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Introduction

We continue our analytic investigation of regimes

in which repulsive Casimir and Casimir-Polder

forces can occur. Previously we had considered

the interaction between a polarizable atom and a

wedge, and showed that repulsion occurs if the

atom is sufficiently anisotropic and close enough

to the symmetry plane of the wedge.
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Introduction (contd.)

Now we we are considering the interaction
between such an atom and two facing wedges,
which includes as a special case the the
interaction of an atom with a conducting screen
possessing a slit. Three body effects are shown
to be small.
We are also considering the Casimir-Polder
interaction between an atom and a conducting
screen containing a circular aperture. We are
examining the interaction of a atom with a
conducting ellipsoid. Finally, we are considering
whether such highly anisotropic atoms needed
for repulsion are practically realizable. QV125/17-18/12 – p.3/54



CP repulsion between atoms

The interaction between two polarizable atoms,
described by general polarizabilities α1,2, with
the relative separation vector given by r is

UCP = − 1

4πr7

[

13

2
Tr α1 · α2 − 28 Tr(α1 · r̂)(α2 · r̂)

+
63

2
(r̂ · α1 · r̂)(r̂ · α2 · r̂)

]

.

This formula is easily rederived by the multiple

scattering technique. In the isotropic case, αi =

αi1, UCP → − 23
4πr7α1α2.
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Anisotropic atoms

Suppose the two atoms are only polarizable in
perpendicular directions, α1 = α1ẑẑ, α2 = α2x̂x̂,
as shown in the figure. Choose atom 2 to be at
the origin.
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α1

z
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r
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Force on atom

Then, in terms of the polar angle cos θ = z/r, the
z-component of the force on atom 1 is

Fz = −63

8π

α1α2

x8
sin10 θ cos θ(9 − 11 sin2 θ).

Here, for motion for fixed x = r sin θ, in the y = 0

plane. Evidently, the force is attractive at large

distances, vanishing as θ → 0, but it must change

sign at small values of z for fixed x, since the en-

ergy also vanishes as θ → π/2. Fz = 0 when

sin θ = 3/
√

11 or 25◦ from the x axis.
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Anisotropy required

No repulsion occurs if one of the atoms is
isotropically polarizable. If both have cylindrically
symmetric anisotropies, but with respect to
perpendicular axes,

α1 = (1−γ1)α1ẑẑ+γ1α11, α2 = (1−γ2)α2x̂x̂+γ2α21,

it is easy to check that, if both are sufficiently

anisotropic, repulsion will occur. For example, if

γ1 = γ2 repulsion in the z direction will take place

close to the plane z = 0 if γ ≤ 0.26.
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Shajesh and Schaden

Shajesh and Schaden a rederived these results,

and then went on to extend the calculation to

Casimir-Polder repulsion by an anisotropic dilute

dielectric sheet with a circular aperture. The au-

thors quite correctly point out that the statement in

our first Repulsion paper, that no repulsion is pos-

sible in the weak-coupling regime, is erroneous;

all that is required is anisotropy.
aShajesh and Schaden, Phys. Rev. A 85, 012523 (2012).

QV125/17-18/12 – p.8/54



Atom above aperture

We consider an anisotropic polarizable atom
directly above a tenuous anisotropic slab
containing a circular aperture, as shown in the
figure.

•

2a

Z

α

ε t
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Anisotropic atom

Here we assume that the atom is only
polarizable in the z direction,

α1 = α1ẑẑ,

while the slab is composed of atoms only
transversely polarizable,

α2 = α2(x̂x̂ + ŷŷ).

For atom 1 at (0, 0, Z), and atom 2 at (ρ, 0, z)

UCP = −63α1α2

8πr7

(

Z − z

r

)2
(ρ

r

)2

,
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Integration over slab

which when integrated over the slab made up of
the type-2 atoms gives the quantum interaction
energy

E = −63α1α2n2

8π

∫ ∞

a

dρρ

∫ 2π

0

dθ

∫ t/2

−t/2

dz
(Z − z)2ρ2

[(Z − z)2 + ρ2]11/2

= −63α1α2n2

2a4
[e(Z/a + t/2a) − e(Z/a − t/2a)] ,

where n2 is the number density of atoms, and

e(x) =
x3

5

15 + 14x2 + 4x4

(1 + x2)7/2
.
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Repulsion

Such an atom sufficiently close to the aperture
experiences a repulsive force. Define a
dimensionless parameter δ that measures the
height of the atom above the top of the aperture,

Z =
t

2
+ aδ.

