The Breakdown of the Coherent State Path Integral

Justin H.Wilson
Advisor:Victor Galitski
University of Maryland, College Park, MD

Presentation Based on:
PRL I06, I I 040 I (201I)
Preprint: arXiv: 1012.1328

Introduction

\sim Path integrals have a jaded mathematical history.
\checkmark Semiclassics have produced incorrect results (fixed with the discovery of a phase anomaly).
ω We will find that we get quantitatively wrong results with an exact calculation.
ω We try to fix this a posteriori.
\checkmark Nothing incorrect appears when the Hamiltonian is a linear sum of generators of the Lie algebra

Glauber coherent states are an

 over-complete set of states.$$
\mathfrak{h}_{4}=\left\{1, a, a^{\dagger}, a^{\dagger} a\right\} \quad\left[a, a^{\dagger}\right]=1
$$

$$
\begin{gathered}
|z\rangle=e^{-|z|^{2} / 2} e^{z a^{\dagger}}|0\rangle \\
a|z\rangle=z|z\rangle \quad \int \frac{\mathrm{d}^{2} z}{\pi}|z\rangle\langle z|=1
\end{gathered}
$$

Partition function/Path integral

$$
\mathcal{Z}=\operatorname{tr} e^{-\beta H}=\int \mathcal{D}^{2} z \exp \left\{-\int_{0}^{\beta}\left[z^{*} \dot{z}+\langle z| H|z\rangle\right]\right\}
$$

The single-site Bose-Hubbard model can be written in terms of a Hamiltonian or a path integral.
\triangle Hamiltonian: $\quad H=-\mu \hat{n}+\frac{U}{2} \hat{n}(\hat{n}-1)$
\checkmark Partition Function:

$$
\mathcal{Z}=\operatorname{tr} e^{-\beta H} \stackrel{?}{=} \int \mathcal{D}^{2} z e^{-\int_{o}^{\beta} \mathrm{d} \tau\left[z^{*} \dot{z}-\mu|z|^{2}+\frac{U}{2}|z|^{4}\right]}=: \mathcal{Z}^{\prime}
$$

The evaluation of the path integral...

$$
\begin{aligned}
& \mathcal{Z}^{\prime}:=\int \mathcal{D}^{2} z e^{-\int_{0}^{\beta} \mathrm{d} \tau\left[z^{*} \dot{z}-\mu|z|^{2}+\frac{U}{2}|z|^{4}\right]} \\
& z=\sqrt{n} e^{i \theta} \quad \mathcal{D}^{2} z=\mathcal{D} n \mathcal{D} \theta \\
& \mathcal{Z}^{\prime}=\int \mathcal{D} n \mathcal{D} \theta e^{-\int_{0}^{\beta} \mathrm{d} \tau\left[i n \dot{\theta}-\mu n+\frac{U}{2} n^{2}\right]}
\end{aligned}
$$

Integrate by parts
$\mathcal{Z}^{\prime}=\int \mathcal{D} n \mathcal{D} \theta e^{-i(n(\beta) \theta(\beta)-n(0) \theta(0))-\int_{0}^{\beta} \mathrm{d} \tau\left[-i \dot{n} \theta-\mu n+\frac{U}{2} n^{2}\right]}$

$$
\begin{gathered}
\mathcal{Z}^{\prime}=\int \mathcal{D} n \mathcal{D} \theta e^{-i(n(\beta) \theta(\beta)-n(0) \theta(0))-\int_{0}^{\beta} \mathrm{d} \tau\left[-i \dot{n} \theta-\mu n+\frac{U}{2} n^{2}\right]} \\
n(\beta)-n(0)=0 \\
\theta(\beta)-\theta(0)=2 \pi k \\
\mathcal{Z}^{\prime}=\sum_{k} \int \mathcal{D} n \mathcal{D} \theta e^{-i 2 \pi k n(0)+i \int_{0}^{\beta} \theta \dot{n}-\int_{0}^{\beta} \mathrm{d} \tau\left[-\mu n+\frac{U}{2} n^{2}\right]} \\
\int \mathcal{D} \theta(\tau) e^{-i \int_{0}^{\beta} \mathrm{d} \tau f(\tau) \theta(\tau)}=\delta(f) \\
\mathcal{Z}^{\prime}=\sum_{k} \int \mathcal{D} n \delta(\dot{n}) e^{-i 2 \pi k n(0)-\int_{0}^{\beta} \mathrm{d} \tau\left[-\mu n+\frac{U}{2} n^{2}\right]}
\end{gathered}
$$

