Distributions in Spaces with Thick Points II

Yunyun Yang

Louisiana State University

yyang18@math.lsu.edu

May 18, 2012

Yunyun Yang (Louisiana State University) Distributions in Spaces with Thick Points II

Preliminaries

We shall need to consider the differentiation of functions and distributions defined only on a smooth hypersurface Σ of \mathbb{R}^n . Naturally, if $(v_\alpha)_{1 \leq \alpha \leq n-1}$ is a local Gaussian coordinate system and f is defined on Σ then one may consider the derivatives $\partial f / \partial v_\alpha$, $1 \leq \alpha \leq n-1$. However, it is many times convenient and necessary to consider derivatives with respect to the variables $(x_j)_{1 \leq j \leq n}$ of the surrounding space \mathbb{R}^n . The δ -derivatives are defined as follows.

Definition

Suppose f is a smooth function defined in Σ and let F be any smooth extension of f to an open neighborhood of Σ in \mathbb{R}^n ; the derivatives $\partial F/\partial x_j$ will exist, but their restriction to Σ will depend not only on f but also on the extension employed. However, it can be shown that the formulas

$$\frac{\delta f}{\delta x_j} = \left(\frac{\partial F}{\partial x_j} - n_j \frac{dF}{dn} \right) \Big|_{\Sigma} , \qquad (1)$$

where $n = (n_j)$ is the normal unit vector to Σ and where $dF/dn = n_k \partial F/\partial x_k$ is the derivative of F in the normal direction.

Preliminaries

Fact

Delta derivatives $\delta f / \delta x_j$, $1 \le j \le n$, that depend only on f and not on the extension.

It can be shown that

$$\frac{\delta f}{\delta x_j} = \frac{\partial f}{\partial v_\alpha} \frac{\partial v_\alpha}{\partial x_j},\tag{2}$$

In this talk, we suppose now that the surface is \mathbb{S}^{n-1} , the unit sphere in \mathbb{R}^n . Let f be a smooth function defined in \mathbb{S}^{n-1} , that is, $f(\mathbf{w})$ is defined if $\mathbf{w} \in \mathbb{R}^n$ satisfies $|\mathbf{w}| = 1$. While (1) can be applied for any extension F of f, the fact that our surface is \mathbb{S} allows us to consider some rather natural extensions. In particular, there is an extension to $\mathbb{R}^n \setminus \{\mathbf{0}\}$ that is homogeneous of degree 0, namely,

$$F_0(\mathbf{x}) = f\left(\frac{\mathbf{x}}{r}\right) \,, \tag{3}$$

where $r = |\mathbf{x}|$. Since $dF_0/dn = 0$ we obtain

$$\frac{\delta f}{\delta x_j} = \left. \frac{\partial F_0}{\partial x_j} \right|_{\mathbb{S}} \,. \tag{4}$$

Preliminaries

$$\frac{\delta(\phi\psi)}{\delta x_j} = \phi \frac{\delta\psi}{\delta x_j} + \frac{\delta\phi}{\delta x_j}\psi, \qquad (5)$$

Lemma

$$\frac{\delta^T(\phi\psi)}{\delta x_j} = \phi \frac{\delta^T \psi}{\delta x_j} + \frac{\delta \phi}{\delta x_j} \psi, \qquad (6)$$

Proof.

$$\left\langle \frac{\delta^{T}(\phi\psi)}{\delta x_{j}},\zeta\right\rangle = -\left\langle \phi\psi,\frac{\delta\zeta}{\delta x_{j}}\right\rangle = -\left\langle \psi,\phi\frac{\delta\zeta}{\delta x_{j}}\right\rangle$$
$$= -\left\langle \psi,\frac{\delta(\phi\zeta)}{\delta x_{j}}-\frac{\delta\phi}{\delta x_{j}}\zeta\right\rangle = \left\langle \phi\frac{\delta^{T}\psi}{\delta x_{j}}+\frac{\delta\phi}{\delta x_{j}}\psi,\zeta\right\rangle.$$

Preliminaries

Thus

$$\frac{\delta^{T}\phi}{\delta x_{j}} = \frac{\delta^{T}(\phi \cdot 1)}{\delta x_{j}} = \phi \frac{\delta^{T}1}{\delta x_{j}} + \frac{\delta\phi}{\delta x_{j}},$$

And

$$\frac{\delta^T 1}{\delta x_j} = -(n-1) n_j$$

So

$$\frac{\delta^{\mathsf{T}} n_i}{\delta x_j} = \delta_{ij} - (n_i n_j) - (n-1)(n_i n_j) = \delta_{ij} - n - 1(n_i n_j)$$

$$\int_0^\infty \cos\left(2kx\right) dx.$$

Proof.