For a thick slab, t/a ≫ 1, it is easy to check that
that the force changes sign very close to the
opening of the aperture,

δ =

√
2

3

(

t

a

)−5/2

;
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Thick and thin slabs

for example, when t/a = 10, δ = 1.5×10−3. When

the slab is very thin, t/a ≪ 1, the value of δ for

which repulsion sets in becomes independent of

t/a, δ = 0.5566, which agrees with the result of

Shajesh and Schaden.
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3-body CP interaction

In the following we consider a polarizable atom

between parallel conducting planes. We first de-

velop the three-body interaction formalism, follow-

ing Schaden and Shajesh, and then use it to show

that the CP 3-body terms are very small.
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Three-body Casimir Energy

The multiple scattering formulation has proved ex-

ceptionally useful in computing Casimir energies

for complex configurations. It is usually presented

in terms of potentials, where the potential stands

in for the deviation of the permittivity from its vac-

uum value, for instance. Here, however, we wish

from the outset to consider perfect conductors, so

we wish to give the formulation entirely in terms

of scattering matrices. In particular, we wish to

analyze three-body effects.
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Quantum Vacuum Energy

The quantum vacuum energy is in general given
by

E =
i

2
Tr lnΓΓ−1

0 ,

where Γ0 is the free Green’s dyadic, which, for a
given frequency ω, can be written as

Γ0(r, r
′) = (1ω2 + ∇∇)G(|r − r′),

in terms of the Helmholtz Green’s function

G(R) =
ei|ω|R

4πR
, R = |r − r′|.
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Differential equation

The full Green’s dyadic Γ satisfies the same
differential equation as the free Green’s dyadic,

Γ−1
0 Γ = 1,

where

Γ−1
0 =

1

ω2
∇ × ∇ ×−1.

Here we have adopted a matrix notation for both
the tensor indices and the spatial coordinates, so

1 = 1δ(r − r′),

where on the right 1 refers to the tensor indices.QV125/17-18/12 – p.17/54



Perfectly conducting boundaries

The conducting surfaces S appear through
boundary conditions on the Green’s dyadic,

n̂ × Γ

∣

∣

∣

S
= 0,

where n̂ is the outward normal to the surface at
the point in question.
Now we may define the scattering operator T by

Γ = Γ0 + Γ0TΓ0,

so that
T = −Γ−1

0 + Γ−1
0 ΓΓ−1

0 .
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Three bodies

Now we turn to the quantum interaction of three
bodies. It seems easiest to start with the
situation where the bodies may be described by
potentials Vi, i = 1, 2, 3, and then write the result
in a form in which only the T operators appear,
so it applies to the conducting boundary problem.
The total potential is V = V1 + V2 + V3, and the
vacuum energy is given by the trace-log of

ΓΓ−1
0 = (1 − Γ0V)−1,

or

E = − i

2
Tr ln(1 − Γ0V).
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Isolating three-body terms

Now it is easy to see that

1 − Γ0(V1 + V2 + V3) = (1 − Γ0V1 − Γ0V2)

×
[

1 − (1 − Γ1V2)
−1Γ1V2Γ1V3(1 − Γ1V3)

−1
]

×(1 − Γ0V1)
−1(1 − Γ0V1 − Γ0V2).

Here we have introduced the Green’s dyadic
belonging to potential i alone,

Γi = (1 − Γ0Vi)
−1Γ0.
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Modified scattering operator

Now in the above expression the pre- and
post-factors refer to only one- and two-body
interactions (the latter referring to interactions
between bodies 1 and 2, and 1 and 3,
respectively), so the two-body interactions
between 2 and 3, and three-body interactions are
all contained in the quantity in square brackets.
Now, in terms of the potential, the corresponding
scattering operator is

Ti = Vi(1 − Γ0Vi)
−1.

