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Given the wave equation(
−∇2 + ζ2 + V1 + V2

)
f = 0

With two disjoint potentials

supV i = Ωi T i = V i (1 + G0V i )−1

The Casimir interaction energy can be written

E =
1

4π

∫
dζ Tr ln

(
1− T 1G0T 2G0

)
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The trace is over the spatial coordinates

E =
1

4π

∫
dζ Tr ln

(
1− T 1G0T 2G0

)
The spatial integrals can be done explicitly by expanding the
Green’s function

G(x , x ′) =
∑
α

φin
α (x)φout

α (x ′) x ∈ Ω1, x
′ ∈ Ω2

and then defining translation and scattering matrices

φout
α (x1) =

∑
β

Uαβφin
β (x2)

Tαβ =

∫
dxφin

β (x)T φin
α (x)

The trace in the new form is over separation constants

E =
1

4π

∫
dζ Tr ln

(
1− T1UT2U

)
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The trace is over the spatial coordinates

E =
1

4π

∫
dζ Tr ln

(
1− T 1G0T 2G0

)
The spatial integrals can be done explicitly by expanding the
Green’s function

G(x , x ′) =
∑
α

φin
α (x)φout

α (x ′) x ∈ Ω1, x
′ ∈ Ω2

and then defining translation and scattering matrices

φout
α (x1) =

∑
β

Uαβφin
β (x2)

(
φin
α (x) +

∑
β

Tαβφout
β (x)

)∣∣∣
x∈δΩ

= 0

The trace in the new form is over separation constants

E =
1

4π

∫
dζ Tr ln

(
1− T1UT2U

)
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For a 1-D periodic system the
free wave equation becomes(
− ∂2

x − ∂2
z + κ2

)
f (x , z) = 0

The basis functions are plane waves

φ
(±)
m (x , z) = exp

(
ıKmx ±

√
κ2 + K2

m z
)

where the wave vector has been replaced with a Bloch wave vector

k⊥ → Km, Km = k⊥ + Gm, Gm =
2πm

Lx
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The field can be written in a
Rayleigh expansion

f = φ
(+)
m +

∑
m′

Rmm′φ
(−)
m′

The scattering matrix is exponentially suppressed for large m

U = exp
(
−
√
κ2 + K2

m d
)

The Casimir interaction energy between two periodic structures is

E

Ly
=

1

8π2

∫ ∞
0
κdκ

∫ π/Lx

−π/Lx
dkx ln det

(
1− R1UR2U

)
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The C method

Numerical method for calculating Rayleigh coefficients

Established method from E&M grating theory

Specialized for surface relief gratings

Begins with a change in variables

{u, v ,w} = {x , y , z − h(x)}

The partial derivative is

∂2
x →

(
∂u − (∂uh)∂w

)2
.
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Expand the height profile and
field in a Fourier and Block series

h(u) =
∑
m

eıGmuhm

f (u,w) =
∑
m

eıKmufm(w)

Define the following vectors and
matrices(

f(w)
)
m

= fm(w)

(K)m,m′ = δm,m′Km.

(Gh)m,m′ = G(m−m′)h(m−m′).

Separate the Fourier modes - The wave equations becomes a
system of ODEs(

(K− Gh∂w )2 − I∂2
w + Iκ2

)
· f(w) = 0

Proceeding in the standard method

f(w) = Veλw

yields an quadratic eigenvalue problem

λ2
qA2 · Vq + λqA1 · Vq + A0Vq = 0.

Wagner et al C-Method for Casimir
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A quick note about the quadratic eigenvalue problem

For an N × N matrix there will be 2N eigenvalues

A general solution to the wave equation can be written

f (u,w) =
∑
m

eıKmu
∑
q

cq
(
Vq

)
m
eλqw

The eigenvalues will separate into two sets

{λ+| All λq such that <(λq) > 0}

{λ−| All λq such that <(λq) < 0}
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Assume Dirichlet boundary conditions on the field

ftot(u, 0) = 0

The field is written in terms on an incident wave and a reflected
field

ftot(u,w) = φ
(+)
m (u,w) + frefl(u,w)

The incident wave and be rewritten in the {u,w} coordinates

φ
(±)
m (u,w) = eıKmu±λ̃m(w+h(u))

=
∑
m′

eıKm′uLm
′(±)

m e±λ̃mw

where

Lm
′(±)

m =

∫
due−ıGm′−mu±λ̃mh(u) and λ̃m =

√
κ2 + K2

m
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Assume Dirichlet boundary conditions on the field

ftot(u, 0) = 0

The field is written in terms on an incident wave and a reflected
field

ftot(u,w) = φ
(+)
m (u,w) + frefl(u,w)

The reflected wave is written with eigenvalue from {λ−}

frefl(u,w) =
∑
m′

eıKm′u
∑

q∈{λ−}

cmq

(
Vq

)
m′
eλqw ,
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Assume Dirichlet boundary conditions on the field

ftot(u, 0) = 0

The field is written in terms on an incident wave and a reflected
field

ftot(u,w) = φ
(+)
m (u,w) + frefl(u,w)

The reflected wave is written with eigenvalue from {λ−}

frefl(u,w) =
∑
m′

eıKm′u
∑

q∈{λ−}

cmq

(
Vq

)
m′
eλqw ,

The boundary condition yields a linear system of equation for cmq∑
q∈{λ−}

cmq

(
Vq

)
m′

= −Lm
′(+)

m
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The Rayleigh coefficients can by comparing the Rayleigh expansion

frefl(u,w) =
∑
m′′

Rmm′′φ
(−)
m′ (u,w)