[1]

$$\int_0^\infty \cos(2kx) \, dx = \frac{1}{2} \int_{-\infty}^{+\infty} \cos(2kx) \, dx$$
$$= \frac{1}{2} \int_{-\infty}^{+\infty} e^{2ikx} \, dx$$
$$= \pi \delta(2k) = \frac{\pi}{2} \delta(k)$$

On the other hand,

Proof.

[2]

$$\int_0^\infty \cos(2kx) \, dx = \left. \frac{\sin(2kx)}{2k} \right|_{x=0}^\infty = \lim_{x \to \infty} \frac{\sin(2kx)}{2k}$$

By definition of a distribution, we must evaluate this limit on a test function, f(k), with support in $[0, \infty)$:

$$\lim_{x \to \infty} \int_0^\infty \frac{\sin(2kx)}{2k} f(k) dk = \lim_{x \to \infty} \int_0^\infty \frac{\sin(2kx)}{2k} f(k) dk,$$
$$= \frac{1}{2} f(0) \int_0^\infty \frac{\sin(u)}{u} du = \frac{\pi}{4} f(0).$$

So $\int_0^\infty \cos(2kx) dx = \frac{\pi}{4}\delta(k)$.

Solution

[Correction of proof 1]

$$\int_{0}^{\infty} \cos(2kx) dx = \frac{1}{2} \int_{-\infty}^{+\infty} \cos(2kx) dx$$
$$= \frac{1}{2} \int_{-\infty}^{+\infty} e^{2ikx} dx = \frac{1}{2} \mathcal{F}\{\widetilde{1}; 2k\},$$
$$= \pi \widetilde{\delta}(2k) = \frac{\pi}{2} \widetilde{\delta}(k).$$
(7)

Here

$$\int_{-\infty}^{+\infty} e^{2ikx} dx = \mathcal{F}\{\widetilde{1}; 2k\} = 2\pi \widetilde{\delta}(2k) = \pi \widetilde{\delta}(k).$$

is the Fourier transform of the funcion 1 in the space \mathcal{W}' and result in \mathcal{S}'_* , the thick point space. This result holds for k positive or negative.

Solution

[Correction of proof 2] As were pointed out, in solution 2, we have "secretly" multiplied H(k).

$$\lim_{x \to \infty} \int_{-\infty}^{+\infty} \left(\frac{\sin(2kx)}{2k} H(k) \right) f(k) \, dk = \lim_{x \to \infty} \int_{0}^{\infty} \frac{\sin(2kx)}{2k} f(k) \, dk$$

In fact if we want the result for k > 0, we need to apply the projection multiplication operator $M'_H : S'_* \to S'$:

$$H(k)\int_{0}^{\infty}\cos(2kx)\,dx = \frac{\pi}{2}M'_{H}\left(\widetilde{\delta}(k)\right) = \frac{\pi}{4}\delta(k) \tag{8}$$

Now the consistency of the results holds.

Definition

A function ϕ defined on \mathbb{R}^n is in $\mathcal{D}_{*,a}(\mathbb{R}^n)$ iff

$$\phi(\mathbf{a} + \mathbf{x}) = \phi(\mathbf{a} + r\mathbf{w}) \sim \sum_{J=N}^{\infty} a_J(\mathbf{w}) r^J$$

where N is an integer, and $\mathbf{w} \in \mathbb{S}^{n-1}$, $a_J(\mathbf{w}) \in \mathcal{D}(\mathbb{S}^{n-1})$. Moreover, we require the the asymptotic development to be "strong". Namely, for any differentiation operator $(\partial/\partial \mathbf{x})^{\mathbf{p}} = (\partial^{p_1}...\partial^{p_n})/\partial x_1^{p_1}...\partial x_n^{p_n}$, the asymptotic development of $(\partial/\partial \mathbf{x})^{\mathbf{p}} \phi(\mathbf{x})$ exists and is equal to the term-by-term differentiation of $\sum_{J=N}^{\infty} a_J(\mathbf{w}) r^J$. We use $\mathcal{D}_{*}(\mathbb{R}^{n})$ to denote $\mathcal{D}_{*,0}(\mathbb{R}^{n})$.