Modified scattering operator: T̃ = TΓ0.
QV125/17-18/12 – p.21/54



TGTG and Beyond

Using the cyclic property of the trace, we find the
two and three body terms:

E23 = − i

2
Tr ln(1 − T̃2T̃3), ,

which is the famous TGTG formula, and

E123 = − i

2
Tr ln

(

1 − X23

[

X21T̃2(1 + T̃1)X31T̃3

×(1 + T̃1) − T̃2T̃3

])

,

where Xij = (1 − T̃iT̃j)
−1. QV125/17-18/12 – p.22/54



Cf. Shajesh and Schaden

This is not written in as symmetrical a form as in

Shajesh and Schaden, a but is somewhat simpler,

particular for the Casimir-Polder applications that

follow, where body 1 represents the atom, so is

treated weakly.
aK. V. Shajesh and M. Schaden, Phys. Rev. A 83, 125032 (2011).
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Atom between‖ conducting plates

Here we consider an anisotropically polarizable
atom between parallel conducting plates, a
geometry first considered by Barton. a From the
Green’s dyadic Γ for parallel plates, is inserted
into the general Casimir-Polder formula

ECP = −
∫ ∞

−∞
dζ Tr α · Γ, ω → iζ,

aG. Barton, Proc. Roy. Soc. London A 410, 141 (1987).
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Full CP intreraction

The result of the straightforward calculation is, for
one conducting plate at z = 0, one at z = a, and
the atom at z = Z, 0 < Z < a,

E =
α11 + α22 − α33

4πa4
ζ(4)

− tr α

8πa4

[

ζ

(

4,
Z

a

)

+ ζ

(

4, 1 − Z

a

)]

in terms of the Hurwitz zeta function.
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Isolation of 2- and 3-body effects

Here the two-body interactions between the atom
and one or the other plate are isolated by
extracting the parts singular as z → a or z → 0:

ζ(4, Z/a) =
( a

Z

)4

+ ζ(4, 1 + Z/a),

ζ(4, 1 − Z/a) =

(

a

a − Z

)4

+ ζ(4, 2 − Z/a).
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2- and 3-body terms

The total Casimir-Polder energy is the sum of
two-body and three-body terms, (1 = atom)

E = E12 + E13 + E123,

E12 = − tr α

8πZ4
, E13 = − tr α

8π(a − Z)4
,

E123 =
α11 + α22 − α33

4πa4
ζ(4)

− tr α

8πa4

[

ζ

(

4, 1 +
Z

a

)

+ ζ

(

4, 2 − Z

a

)]

.
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3-body interaction small

Note that the first term here is independent of

Z, so it does not contribute to the Casimir-Polder

force on the atom, but is a Casimir-Polder correc-

tion to the Casimir force between the plates. The

two-body energies overwhelmingly dominate the

Casimir-Polder interaction, as shown in the fig-

ure. For isotropic atoms, the largest three body

correction is only 0.6% at the midpoint between

the plates, where the energy is very small.
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r = E123/(E12 + E13)
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Figure 1: Three-body contributions to the
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Multiple-scattering calculation

Since in more general situations we do not have
an exact solution available, we want to calculate
the three-body corrections using the
multiple-scattering formula. For this purpose, we
need to compute the scattering operators for the
three bodies.
For the atom, this is easy:

T1(r, r
′) = V1(r, r

′) = 4παδ(r − R)δ(r − r′),

where R = (0, 0, Z) is the position of the atom.
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Free Green’s dyadic

The free electromagnetic Green’s dyadic can be
written as

Γ0(r − r′) =

∫

(dk⊥)

(2π)2
eik⊥·(r−r

′)⊥γ0(z, z′),

where

γ0(z, z′) = (E + H)
1

2κ
e−κ|z−z′|,

with the usual abbreviation κ =
√

k2 + ζ2.
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T̃ for atom

Here E and H are matrices corresponding to the
transverse electric (TE) and transverse magnetic
(TM) modes,

E

−ζ2
=







s2 −cs 0

−cs c2 0

0 0 0






,H =







c2∂z∂z′ cs∂z∂z′ ikc∂z

cs∂z∂z′ s2∂z∂z′ iks∂z

−ikc∂z′ −iks∂z′ k2







here k2 = k2
⊥ and c (s) is the cosine (sine) of the

angle between the direction of k⊥ and the x-axis,

c = kx/k, s = ky/k.
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T̃ for atom

Thus the reduced modified scattering operator
for the atom is

t̃1(z, z′) = 4παδ(z − Z)(E + H)(Z, z′)
1

2κ
e−κ|Z−z′|.
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Properties ofE and H

The following composition properties of the E

and H operators are easily checked:

EH = 0,

EE = −ζ2E,

H(z, z′)H(z′′, z′′′) = (k2 + ∂z′∂z′′)H(z, z′′′).
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Reduced Green’s dyadic for plate

For a single plate, say a conducting plate 2 at
z = 0, we have the reduced Green’s dyadic in the
form

γ = EgE + HgH ,

where

gE,H(z, z′) = g0(z, z′) ± 1

2κ
e−κ(|z|+|z′|),

g0(z, z′) =
1

2κ
e−κ|z−z′|.
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T̃ for plate

Then the modified scattering operator is

t̃2(z, z′) = γ
−1
0 (γ − γ0)(z, z′).

