- Only for $\alpha = 1$.
- We need to check for higher values of α .
- Similar $\overline{T}(z)$ for higher α values are bound to give more highly oscillatory integrals
 - We need systematic way to calculate these oscillatory integrals.
 - Check whether our model for potential is plausible.

ĀМ

Study of Vacuum Energy Oscillatory Integrals Earlier Literature

$\overline{T}(z)$ is highly oscillatory.

Takes hours, if not days to calculate.

• Only for $\alpha = 1$.

- We need to check for higher values of α .
- Similar $\overline{T}(z)$ for higher α values are bound to give more highly oscillatory integrals
 - We need systematic way to calculate these oscillatory integrals.
 - Check whether our model for potential is plausible.

Study of Vacuum Energy Oscillatory Integrals Earlier Literature

$\overline{T}(z)$ is highly oscillatory.

- Takes hours, if not days to calculate.
 - Only for $\alpha = 1$.
 - We need to check for higher values of α .
- Similar $\overline{T}(z)$ for higher α values are bound to give more highly oscillatory integrals
 - We need systematic way to calculate these oscillatory integrals.
 - Check whether our model for potential is plausible.

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Study of Vacuum Energy Oscillatory Integrals Earlier Literature

ĀГМ

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ ■ のQG

$\overline{T}(z)$ is highly oscillatory.

- Takes hours, if not days to calculate.
 - Only for $\alpha = 1$.
 - We need to check for higher values of α .
- Similar T
 (z) for higher α values are bound to give more highly oscillatory integrals
 - We need systematic way to calculate these oscillatory integrals.
 - Check whether our model for potential is plausible.

Study of Vacuum Energy Oscillatory Integrals Earlier Literature

$\overline{T}(z)$ is highly oscillatory.

- Takes hours, if not days to calculate.
 - Only for $\alpha = 1$.
 - We need to check for higher values of α .
- Similar T
 (z) for higher α values are bound to give more highly oscillatory integrals
 - We need systematic way to calculate these oscillatory integrals.
 - Check whether our model for potential is plausible.

ĀГМ

Study of Vacuum Energy Oscillatory Integrals Earlier Literature

ĀГМ

물 에 에 물 에 물 물

$\overline{T}(z)$ is highly oscillatory.

- Takes hours, if not days to calculate.
 - Only for $\alpha = 1$.
 - We need to check for higher values of α .
- Similar T
 (z) for higher α values are bound to give more highly oscillatory integrals
 - We need systematic way to calculate these oscillatory integrals.
 - Check whether our model for potential is plausible.

Motivation	Study of Vacuur
Our Results	Oscillatory Integ
Summary	Earlier Literature

Outline

- Study of Vacuum Energy
- Oscillatory Integrals
- Earlier Literature

Our Results
 Main Results

Implementation

Study of Vacuum Energy Oscillatory Integrals Earlier Literature

Newton-Cotes Rule

- Trapezoidal rule
- Simpson's rule

Figure: Plot showing integration by trapezoidal rule

$$\int_{a}^{b} f(x) dx \approx c_1 f(a) + c_2 f(b) = \frac{(b-a)}{2} (f(a) + f(b)).$$

ĀГм

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ • • • • • • •

< 🗇 🕨

Study of Vacuum Energy Oscillatory Integrals Earlier Literature

Newton-Cotes Rule

- Trapezoidal rule
- Simpson's rule

Figure: Plot showing integration by trapezoidal rule

$$\int_{a}^{b} f(x) dx \approx c_1 f(a) + c_2 f(b) = \frac{(b-a)}{2} (f(a) + f(b)).$$

ĀГм

(本語)) (本語)) (三) (三) (三)

< 合

Study of Vacuum Energy Oscillatory Integrals Earlier Literature

Newton-Cotes Rule

- Trapezoidal rule
- Simpson's rule

Figure: Plot showing integration by trapezoidal rule

$$\int_{a}^{b} f(x) dx \approx c_1 f(a) + c_2 f(b) = \frac{(b-a)}{2} (f(a) + f(b)).$$

ĀГм

▲ 프 ▶ ▲ 프 ▶ 프 프

Study of Vacuum Energy Oscillatory Integrals Earlier Literature

Newton-Cotes Rule

- Trapezoidal rule
- Simpson's rule

Figure: Plot showing integration by trapezoidal rule

$$\int_{a}^{b} f(x) dx \approx c_{1} f(a) + c_{2} f(b) = \frac{(b-a)}{2} (f(a) + f(b)).$$