Definition

Define $D_*^{[k]}(\mathbb{R}^n)$ as the subspace consists of test functions

$$\phi(\mathbf{r}\mathbf{w}) \sim \sum_{J=k}^{\infty} a_J(\mathbf{w}) r^J$$

Notice that $D_*^{[k]}(\mathbb{R}^n)$ is not closed under differentiation.

Note: In particular, if ϕ is a smooth function, then $\phi(\mathbf{a} + r\boldsymbol{\omega}) \sim \mathbf{a}_0 + \sum_{J=1}^{\infty} \mathbf{a}_J(\boldsymbol{\omega}) r^J \in D^{[0]}_*(\mathbb{R}^n)$. So $\mathcal{D}_{\mathbf{a}}(\mathbb{R}^n) \subset \mathcal{D}_{*,\mathbf{a}}(\mathbb{R}^n)$.

The Topology-to have a TVS

Definitions Define a seminorm $||\phi||_{l,m} = \sup_{|\mathbf{p}| \le m} \frac{\left| \left(\partial/\partial \mathbf{x} \right)^{\mathbf{p}} \phi \left(\mathbf{x} \right) - \sum_{j=N-|\mathbf{p}|}^{l-1} a_{j,\mathbf{p}} \left(\mathbf{w} \right) r^{j} \right|}{r^{l}}, l \ge N - |\mathbf{p}|$ (9) where $\left(\partial/\partial\mathbf{x}\right)^{\mathbf{p}}\phi\left(\mathbf{x}\right)\sim\sum_{j=1}^{\infty}a_{J,\mathbf{p}}\left(\mathbf{w}\right)r^{J}$ (10) $J=N-|\mathbf{p}|$

A sequence $\{\phi_{\alpha}\}$ in $\mathcal{D}_{*}(\mathbb{R}^{n})$ converges to φ iff there exists an integer N such that $\varphi \in D_{*}^{[N]}(\mathbb{R}^{n})$, and a compact set K such that for any I, m, we have $||\phi - \phi_{\alpha}||_{I,m} \to 0$ as $\alpha \to \infty$.

Definitions

The space of distributions on \mathbb{R}^n with a thick point is the dual space of that contains all the continous linear functionals of the test functions. We denote it $\mathcal{D}'_*(\mathbb{R}^n)$.

Definitions

The space of distributions on \mathbb{R}^n with a thick point is the dual space of that contains all the continous linear functionals of the test functions. We denote it $\mathcal{D}'_*(\mathbb{R}^n)$.

Theorem

$$\mathcal{D} \stackrel{i}{\hookrightarrow} \mathcal{D}_{*,a}.$$

$$\mathcal{D}'_{*,a} \stackrel{\pi}{\to} \mathcal{D}'.$$

$$(12)$$

 $\pi,$ the projection operator is given explicitly as

$$\langle \pi(f), \phi \rangle_{\mathcal{D}' \times \mathcal{D}} = \langle f, i(\phi) \rangle_{\mathcal{D}'_{*,a} \times \mathcal{D}_{*,a}}.$$
(13)

Theorem

$$\mathcal{D} \stackrel{i}{\hookrightarrow} \mathcal{D}_{*,a}.$$
$$\mathcal{D}'_{*,a} \stackrel{\pi}{\to} \mathcal{D}'.$$

 π , the projection operator is given explicitly as

$$\langle \pi(f), \phi \rangle_{\mathcal{D}' \times \mathcal{D}} = \langle f, i(\phi) \rangle_{\mathcal{D}'_{*,a} \times \mathcal{D}_{*,a}}.$$

Theorem

Let
$$g \in \mathcal{D}'$$
, there exists a distribution $f \in \mathcal{D}'_{*,a}$, s.t. $\pi(f) = g$.