This is evaluated by using
(

− d2

dz2
+ κ2

)

e−κ|z| = 2κδ(z).

Thus the scattering operator for a conducting
plate at z = 0 is

t̃2(z, z′) =
1

ζ2
(E − H)(z, z′)δ(z)e−κ|z′|.
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Atom-plate interaction

Let us check this by computing the CP interaction
between an atom and a single conducting plate,

E12 =
i

2
Tr T̃1T̃2

= −1

2

∫ ∞

−∞

dζ

2π

∫

(dk⊥)

(2π)2
4π tr α

∫

dz dz′δ(z − Z)

×(E + H)(z, z′)
e−κ(z−z′)

2κ

(E − H)(z′, z)

ζ2
δ(z′)e−κz.

Because k2 + ∂z′∂z′′ → −ζ2 we have

(E + H)(E − H) = −ζ2(E − H).
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CP interaction

Now when we carry out the integration over
transverse momentum the off-diagonal terms
integrate away, and s2, c2 → 1

2 , cs → 0.

E12 =
1

2π

∫ ∞

0

dκ κ2 d cos θ
e−2κZ

2κ
tr α

[







−ζ2

2 0 0

0 −ζ2

2 0

0 0 0







−







κ2

2 0 0

0 κ2

2 0

0 0 k2







]

.
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Usual 2-body CP energy

Here θ is the polar angle in the three-dimensional
space (kx, ky, ζ), so when that angle is integrated
over, we have the replacements

ζ2 → 2

3
κ2, k2 → 4

3
κ2, κ2 → 2κ2,

with the expected result:

E12 = − tr α

8πZ4
.
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ECP for atom and two plates

The three-body interaction is worked out in a
very similar manner. We start by simplifying the
multiple-scattering formula for the case when
there is only one interaction with the atom, since
that coupling is always weak:

E123 =
i

2
Tr X23

(

T̃2T̃1T̃2T̃3 + T̃2T̃3T̃1T̃3

+ T̃2T̃1T̃3 + T̃2T̃3T̃1

)

.
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TE contribution

Let’s look at the E and H parts separately. For
the TE part,

X23E = E
1

1 − e−2κa
δ(z),

so

ETE
123 =

1

4π2

∫

dζ (dk⊥) tr α

(

−E

ζ2

)

e−2κa

1 − e−2κa

(

− ζ2

2κ

)

×
[

e−2κZ + e−2κ(a−Z) − 2
]

,
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TE contribution continued

where integrating over the directions of k⊥ gives
for the trace

tr α

(

−E

ζ2

)

→ 1

2
(α11 + α22).

Thus the TE contribution is

ETE
123 = −α11 + α22

12π

∫ ∞

0

dκ κ3

[

−2 + e−2κZ + e−2κ(a−Z)
]

e2κa − 1

=
α11 + α22

32πa4

[

2ζ(4) − ζ

(

4, 1 +
Z

a

)

− ζ

(

4, 2 − Z

a

)]
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TM contribution

The TM contribution is similarly worked out, with
the result ETM

123 =

=
1

2π

∫ ∞

0

dκ κ3

e2κa − 1

{

α11 + α22

2

[

2 − e−2κZ − e2κ(a−Z)
]

+
2

3
α33

[

e−2κZ + e−2κ(a−Z) + 2
]

}

=
3(α11 + α22)

32πa4

[

2ζ(4) − ζ

(

4, 1 +
Z

a

)

− ζ

(

4, 2 − Z

a

)]

− α33

8πa4
[2ζ(4) + ζ(4, 1 + Z/a) + ζ(4, 2 − Z/a)] .