ĀГм

▲ 프 ▶ 프

Study of Vacuum Energy Oscillatory Integrals Earlier Literature

Newton-Cotes Rule

- Trapezoidal rule
- Simpson's rule

Figure: Plot showing integration by trapezoidal rule

$$\int_{a}^{b} f(x) dx \approx c_{1} f(a) + c_{2} f(b) = \frac{(b-a)}{2} (f(a) + f(b)).$$

ĀГм

프 🕨 프

Motivation	Study of Vacuum En
Our Results	Oscillatory Integrals
Summary	Earlier Literature

•
$$\int_a^b f(x) dx \approx c_1 f(x_1) + c_2 f(x_2).$$

• Here, c_1, c_2, x_1 , and x_2 are all unknowns.

 In this case, these four constants are found by integrating third order polynomials and equating the coefficients.

$$x_1 = \frac{b-a}{2} \frac{-1}{\sqrt{3}} + \frac{b+a}{2},$$

$$x_2 = \frac{b-a}{2}\frac{1}{\sqrt{3}} + \frac{b+a}{2},$$

$$c_1 = \frac{b-a}{2}$$
, and $c_2 = \frac{b-a}{2}$

ĀГМ

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ ■ 𝒴 𝒫 𝔅 𝔅

Motivation	Study of Vacuum Energy
Our Results	Oscillatory Integrals
Summary	Earlier Literature

•
$$\int_a^b f(x) dx \approx c_1 f(x_1) + c_2 f(x_2).$$

• Here, c_1 , c_2 , x_1 , and x_2 are all unknowns.

• In this case, these four constants are found by integrating third order polynomials and equating the coefficients.

$$x_1 = \frac{b-a}{2} \frac{-1}{\sqrt{3}} + \frac{b+a}{2},$$

$$x_2 = \frac{b-a}{2}\frac{1}{\sqrt{3}} + \frac{b+a}{2},$$

$$c_1 = \frac{b-a}{2}$$
, and $c_2 = \frac{b-a}{2}$

ĀГМ

Study of Vacuum Energ
Oscillatory Integrals
Earlier Literature

•
$$\int_a^b f(x) dx \approx c_1 f(x_1) + c_2 f(x_2).$$

• Here, c_1 , c_2 , x_1 , and x_2 are all unknowns.

 In this case, these four constants are found by integrating third order polynomials and equating the coefficients.

$$x_1 = \frac{b-a}{2} \frac{-1}{\sqrt{3}} + \frac{b+a}{2},$$

$$x_2 = \frac{b-a}{2} \frac{1}{\sqrt{3}} + \frac{b+a}{2},$$

 $b-a$ $b-a$

▲□ → ▲ ■ → ▲ ■ → ▲ ■ → ● ● ●

Motivation	Study of Vacuum Energy
Our Results	Oscillatory Integrals
Summary	Earlier Literature

•
$$\int_a^b f(x) dx \approx c_1 f(x_1) + c_2 f(x_2).$$

• Here, c_1 , c_2 , x_1 , and x_2 are all unknowns.

 In this case, these four constants are found by integrating third order polynomials and equating the coefficients.

$$x_{1} = \frac{b-a}{2} - \frac{1}{\sqrt{3}} + \frac{b+a}{2},$$
$$x_{2} = \frac{b-a}{2} - \frac{1}{\sqrt{3}} + \frac{b+a}{2},$$
$$x_{1} = \frac{b-a}{2}, \text{ and } c_{2} = \frac{b-a}{2}$$

Ā

▶ ★ 문 ▶ '문'님

Motivation	Study of Vacuum Energy
Our Results	Oscillatory Integrals
Summary	Earlier Literature

•
$$\int_a^b f(x)dx \approx c_1f(x_1) + c_2f(x_2).$$

- Here, c_1 , c_2 , x_1 , and x_2 are all unknowns.
- In this case, these four constants are found by integrating third order polynomials and equating the coefficients.

$$x_{1} = \frac{b-a}{2} \frac{-1}{\sqrt{3}} + \frac{b+a}{2},$$
$$x_{2} = \frac{b-a}{2} \frac{1}{\sqrt{3}} + \frac{b+a}{2},$$
$$c_{1} = \frac{b-a}{2}, \text{ and } c_{2} = \frac{b-a}{2}$$