Example

Suppose $f(\mathbf{x})$ is a locally integrable function in \mathbb{R}^n , homogeneous of degree 0 Now let's define a "thick delta function" $f\delta_* \in \mathcal{D}'_*(\mathbb{R}^n)$: Let ϕ be a test function in $\mathcal{D}_*(\mathbb{R}^n)$, thus by definition ϕ could be asymptotically expanded as $\sum_{J=N}^{\infty} a_J(\mathbf{w}) r^J = a_N(\mathbf{w}) r^N + ... + a_0(\mathbf{w}) + a_1(\mathbf{w}) r + ...$ Then $f\delta_*$ is given by

$$\langle f \delta_*, \phi \rangle_{\mathcal{D}'_*(\mathbb{R}^n) \times \mathcal{D}_*(\mathbb{R}^n)} := \frac{1}{C_{n-1}} \langle f(\mathbf{w}), a_0(\mathbf{w}) \rangle_{\mathcal{D}'_*(\mathbb{S}^{n-1}) \times \mathcal{D}_*(\mathbb{S}^{n-1})}$$
(14)
$$= \frac{1}{C_{n-1}} \int_{\mathbb{S}^{n-1}} f(\mathbf{w}) a_0(\mathbf{w}) \, d\sigma(\mathbf{w})$$

Example

When n = 3,

$$\langle f \delta_*, \phi \rangle = \frac{1}{4\pi} \int_{\mathbb{S}^{n-1}} f(\mathbf{w}) a_0(\mathbf{w}) \, d\sigma(\mathbf{w})$$

Example

In particular, if $f(\mathbf{x}) \equiv 1$, then $f\delta_* = \delta_*$:

$$\begin{aligned} \langle \delta_*, \phi \rangle_{\mathcal{D}'_*(\mathbb{R}^n) \times \mathcal{D}_*(\mathbb{R}^n)} &:= \frac{1}{C_{n-1}} \langle 1, \mathsf{a}_0(\mathbf{w}) \rangle_{\mathcal{D}'_*(\mathbb{S}^{n-1}) \times \mathcal{D}_*(\mathbb{S}^{n-1})} \\ &= \frac{1}{C_{n-1}} \int_{\mathbb{S}^{n-1}} \mathsf{a}_0(\mathbf{w}) \, d\sigma(\mathbf{w}) \end{aligned}$$

. We may call δ_* the "plain thick delta function".

Projection of a Thick Delta Function onto the Usual Distribution Space

Example

Since a usual test function $\psi \in \mathcal{D}'(\mathbb{R}^n)$ can be asymptotically expanded as it's Taylor expansion: $\psi(r\mathbf{w}) \sim \mathbf{a}_0 + \sum_{J=1}^{\infty} \mathbf{a}_J(\mathbf{w}) r^J$, so

$$\langle \pi \left(f \delta_* \right), \psi \rangle = \langle f \delta_*, i \left(\psi \right) \rangle$$

$$= \frac{1}{C_{n-1}} \int_{\mathbb{S}^{n-1}} f \left(\mathbf{w} \right) a_0 d\sigma \left(\mathbf{w} \right)$$

$$= \frac{a_0}{C_{n-1}} \int_{\mathbb{S}^{n-1}} f \left(\mathbf{w} \right) d\sigma \left(\mathbf{w} \right)$$
(15)

Projection of a Thick Delta Function onto the Usual Distribution Space

Example

In particular, for a plain thick delta function, it projects onto the usual delta function:

$$\langle \pi \left(\delta_* \right), \psi \rangle = \frac{a_0}{C_{n-1}} \int_{\mathbb{S}^{n-1}} d\sigma \left(\mathbf{w} \right)$$

$$= a_0 = \phi \left(0 \right)$$

$$= \langle \delta, \psi \rangle$$

$$(17)$$

Definition

(thick delta functions of degree m) A thick delta functions of degree m, denoted $f \delta_*^{[m]}$, acting on a thick test function $\phi(\mathbf{x})$ is defined as the action of f on $a_m(\mathbf{w})$ in the corresponding asymptotic expansion divide by the surface area of \mathbb{S}^{n-1} . Namely,

$$\left\langle f \delta_{*}^{[m]}, \phi \right\rangle_{\mathcal{D}_{*}^{\prime}(\mathbb{R}^{n}) \times \mathcal{D}_{*}(\mathbb{R}^{n})} = \frac{1}{C_{n-1}} \left\langle f, \mathsf{a}_{m}\left(\mathsf{w}\right) \right\rangle_{\mathcal{D}_{*}^{\prime}(\mathbb{S}^{n-1}) \times \mathcal{D}_{*}(\mathbb{S}^{n-1})}$$