Adding this to the TE contribution gives E123.QV125/17-18/12 – p.43/54



CP force due to facing wedges

Last year we showed results for the CP interac-

tion between an anisotropic atom and a single

wedge. More interesting is the case of two fac-

ing wedges which includes the case of two half-

planes separated by a rectangular gap. We ex-

pect that the three-body correction to the known

two-body forces are small. The calculation is in

progress.
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Two-body atom-wedge (p = π/Ω)

Γ(r, r′) = 2p
∞

∑

m=0

′
∫

dk

2π

[

− MM
′∗(∇2

⊥ − k2)

× 1

ω2
Fmp(ρ, ρ′)

cos mpθ cos mpθ′

π
eik(y−y′)

+ N N
′∗ 1

ω
Gmp(ρ, ρ′)

sin mpθ sin mpθ′

π
eik(y−y

M = ρ̂
∂

ρ∂θ
− θ̂

∂

∂ρ
,

N = ik

(

ρ̂
∂

∂ρ
+ θ̂

∂

ρ∂θ

)

− ŷ∇2
⊥.
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Free reduced Green’s functions

In this situation, the boundaries are entirely in
planes of constant θ, so the radial Green’s
functions are equal to the free Green’s function

1

ω2
Fmp(ρ, ρ′) =

1

ω
Gmp(ρ, ρ′) = − iπ

2λ2
Jmp(λρ<)H(1)

mp(λρ>)

We will immediately make the Euclidean ro-

tation, ω → iζ, where λ → iκ, κ2 =

ζ2 + k2, so the free Green’s functions become

−κ−2Imp(κρ<)Kmp(κρ>).

QV125/17-18/12 – p.46/54



Repulsion by a wedge

X

•ρ

β

θ

φ

We want the z axis to be perpendicular to the

symmetry axis of the wedge where, as before, θ

is the angle relative to the top surface of the We

consider a strongly anisotropic atom, with only αzz

significant, to the left of a wedge of opening angle

β = 2π − Ω. How does repulsion depends on β?
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Dependence on wedge angle

Write for an atom on the line x = −X

U zz
CP = −αzz(0)

8πX4
V (φ),

where

V (φ) = cos4 φ

[

p4

sin4 π
2

φ−β/2
π−β/2

− 2

3

p2(p2 − 1)

sin2 π
2

φ−β/2
π−β/2

+
1

45
(p2 − 1)(p2 + 11) cos 2φ

]

.
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Vanishing of energy?

At the point of closest approach,

V (π) =
1

45
(4p2 − 1)(4p2 + 11),

so the potential vanishes at that point only for the

half-plane case, p = 1/2.

QV125/17-18/12 – p.49/54



Fz

Fz = −αzz

8π

1

X5
cos2 φ

∂V (φ)

∂φ
.

The figure shows the force as a function of φ for

fixed X. It will be seen that the force has a repul-

sive region for angles close enough to the apex

of the wedge, provided that the wedge angle is

not too large. The critical wedge angle is actu-

ally rather large, βc = 1.87795, or about 108◦. For

larger angles, the z-component of the force ex-

hibits only attraction.
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Fz for β ∈ [0, π]
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-0.1

0.0
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3-body forces due to facing wedges

We can use the above formalism to describe the

three-body correction to the CP force on an atom

passing along the symmetry line between fac-

ing, nonoverlapping, wedges. The two-body ef-

fect would be exactly twice that due to one wedge.

The three-body correction can be computed from

the T̃ matrix for a single wedge, which is
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T̃ for wedge

T̃ (r, r′) = 2p
∞

∑

m=0

′
∫

dk2π

[

E

ζ2

1

ρ2

(

1

κ2
Imp(κρ<)Kmp(κρ>)

×1

π
[δ′(θ) − (−1)mδ′(θ − Ω)] cos pθ′

+
H

ζ2

1

ρ2

(

− 1

κ2
Imp(κρ<)Kmp(κρ>)

)

×mp

π
[δ(θ) − (−1)mδ(θ − Ω)] sin pθ′

]

eik(z−z′).

Here E = MM
′∗(∇2

⊥ − k2), H = N N
′∗.
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Conclusion

Casimir and Casimir-Polder repulsion can
occur in anisotropic geometries.

Three-body effects are expected, generically,
to be small.

This is demonstrated in a rather trivial
example, the interaction of an atom with two
parallel planes.

Thus a gap between two conducting wedges,
or two conducting half planes, should give rise
to repulsion on a sufficiently anisotropic atom,
since a single wedge leads to such repulsion.
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