$$
\begin{gathered}
\mathcal{Z}^{\prime}=\int \mathcal{D} n \mathcal{D} \theta e^{-i(n(\beta) \theta(\beta)-n(0) \theta(0))-\int_{0}^{\beta} \mathrm{d} \tau} \downarrow \\
\begin{array}{c}
n(\beta)-n(0)=0 \\
\theta(\beta)-\theta(0)=2 \pi k
\end{array} \\
\mathcal{Z}^{\prime}=\sum_{k} \int \mathcal{D} n \mathcal{D} \theta e^{-i 2 \pi k n(0)+i \int_{0}^{\beta} \theta \dot{n}-\int_{0}^{\beta} \mathrm{d} \tau\left[-\mu n+\frac{U}{2} n^{2}\right]} \\
\int \mathcal{D} \theta(\tau) e^{-i \int_{0}^{\beta} \mathrm{d} \tau f(\tau) \theta(\tau)}=\delta(f) \\
\mathcal{Z}^{\prime}=\sum_{k} \int \mathcal{D} n \delta(\dot{n}) e^{-i 2 \pi k n(0)-\int_{0}^{\beta} \mathrm{d} \tau\left[-\mu n+\frac{U}{2} n^{2}\right]}
\end{gathered}
$$

$$
\begin{gathered}
\mathcal{Z}^{\prime}=\int \mathcal{D} n \mathcal{D} \theta e^{-i(n(\beta) \theta(\beta)-n(0) \theta(0))-\int_{0}^{\beta} \mathrm{d} \tau} \\
n(\beta)-n(0)=0 \\
\theta(\beta)-\theta(0)=2 \pi k \\
\mathcal{Z}^{\prime}=\sum_{k} \int \mathcal{D} n \mathcal{D} \theta e^{-i 2 \pi k n(0)+i \int_{0}^{\beta} \theta \dot{n}-\int_{0}^{\beta} \mathrm{d} \tau\left[-\mu n+\frac{U}{2} n^{2}\right]} \\
\mathcal{Z}^{\prime}=\sum_{k} \int \mathcal{D} \theta(\tau) e^{-i \int_{0}^{\beta} \mathrm{d} \tau f(\tau) \theta(\tau)}=\delta(f)
\end{gathered}
$$

$$
\begin{gathered}
\mathcal{Z}^{\prime}=\int \mathcal{D} n \mathcal{D} \theta e^{-i(n(\beta) \theta(\beta)-n(0) \theta(0))-\int_{0}^{\beta} \mathrm{d} \tau} \\
n(\beta)-n(0)=0 \\
\theta(\beta)-\theta(0)=2 \pi k \\
\mathcal{Z}^{\prime}=\sum_{k} \int \mathcal{D} n \mathcal{D} \theta e^{-i 2 \pi k n(0)+i \int_{0}^{\beta} \theta \dot{n}-\int_{0}^{\beta} \mathrm{d} \tau\left[-\mu n+\frac{U}{2} n^{2}\right]} \\
\mathcal{Z}^{\prime}=\sum_{k} \int \mathcal{D} \theta(\tau) e^{-i \int_{0}^{\beta} \mathrm{d} \tau f(\tau) \theta(\tau)}=\delta(f)
\end{gathered}
$$

$$
\begin{gathered}
\mathcal{Z}^{\prime}=\int \mathcal{D} n \mathcal{D} \theta e^{-i(n(\beta) \theta(\beta)-n(0) \theta(0))-\int_{0}^{\beta} \mathrm{d} \tau\left[-i \dot{n} \theta-\mu n+\frac{U}{2} n^{2}\right]} \\
n(\beta)-n(0)=0 \\
\theta(\beta)-\theta(0)=2 \pi k \\
\mathcal{Z}^{\prime}=\sum_{k} \int \mathcal{D} n \mathcal{D} \theta e^{-i 2 \pi k n(0)+i \int_{0}^{\beta} \theta \dot{n}-\int_{0}^{\beta} \mathrm{d} \tau\left[-\mu n+\frac{U}{2} n^{2}\right]} \\
\int \mathcal{D} \theta(\tau) e^{-i \int_{0}^{\beta} \mathrm{d} \tau f(\tau) \theta(\tau)}=\delta(f) \\
\mathcal{Z}^{\prime}=\sum_{k} \int \mathcal{D} n \delta(\dot{n}) e^{-i 2 \pi k n(0)-\int_{0}^{\beta} \mathrm{d} \tau\left[-\mu n+\frac{U}{2} n^{2}\right]}
\end{gathered}
$$

$$
\mathcal{Z}^{\prime}=\sum_{k} \int \mathcal{D} n \delta(\dot{n}) e^{-i 2 \pi k n(0)-\int_{0}^{\beta} \mathrm{d} \tau\left[-\mu n+\frac{U}{2} n^{2}\right]}
$$

$n(t)$ is a constant in time

$$
\mathcal{Z}^{\prime}=\sum_{k} \int_{0}^{\infty} \mathrm{d} x e^{-i 2 \pi k x-\beta\left[-\mu x+\frac{U}{2} x^{2}\right]}
$$

$$
n(t)=x \geq 0
$$

$$
\mathcal{Z}^{\prime}=\sum_{n} \int_{0}^{\infty} \mathrm{d} x \delta(x-n) e^{-\beta\left[-\mu x+\frac{U}{2} x^{2}\right]}
$$

$$
\mathcal{Z}^{\prime}=\sum_{n} e^{\beta \mu n-\beta \frac{U}{2} n^{2}}
$$

They are not the same expression.