Example

If f is a locally integrable function in \mathbb{R}^n , homogeneous of degree 0, a natural example would be

$$\left\langle f \delta_*^{[m]}, \phi \right\rangle_{\mathcal{D}'_*(\mathbb{R}^n) \times \mathcal{D}_*(\mathbb{R}^n)} = \frac{1}{C_{n-1}} \left\langle f, a_m \left(\mathbf{w} \right) \right\rangle_{\mathcal{D}'_*(\mathbb{S}^{n-1}) \times \mathcal{D}_*(\mathbb{S}^{n-1})}$$
$$= \frac{1}{C_{n-1}} \int_{\mathbb{S}^{n-1}} f \left(\mathbf{w} \right) a_m \left(\mathbf{w} \right) d\sigma \left(\mathbf{w} \right)$$

Definitions

Let $f, g \in \mathcal{D}'_*(\mathbb{R}^n)$, and $\phi(\mathbf{x}) \in \mathcal{D}_*(\mathbb{R}^n)$ is a test function. We define the following algebraic operators:

$$(f + g, \phi) = \langle f, \phi \rangle + \langle g, \phi \rangle.$$

 $\begin{array}{l} \textcircled{\ } \left\langle f\left(A\mathbf{x}\right),\phi\left(\mathbf{x}\right)\right\rangle =\frac{1}{\left|\det A\right|}\left\langle f\left(\mathbf{x}\right),\phi\left(A^{-1}\mathbf{x}\right)\right\rangle . \text{ where } A \text{ is a non-singular} \\ n\times n \text{ matrix. In particular, } \left\langle f\left(-\mathbf{x}\right),\phi\left(\mathbf{x}\right)\right\rangle =\left\langle f\left(\mathbf{x}\right),\phi\left(-\mathbf{x}\right)\right\rangle \\ \end{array} \right. \end{array}$

• $\langle \rho f, \phi \rangle = \langle f, \rho \phi \rangle$, where ρ is a multiplier of $\mathcal{D}_{*,a}$, i.e. $\rho \phi \in \mathcal{D}_{*,a}$, $\forall \phi \in \mathcal{D}_{*,a}$

Derivatives on Thick Distributions

Definition

The $\mathbf{p} - th$ order derivative of a thick distribution $f \in \mathcal{D}'_*$ is given by

$$\left\langle \left(\frac{\partial^*}{\partial \mathbf{x}}\right)^{\mathbf{p}} f, \phi \right\rangle = (-1)^{|\mathbf{p}|} \left\langle f, \left(\frac{\partial}{\partial \mathbf{x}}\right)^{\mathbf{p}} \phi \right\rangle = (-1)^{|\mathbf{p}|} \left\langle f, \frac{(\partial^{p_1} \dots \partial^{p_n}) \phi}{\partial x_1^{p_1} \dots \partial x_n^{p_n}} \right\rangle$$

We can call it "thick distributional derivative" to indicate the space \mathcal{D}'_* , in which f sits.

Example

a first order parital derivative on f may be given by

$$\left\langle \frac{\partial^* f}{\partial x_j}, \phi \right\rangle = -\left\langle f, \frac{\partial \phi}{\partial x_j} \right\rangle$$

Derivatives on Thick Distributions

Lemma

Suppose $f \in \mathcal{D}'_*$; and the projection of f onto \mathcal{D}' is $\pi(f) = g$. Then $(\partial^*/\partial \mathbf{x})^{\mathbf{p}} f = (\overline{\partial}/\partial \mathbf{x})^{\mathbf{p}} g$.