Ā

Motivation	Study of Vacuum Energy
Our Results	Oscillatory Integrals
Summary	Earlier Literature

$$\int_{a}^{b} f(x) \sin \omega x dx \text{ and } \int_{0}^{\infty} \frac{f(x)}{x} \sin \omega x$$
$$\int f(x) \sin(\omega x) dx = \sum_{m=\mu}^{2\mu+2} f(x) \sin(\omega x)$$

 $m_{\mu}(x_{\mu}) = f(x_{\mu}), m_{\mu+1}(x_{\mu+1}) = f(x_{\mu+1}), \text{ and } m_{\mu+2}(x_{\mu+2}) = f(x_{\mu+2}).$

$$\int_{a}^{b} f(x) {
m sin} \omega x dx pprox \sum_{\mu=0}^{n-1} \int_{x_{2\mu}}^{x_{2\mu+2}} m_{\mu}(x) {
m sin} \omega x dx$$

ĀТм

Motivation	Study of Vacuum Energy
Our Results	Oscillatory Integrals
Summary	Earlier Literature

$$\int_{a}^{b} f(x) \sin \omega x dx \text{ and } \int_{0}^{\infty} \frac{f(x)}{x} \sin \omega x$$

$$\int f(x)\sin(\omega x)dx = \sum_{m=\mu}^{2\mu+2} f(x)\sin(\omega x)$$

 $m_{\mu}(x_{\mu}) = f(x_{\mu}), m_{\mu+1}(x_{\mu+1}) = f(x_{\mu+1}), \text{ and } m_{\mu+2}(x_{\mu+2}) = f(x_{\mu+2}).$

$$\int_{a}^{b} f(x) \sin \omega x dx pprox \sum_{\mu=0}^{n-1} \int_{x_{2\mu}}^{x_{2\mu+2}} m_{\mu}(x) \sin \omega x dx$$

ĀТм

Motivation	Study of Vacuum Energy
Our Results	Oscillatory Integrals
Summary	Earlier Literature

$$\int_{a}^{b} f(x) \sin \omega x dx \text{ and } \int_{0}^{\infty} \frac{f(x)}{x} \sin \omega x$$
$$\int f(x) \sin(\omega x) dx = \sum_{m=\mu}^{2\mu+2} f(x) \sin(\omega x)$$

 $m_{\mu}(x_{\mu}) = f(x_{\mu}), m_{\mu+1}(x_{\mu+1}) = f(x_{\mu+1}), \text{ and } m_{\mu+2}(x_{\mu+2}) = f(x_{\mu+2}).$

$$\int_{a}^{b} f(x) \sin \omega x dx pprox \sum_{\mu=0}^{n-1} \int_{x_{2\mu}}^{x_{2\mu+2}} m_{\mu}(x) \sin \omega x dx$$

ĀТм

★ E ► ★ E ► E E • 9 Q @

Motivation	Study of Vacuum Energy
Our Results	Oscillatory Integrals
Summary	Earlier Literature

$$\int_{a}^{b} f(x) \sin\omega x dx \text{ and } \int_{0}^{\infty} \frac{f(x)}{x} \sin\omega x$$
$$\int f(x) \sin(\omega x) dx = \sum_{m=\mu}^{2\mu+2} f(x) \sin(\omega x)$$

 $m_{\mu}(x_{\mu}) = f(x_{\mu}), m_{\mu+1}(x_{\mu+1}) = f(x_{\mu+1}), \text{ and } m_{\mu+2}(x_{\mu+2}) = f(x_{\mu+2}).$

ĀГм

(四) (日) (日) (日)

$$\int_{a}^{b} f(x) {
m sin} \omega x dx pprox \sum_{\mu=0}^{n-1} \int_{x_{2\mu}}^{x_{2\mu+2}} m_{\mu}(x) {
m sin} \omega x dx$$

Motivation	Study of Vacuum Energy
Our Results	Oscillatory Integrals
Summary	Earlier Literature

$$\int_{a}^{b} f(x) \sin\omega x dx \text{ and } \int_{0}^{\infty} \frac{f(x)}{x} \sin\omega x$$
$$\int f(x) \sin(\omega x) dx = \sum_{m=\mu}^{2\mu+2} f(x) \sin(\omega x)$$

 $m_{\mu}(x_{\mu}) = f(x_{\mu}), m_{\mu+1}(x_{\mu+1}) = f(x_{\mu+1}), \text{ and } m_{\mu+2}(x_{\mu+2}) = f(x_{\mu+2}).$

$$\int_{a}^{b} f(x) \sin \omega x dx \approx \sum_{\mu=0}^{n-1} \int_{x_{2\mu}}^{x_{2\mu+2}} m_{\mu}(x) \sin \omega x dx$$