$$
\begin{gathered}
U \gg 1 \\
\mathcal{Z}^{\prime}=\sum_{n=0}^{\infty} e^{\beta \mu n-\beta \frac{U}{2} n^{2}} \sim 1+e^{\beta \mu} e^{-\beta U / 2}+\cdots \\
\mathcal{Z}=\sum_{n=0}^{\infty} e^{\beta \mu n-\beta \frac{U}{2} n(n-1)} \sim 1+e^{\beta \mu}+e^{2 \beta \mu} e^{-\beta U}+\cdots \\
\Longrightarrow \quad \mathcal{Z} \neq \mathcal{Z}^{\prime}
\end{gathered}
$$

This is a new issue.

$$
Z^{\prime}:=\int \mathcal{D}^{2} z e^{-\int_{0}^{\beta}\left[z^{*} \dot{z}-\mu|z|^{2}+\frac{U}{2}|z|^{4}\right]}:=\operatorname{tr} e^{-\beta H^{\prime}}
$$

\checkmark Semiclassics suggest ${ }^{3}$.4:

$$
H^{\prime}=H_{W}=-\mu \hat{n}+\frac{U}{2} \hat{n}(\hat{n}+1) \quad(U p \text { to a constant })
$$

ω Exact calculation suggests:

$$
H^{\prime}=-\mu \hat{n}+\frac{U}{2} \hat{n}^{2}
$$

\checkmark Original Hamiltonian:

$$
H=-\mu \hat{n}+\frac{U}{2} \hat{n}(\hat{n}-1)
$$

How to "fix" the path integral

$$
\mathcal{Z}=\int \mathcal{D}^{2} z e^{-\int_{0}^{\beta} \mathrm{d} \tau\left[z^{*} \dot{z}-\mu|z|^{2}+\frac{U}{2}|z|^{2}\left(|z|^{2}-1\right)\right]}
$$

Prescription:
 Replace operator n in Hamiltonian by $|z|^{2}$

Path integral used previously: $\quad Z^{\prime}:=\int \mathcal{D}^{2} e^{-\int_{0}^{\beta} \mathrm{d} \tau\left[z^{*} z-\mu|z|^{2}+\frac{U}{2}|z|^{4}\right]}$

How to "fix" the path integral

$$
\mathcal{Z}=\int \mathcal{D}^{2} z e^{-\int_{0}^{\beta} \mathrm{d} \tau\left[z^{*} \dot{z}-\mu|z|^{2}+\frac{U}{2}|z|^{2}\left(|z|^{2}-1\right)\right]}
$$

Equality when doing our exact calculation.

Prescription:

Replace operator n in Hamiltonian by $|z|^{2}$

Path integral used previously: $\quad Z^{\prime}:=\int \mathcal{D}^{2} e^{-\int_{0}^{\beta} \mathrm{d} \tau\left[z^{*} \dot{z}-\mu|z|^{2}+\frac{U}{2}|z|^{4}\right]}$

How to "fix" the path integral

$$
\mathcal{Z}=\int \mathcal{D}^{2} z e^{-\int_{0}^{\beta} \mathrm{d} \tau\left[z^{*} \dot{z}-\mu|z|^{2}+\frac{U}{2}|z|^{2}\left(|z|^{2}-1\right)\right]}
$$

Equality when doing our exact calculation.

Drawbacks:

Prescription:

Replace operator n in Hamiltonian by $|z|^{2}$

1. No a priori reason to suspect this.
2. Semiclassics give the wrong result.

Path integral used previously: $\quad Z^{\prime}:=\int \mathcal{D}^{2} e^{-\int_{0}^{\beta} \mathrm{d} \tau\left[z^{*} \dot{z}-\mu|z|^{2}+\frac{U}{2}|z|^{4}\right]}$

The calculation works when the Hamiltonian is a linear sum of generators.

Same problem comes up in the spin coherent state path integral

$$
\text { e.g. } \quad H=S_{z}^{2} \quad \text { for spin-1 }
$$

Everything works out for Hamiltonians that are linear in generators of the algebra

$$
\begin{array}{lrl}
\text { e.g. } & H_{\mathrm{spin}} & =A S_{x}+B S_{y}+C S_{z}+D \\
H_{\mathrm{HO}} & =E+F a+F^{*} a^{\dagger}+G a^{\dagger} a
\end{array}
$$

Therefore, it always works for spin-1/2.

Conclusion

\checkmark Path integral breaks down by the exact calculation shown. This extends to other models (spin path integrals, general Bose Hubbard, etc.).
ω It works when the Hamiltonian is a linear sum of Lie algebra generators.
ω Agreement can be achieved by naively replacing the operator n by $|z|^{2}$ in the path integral.
\checkmark In the time discretized path integral (before any continuity assumption), everything works out OK.