Proof.

if ϕ is an ordinary test function that is in $\mathcal{D}(\mathbb{R}^n)$; *i* denotes the inclusion map from \mathcal{D} to \mathcal{D}_* ; the projection of *f* from \mathcal{D}' to \mathcal{D}'_* is $\pi(f) = g$, then we have,

$$\left\langle \left(\frac{\partial^*}{\partial \mathbf{x}}\right)^{\mathbf{p}} f, i\left(\phi\right) \right\rangle = (-1)^{|\mathbf{p}|} \left\langle f, \left(\frac{\partial}{\partial \mathbf{x}}\right)^{\mathbf{p}} \phi \right\rangle = (-1)^{|\mathbf{p}|} \left\langle f, i\left[\left(\frac{\partial}{\partial \mathbf{x}}\right)^{\mathbf{p}} \phi\right] \right\rangle$$
$$= (-1)^{|\mathbf{p}|} \left\langle \pi\left(f\right), \left(\frac{\partial}{\partial \mathbf{x}}\right)^{\mathbf{p}} \phi \right\rangle = \left\langle \left(\frac{\overline{\partial}}{\partial \mathbf{x}}\right)^{\mathbf{p}} g, \phi \right\rangle$$

More about derivatives

Because
$$a_J(\mathbf{w})' s$$
 are finite on \mathbb{S}^{n-1} , the asymptotic expansion,
 $\phi(r\mathbf{w}) \sim \sum_{J=k}^{\infty} a_J(\mathbf{w}) r^J = \sum_{J=k}^{\infty} a_J(\mathbf{x}/r) r^J$.etc.
So
 $\frac{\partial \phi}{\partial x_j} = \sum_{J=k}^{\infty} \frac{\partial a_J(\mathbf{x}/r)}{\partial x_j} r^J + Ja_J(\mathbf{x}/r) n_j r^{j-1}$

Distributional Derivative of 1/r

Lemma

The partial derivative of the thick delta function $w_i \delta_*^{[m]}$ with respect to x_j is

$$\frac{\partial \left(n_{i} \delta_{*}^{[m]}\right)}{\partial x_{j}} = \left[\delta_{ij} + \left(-m - 1 - n\right) n_{i} n_{j}\right] \delta_{*}^{[m+1]}$$

where δ_{ij} is the Kronecker delta function, m is the degree of $w_i \delta_*^{[m]}$, n is the dimension of \mathbb{R}^n , $w_i = x_i/r$, $w_i = x_i/r$.

Proof.

$$\left\langle \frac{\partial \left(n_i \delta_*^{[m]} \right)}{\partial x_j}, \phi \right\rangle = -\left\langle n_i \delta_*^{[m]}, \frac{\partial \phi}{\partial x_j} \right\rangle$$

Distributional Derivative of 1/r

Proof.

$$= -\frac{1}{C_{n-1}} \int_{\mathbb{S}^{n-1}} n_i \left[\frac{\delta a_{m+1}(\mathbf{w})}{\delta x_j} + (m+1) n_j a_{m+1}(\mathbf{w}) \right] d\sigma(\mathbf{w})$$

$$= -\frac{1}{C_{n-1}} \left\langle n_i, \frac{\delta a_{m+1}(\mathbf{w})}{\delta x_j} \right\rangle_{\mathcal{D}'_*(\mathbb{S}^{n-1}) \times \mathcal{D}_*(\mathbb{S}^{n-1})}$$

$$- \frac{1}{C_{n-1}} \left\langle n_i, (m+1) w_j a_{m+1}(\mathbf{w}) \right\rangle_{\mathcal{D}'_*(\mathbb{S}^{n-1}) \times \mathcal{D}_*(\mathbb{S}^{n-1})}$$

$$= \frac{1}{C_{n-1}} \left\langle \frac{\delta^{\mathsf{T}} n_i}{\delta x_j}, a_{m+1}(\mathbf{w}) \right\rangle_{\mathcal{D}'_*(\mathbb{S}^{n-1}) \times \mathcal{D}_*(\mathbb{S}^{n-1})} - \left\langle (m+1) n_i n_j \delta_*^{[m+1]}, \phi \right\rangle_{\mathcal{D}'_*(\mathbb{R}^n)}$$

Since

$$\frac{\delta^{\mathsf{T}} n_i}{\delta x_j} = \delta_{ij} - n(n_i n_j)$$

The result is obtained.