With the eigenvector expansion

frefl(u,w) =
∑
m′

eıKm′u
∑

q∈{λ−}

cmq

(
Vq

)
m′
eλqw ,

For all q where we can make the identification

λq ≈ −
√
κ2 + K2

m′′ and
(
Vq

)
m′
∝ Lm

′(−)
m′′

The Rayleigh coefficients are

Rmm′′ = cmq

(
Vm

)
m

Lm(−)
m
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The Rayleigh coefficients can by comparing the Rayleigh expansion

frefl(u,w) =
∑
m′

eıKm′u
∑
m′′

Rmm′′L
m′(−)
m′′ e−λ̃m′′w

With the eigenvector expansion

frefl(u,w) =
∑
m′

eıKm′u
∑

q∈{λ−}

cmq

(
Vq

)
m′
eλqw ,

For all q where we can make the identification

λq ≈ −
√
κ2 + K2

m′′ and
(
Vq

)
m′
∝ Lm

′(−)
m′′

The Rayleigh coefficients are

Rmm′′ = cmq

(
Vm

)
m

Lm(−)
m
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Function RayleighCoefficient( κ, kx , h(x), N)

Form N × N matrices for eigenvalue problem

Solve eigenvalue problem

Use eigenvectors to solve boundary conditions for cmq

Find all indices q where eigenvalues match expected

Return matched indices {q}, and Rayleigh Coefficients

Function LogDet( κ, kx , h(x), d , N)

({q},R) = RaylieghCoefficient

Use {q} to calculates U
Form N =

(
I− RU

)
Take ln detN

Function Ecas( h(x), d , N )

Numerically Integrate LogDet over κ and kx

Wagner et al C-Method for Casimir
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The test system is a sinusoidal grating and a flat plate

Three parameters:

Amplitude a

Average separation d

Wavelength Lx

Two dimensionless paramters:

a/Lx

d/Lx

Wagner et al C-Method for Casimir
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The energy should converge exponentially as the number of Fourier
modes kept is increased
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There are two analytic approximations to compare to
The Proximity Force Approximation

EPFA

LyLx
= −

π2

1440

2d2 + a2

2(d2 − a2)5/2
.

Emig’s perturbative approximation

EEmig

LyLx
= −

π2

1440

1

d3
−

a2

d5
GTM

(
d

Lx

)
.

Wagner et al C-Method for Casimir



Scattering
C Method

Numerical Results
Perturbative Expansion

Conclusion

Algorithm
Test System
Results

The following plots follow the red paths through parameters space
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d/Lx = 0.1
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d/Lx = 0.5
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d/Lx = 2.0
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For small amplitudes (h(x) small) it is possible to solve the
eigenvalue problem perturbatively.

λ2
q(I− B2)Vq + λqB1Vq − A0Vq = 0

The matrices are

B2 = Gh · Gh O(h2)

B1 = (K · Gh + Gh ·K) O(h)

A0 = (Iκ2 + K ·K) O(1)

Following standard perturbation theory

λ =
∑
i

λ(i) and V =
∑
i

V(i)

where the superscript (i) denotes the order of the expression.
Wagner et al C-Method for Casimir
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Perturbative Expansion

λ
(0)
q = −

√
κ2 + K2

q

λ
(1)
q = KqG0h0

λ
(2)
q = λ

(0)
q Kq

∑
m

|hm−q |2Gm−q

(
V

(0)
q

)
m

= δqm(
V

(1)
q

)
m

= λ
(0)
q hm−q

(
V

(2)
q

)
m

=
(λ

(0)
q )2

2

∑
m′

hm−m′hm′−q−

(λ
(0)
q )2

2

∑
m′

hm−m′hm′−q

Gm+q−2m′

Gm−q

Rayleigh Expansion

−λ̃m = −
√
κ2 + K2

m

Lm
′(±)

m =
∑
i

Lm
′(±)(i)

m

Lm
′(±)(i)

m =
(∓λ(0)

m )i

i!

∫
du e−ıGm′−muhi (u)

Lm
′(±)(0)

m = δmm′

Lm
′(±)(1)

m = ∓λ(0)
m hm′−m

Lm
′(±)(2)

m =
(λ

(0)
m )2

2

∑
m′′

hm′−m′′hm′′−m
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In the large N limit the perturbative solution (through second
order) matches the Rayleigh expansion.
We can now proceed using only the Rayleigh expansion∑

m′′

Rmm′′L
m′(−)
m′′ = −Lm

′(+)
m

This is equivalent to the Rayleigh hypothesis? The first few
reflection coefficients are

R(0)
mm′ = −δmm′

R(1)
mm′ = 2λ

(0)
m hm′−m

R(2)
mm′ = 2λ

(0)
m

∑
m′′

λ
(0)
m′′hm′−m′′hm′′−m
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The zeroth order term gives the Casimir energy for flat plates

E (0)

LyLx
= − π2

1440

1

d3

The first correction only depends on the average h0

E (1)

LyLx
= − π2

480

h0

d4

The second term depends explicitly on radio d/Lx

E (2)

LyLx
= − π2

240

∑
m

|hm|2

d5
J(4πmd/Lx)

This is NOT the same expression from Emig (and Prachi).
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The J function is explicitly given by

J(A) =
15

4π4

∫ ∞
0
dz

z2e−z

1− e−z

∫ 1

−1
dx

√
z2 + A2 + 2zAx

1− e−
√
z2+A2+2zAx

J(0) = 1

J(x) ∼ x/4

For Large x
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Conclusions

Scattering method allows us to leverage existing techniques
(such as the C method) for Casimir calculations

I get converged results for a wide range of parameters

Perturbatively the C method is equivalent the Rayleigh
hypothesis

I do not agree with Emig’s approximation either numerically
or perturbatively

I would like to thank Kim, Prachi, Elom, and Nima for letting me
discuss this work when it was first starting. I would also like to
thank Steve for inviting me and hosting this conference.
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