ĀМ

비로 《종》《종》《씨》 《日》

Motivation	Study of Vacuum Energy
Our Results	Oscillatory Integrals
Summary	Earlier Literature

$$\int_{a}^{b} f(x) \sin\omega x dx \text{ and } \int_{0}^{\infty} \frac{f(x)}{x} \sin\omega x$$
$$\int f(x) \sin(\omega x) dx = \sum_{m=\mu}^{2\mu+2} f(x) \sin(\omega x)$$

 $m_{\mu}(x_{\mu}) = f(x_{\mu}), m_{\mu+1}(x_{\mu+1}) = f(x_{\mu+1}), \text{ and } m_{\mu+2}(x_{\mu+2}) = f(x_{\mu+2}).$

$$\int_{a}^{b} f(x) \sin \omega x dx \approx \sum_{\mu=0}^{n-1} \int_{x_{2\mu}}^{x_{2\mu+2}} m_{\mu}(x) \sin \omega x dx$$

ĀМ

비로 《종》《종》《씨》 《日》

Study of Vacuum Energy Oscillatory Integrals Earlier Literature

ClenshawCurtis Method

C.W.Clenshaw and A.R. Curtis in 1960. Expand f(x) in Chebyshev polynomials.

$$f(x) = F(t) = \frac{1}{2}a_0 + a_1T_1(t) + a_2T_2(t) + \dots + \frac{1}{2}a_nT_n(t), (a \le x \le b)$$
(2)

where,

$$T_n(t) = \cos(n \cos^{-1}(t), \ t = \frac{2x - (b + a)}{b - a}$$
(3)

and this eventually reduces to

$$f(x) = \frac{a_0}{2}T_0(x) + \sum_{n=1}^{\infty} a_n T_n(x), x_n = \cos(\frac{n\pi}{N}).$$
(4)

・ロト (周) (E) (E) (E) (E)

Motivation St Our Results Os Summary Ea

Study of Vacuum Energy Oscillatory Integrals Earlier Literature

ClenshawCurtis Method

C.W.Clenshaw and A.R. Curtis in 1960. Expand f(x) in Chebyshev polynomials.

$$f(x) = F(t) = \frac{1}{2}a_0 + a_1T_1(t) + a_2T_2(t) + \dots + \frac{1}{2}a_nT_n(t), (a \le x \le b)$$
(2)

$$T_n(t) = \cos(n \cos^{-1}(t), t = \frac{2x - (b + a)}{b - a}$$
 (6)

and this eventually reduces to

$$f(x) = \frac{a_0}{2}T_0(x) + \sum_{n=1}^{\infty} a_n T_n(x), x_n = \cos(\frac{n\pi}{N}).$$
(4)

Motivation	Study of Vacuum Ene
Our Results	Oscillatory Integrals
Summary	Earlier Literature

ClenshawCurtis Method

C.W.Clenshaw and A.R. Curtis in 1960. Expand f(x) in Chebyshev polynomials.

$$f(x) = F(t) = \frac{1}{2}a_0 + a_1T_1(t) + a_2T_2(t) + \dots + \frac{1}{2}a_nT_n(t), (a \le x \le b)$$
(2)

where,

$$T_n(t) = \cos(n \cos^{-1}(t), t = \frac{2x - (b + a)}{b - a}$$
 (3)

and this eventually reduces to

$$f(x) = \frac{a_0}{2}T_0(x) + \sum_{n=1}^{\infty} a_n T_n(x), x_n = \cos(\frac{n\pi}{N}).$$
(4)

E ▶ 도비님

Study of Vacuum Energy Oscillatory Integrals Earlier Literature

Levin-Iserles' Method

Improvement over Filon's method

$$Q_{2}^{F}[f] = \left(-\frac{1}{i\omega} - 6\frac{1 + e^{i\omega}}{i\omega^{3}} + 12\frac{1 - e^{i\omega}}{\omega^{4}}\right)f(0)$$
(5)
+ $\left(\frac{e^{i\omega}}{i\omega} + 6\frac{1 + e^{i\omega}}{i\omega^{3}} - 12\frac{1 - e^{i\omega}}{\omega^{4}}\right)f(1)$
+ $\left(-\frac{1}{\omega^{2}} - 2\frac{2 + e^{i\omega}}{i\omega^{3}} + 6\frac{1 - e^{i\omega}}{\omega^{4}}\right)f'(0)$
+ $\left(\frac{e^{i\omega}}{\omega^{2}} - 2\frac{1 + e^{i\omega}}{i\omega^{3}} + 6\frac{1 - e^{i\omega}}{\omega^{4}}\right)f'(1)$

