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Review

Maxwell’s Equations

Vector Notation
Differential Form
Notation

~∇ · ~B = 0

~∇× ~B + ∂t ~E = 0

~∇ · ~E = ρ

~∇× ~E − ∂t ~B = ~J

dF = 0

δF = J

F =
1

2
Fµν dx

µ∧dxν

= Ei dt∧dxi +Bi ∗(dt∧dxi)



Review

Charge Conservation

∂tρ+ ~∇ · ~J = 0 δJ = 0

Electromagnetic Potentials

~B = ~∇× ~A

~E = −~∇V − ∂t ~A
F = dA

Lorenz Gauge Condition

∂tV + ~∇ · ~A = 0 δA = 0



Review

Hertz Potentials

V = −~∇ · ~Πe

~A = ∂t~Πe + ~∇ · ~Πm

A = δΠ

~E = ~∇(~∇ · ~Πe)− ∂2t ~Πe − ∂t~∇× ~Πm

~B = ~∇× ∂t~Πe + ~∇× (~∇ · ~Πm)

F = dδΠ



Review

Special Geometries

Cylindrical Symmetry

~Πe = φ ẑ

~Πm = ψ ẑ
Π = φdt∧dz + ψ ∗(dt∧dz)

Spherical Symmetry

~Πe = φ~r

~Πm = ψ~r
Π = φ · r dt∧dr + ψ · r ∗(dt∧dr)



Review

Equations of Motion

�Π = dG+ δW

Cylindrical Symmetry

G = 0, W = 0

�Π = 0

�φ = 0, �ψ = 0

Spherical Symmetry

G = 2φdt, ∗W = 2ψ dt

�Π = dG+ δW

�φ = 0, �ψ = 0



Review

Boundary Conditions

Arbitrary Domain

n̂ · ~B = 0 ~E‖ = 0

Cylindrically Symmetric Domain
On the caps

∂zφ = 0 ψ = 0

On the cylinder

φ = 0 ∂ρψ = 0



Topology

Coaxial Cable

There are non-vanishing modes

~A = sin
(πmz

L

)
e±πmt/L

ρ̂

ρ

where no Π exists such that A = δΠ.

~A⊥ = ρ̂
ρ is a harmonic vector field in the cross-sectional domain

(annulus) but not the disk or the plane ( ~A⊥|ρ=0 is undefined).



Topology

For a cross-sectional domain with N holes there exist N similar
harmonic vector fields ~A⊥, so

~Am = ~A⊥(~x⊥) sin
(πmz

L

)
e±πmt/L

generate a family of fields for which no Hertz potential
representation exists.
All other modes can be described by Hertz potentials.



Topology

Concentric Spherical Shells

For perfectly conducting spherical shells, the field solution

~E =
r̂

r2
, ~B = 0

satisfies the boundary conditions. This of course corresponds to
a net charge enclosed by the inner sphere and is but one
solution rather than a family.



Topology

However, consider now “infinitely permeable” (µ =∞) shells
with boundary conditions dual to perfect conductor conditions:

n̂ · ~E = 0 ~B‖ = 0

This is solved by a similar field to above but with the roles of ~E
and ~B reversed:

~B =
r̂

r2
, ~E = 0,

and it is this potential for which no vector potential ~A exists.
Analogously to the “generalized” coaxial cable, such a field
solution defying description in terms of potentials exists for
each hole cut out of the domain.



Quantization

For now return to trivial topology.

Let {φj , ω2
j } be the normalized eigenfunctions and eigenvalues

of −∇2 in the cavity. Our quantization takes the form

φ(t, ~r) =
∑
j

1√
2ωj

[ajφj(~r)e
−iωjt + a†jφj(~r)e

iωjt]

where [aj , a
†
k] = δjk, [aj , ak] = 0.



Quantization

For a complete field, we must check that

[Ei(t, ~r), Bj(t, ~r
′)] = −iεijk

∂

∂xk
δ(~r − ~r ′)

is satisfied by our constructions of φ and ψ.



Quantization

Topologically Trivial Cylinder

Recall �φ = 0 = �ψ with alternating boundary conditions on
end caps and the cylinder. Then φ and ψ decompose into
products of axial and cross-sectional functions where

φjm = fj(~r⊥) cos
(πmz

L

)
e−itωjmTM

ψjm = gj(~r⊥) sin
(πmz

L

)
e−itωjmTE

where fj and gj solve

∇2
⊥fj = −λ2jDfj , fj = 0 on the boundary

∇2
⊥gj = −λ2jNgj , ∂ρgj = 0 on the boundary

and

ωjmTM
2 = λjD

2 +
(
πm
L

)2
ωjmTE

2 = λjN
2 +

(
πm
L

)2



Quantization

Topologically Trivial Cylinder

1. Vanishing commutators (e.g. [Ez, Bz], [Ez, Ez], [Ez, ~E⊥], and
[ ~E⊥, ~E⊥]) are relatively easy to prove.

2. Axial commutators such as

[Ez(t, ~r), ~B⊥(t, ~r ′)] = −i ? ~∇⊥δ(~r − ~r ′)

are slightly more complicated and follow from completeness
relations between the {f}, {cos} and {g}, {sin} bases in their
function space.



Quantization

3. Commutators involving purely cross-sectional terms (i.e.
[ ~E⊥, ~B⊥]) require particular relationships between the Green
functions in the disk, namely

∂ϕ∂ρ′GN (~r⊥, ~r
′
⊥) = ∂ρ∂ϕ′GD(~r⊥, ~r

′
⊥),

∂ρ∂ϕ′GN (~r⊥, ~r
′
⊥) = ∂ϕ∂ρ′GD(~r⊥, ~r

′
⊥),

and

∂ϕ∂ϕ′GN (~r⊥, ~r
′
⊥) + ∂ρ∂ρ′GD(~r⊥, ~r

′
⊥) = δ(~r⊥ − ~r ′⊥),

∂ρ∂ρ′GN (~r⊥, ~r
′
⊥) + ∂ϕ∂ϕ′GD(~r⊥, ~r

′
⊥) = δ(~r⊥ − ~r ′⊥),

where GD and GN are the Dirichlet and Neumann Green*
functions.
*GN is the Green function of the space with the subspace corresponding to the λ0N = 0

eigenvalue removed.



Topology and Quantization

Coaxial Cable

Commutators from items (1) and (2) follow relatively
unchanged (Bessel functions become sums of Bessel functions),
however item (3) seems to break down entirely.

Recall we had a family of modes

~Am = sin
(πmz

L

)
e±πmt/L

ρ̂

ρ

for which no Hertz potential representation exists. Adding in
the quantization from these modes yields the missing terms to
complete the commutator.



Topology and Quantization

Concentric Spherical Shells

Note, however, that there was no family of modes from the
concentric spheres; there was just one mode. Additionally, this
came purely from the electric charge enclosed by the inner shell.
When quantized, such a mode is discarded as it is completely
determined by the charge and cannot vary as a function of time,
thus it is not a degree of freedom.

The difference between this and the coaxial cable is that
whereas the sphere’s charge is fixed and cannot be altered,
current in the cable may fluctuate from time to time while still
satisfying all charge conservation necessities, enabling the
degree(s) of freedom associated with TEM modes.