ĀГм

★ 臣 ▶ ★ 臣 ▶ 三日日

< 🗇 >

Study of Vacuum Energy Oscillatory Integrals Earlier Literature

Levin-Iserles' Method

Improvement over Filon's method

$$\begin{aligned} Q_{2}^{F}[f] &= \left(-\frac{1}{i\omega} - 6\frac{1 + e^{i\omega}}{i\omega^{3}} + 12\frac{1 - e^{i\omega}}{\omega^{4}} \right) f(0) \end{aligned} \tag{5} \\ &+ \left(\frac{e^{i\omega}}{i\omega} + 6\frac{1 + e^{i\omega}}{i\omega^{3}} - 12\frac{1 - e^{i\omega}}{\omega^{4}} \right) f(1) \\ &+ \left(-\frac{1}{\omega^{2}} - 2\frac{2 + e^{i\omega}}{i\omega^{3}} + 6\frac{1 - e^{i\omega}}{\omega^{4}} \right) f'(0) \\ &+ \left(\frac{e^{i\omega}}{\omega^{2}} - 2\frac{1 + e^{i\omega}}{i\omega^{3}} + 6\frac{1 - e^{i\omega}}{\omega^{4}} \right) f'(1) \end{aligned}$$

ĀГм

★ 臣 ▶ ★ 臣 ▶ 三日日

< 🗇 >

Main Results Implementation

Outline

Motivation

- Study of Vacuum Energy
- Oscillatory Integrals
- Earlier Literature

Main Results Implementation

Was it worth the time?

Yes, and No.

- Iserles' method did not work for our $\overline{T}(z)$ integral.
- Were able to calculate integrals much faster.
- Not very consistent.

< 🗇 🕨

Main Results Implementation

Was it worth the time?

- Yes, and No.
- Iserles' method did not work for our $\overline{T}(z)$ integral.
- Were able to calculate integrals much faster.
- Not very consistent.

Main Results Implementation

Was it worth the time?

- Yes, and No.
- Iserles' method did not work for our $\overline{T}(z)$ integral.
- Were able to calculate integrals much faster.
- Not very consistent.

Main Results Implementation

Was it worth the time?

- Yes, and No.
- Iserles' method did not work for our $\overline{T}(z)$ integral.
- Were able to calculate integrals much faster.
- Not very consistent.

Main Results Implementation

Outline

Motivation

- Study of Vacuum Energy
- Oscillatory Integrals
- Earlier Literature

Implementation

What quadrature method to choose?

- Levin-Iserles' method seems more promising.
- Clenshawcurtis' qudrature method also works well.

Figure: $\overline{T}(z)$ using Levin and Clenshawcurtis method

ĀМ

- Highly oscillatory integrals can be calculated much faster than by conventional methods.
- choose methods judiciously.
- Reduce error for integrands with large frequency.

Outlook

- Not enough data for conclusion.
- Check for higher values of α .

Krishna Thapa Department of Physics & Astronomy Texas A&M Calculation of Oscillatory Integrals by Quadrature Methods

ĀМ

- Highly oscillatory integrals can be calculated much faster than by conventional methods.
- choose methods judiciously.
- Reduce error for integrands with large frequency.
- Outlook
 - Not enough data for conclusion.
 - Check for higher values of α .

ĀГМ

▶ ▲ 문 ▶ 문[님]

NSF-0554849 and PHY-0968269.

< 🗇 🕨

For Further Reading I

- J. D. Bouas and S. A. Fulling and F. D. Mera and K. Thapa and C. S. Trendafilova and and J. Wagner *Investigating the Spectral Geometry of a Soft Wall* Proceedings of Symposia in Pure Mathematics, 2011.
- Arieh Iserles and Syvert P. Norsett Quadrature methods for multivariate highly oscillatory integrals using derivatives. Mathematics of Computation, 2006.
- Louis Napoleon George Filon On a quadrature formula for trigonometric integrals Proc. Roy soc. Edinburgh, 1928.

ĀГМ

ヨ▶ ▲ヨ▶ ヨ|ヨ わえの