In his paper, [4,Franklin] brought up a question: As a distribution, the well-known formula of the second derivative of 1/r

$$\frac{\overline{\partial}^2}{\partial x_i \partial x_j} \left(\frac{1}{r}\right) = \frac{3x_i x_j - r^2 \delta_{ij}}{r^5} - \left(\frac{4\pi}{3}\right) \delta_{ij} \delta\left(\mathbf{x}\right)$$

cannot act on functions that are not smooth at the orign. In other words,

$$\frac{\overline{\partial}^{2}}{\partial x_{i}\partial x_{j}}\left(\frac{1}{r}\right) = \frac{3x_{i}x_{j} - r^{2}\delta_{ij}}{r^{5}} - \left(\frac{4\pi}{3}\right)\delta_{ij}\delta\left(\mathbf{x}\right) \in \mathcal{D}' but \notin \mathcal{D}'_{*}$$

Distributional Derivative of 1/r

Definition

Let $\phi \in \mathcal{D}_*(\mathbb{R}^n)$,

$$\left\langle \mathsf{Pf}\left(r^{\lambda}\right),\phi\right\rangle =\mathsf{F}.\mathsf{p}.\lim_{\varepsilon\to\infty}\int_{|\mathbf{x}|\geq\varepsilon}r^{\lambda}\phi\left(\mathbf{x}\right)d\mathbf{x}$$

Hence

$$\left\langle \left(\frac{\partial^*}{\partial \mathbf{x}}\right)^{\mathbf{p}} Pf\left(r^{\lambda}\right), \phi \right\rangle = (-1)^{|\mathbf{p}|} \left\langle Pf\left(r^{\lambda}\right), \left(\frac{\partial}{\partial \mathbf{x}}\right)^{\mathbf{p}} \phi \right\rangle$$
$$= (-1)^{|\mathbf{p}|} F.p. \lim_{\varepsilon \to \infty} \int_{|\mathbf{x}| \ge \varepsilon} r^{\lambda} \left(\frac{\partial}{\partial \mathbf{x}}\right)^{\mathbf{p}} \phi(\mathbf{x}) d\mathbf{x}$$

Lemma

We denote $\mathbb{S}_{\varepsilon}^{n-1}$ the n-1 sphere with radius ε . Define $\langle r^{\lambda}n_{j}\delta\left(\mathbb{S}_{\varepsilon}^{n-1}\right), \phi(\mathbf{x}) \rangle = \int_{\mathbb{S}_{\varepsilon}^{n-1}} \varepsilon^{\lambda}n_{j}\phi(\mathbf{x}) d\mathbf{x}$.for any thick test function ϕ , then

$$\begin{split} \lim_{\varepsilon \to 0} \left\langle r^{\lambda} w_{j} \delta\left(\mathbb{S}_{\varepsilon}^{n-1}\right), \phi\left(\mathbf{x}\right) \right\rangle \\ \left\{ \begin{array}{l} = 0 & \text{if } \lambda \notin \mathbb{Z} \\ = \left\langle C_{n-1} n_{j} \delta_{*}^{[1-n-\lambda]}, \phi\left(\mathbf{x}\right) \right\rangle_{\mathcal{D}_{*}^{\prime}(\mathbb{S}^{n-1}) \times \mathcal{D}_{*}(\mathbb{S}^{n-1})} & \text{if } \lambda \in \mathbb{Z} \end{split} \end{split}$$

Proof.

$$\left\langle r^{\lambda} n_{j} \delta\left(\mathbb{S}_{\varepsilon}^{n-1}\right), \phi\left(\mathbf{x}\right) \right\rangle = \int_{\mathbb{S}_{\varepsilon}^{n-1}} \varepsilon^{\lambda} n_{j} \phi\left(\mathbf{x}\right) d\mathbf{x}$$
$$= \int_{S^{n-1}} \varepsilon^{\lambda} n_{j} \phi\left(\varepsilon \mathbf{w}\right) \varepsilon^{n-1} d\sigma\left(\mathbf{w}\right)$$

Yunyun Yang (Louisiana State University) Distributions in Spaces with Thick Points II

Theorem

$$\frac{\partial^*}{\partial x_j} \left(pf\left(r^{\lambda}\right) \right) = \begin{cases} \lambda x_j Pf\left(r^{\lambda-2}\right), & \lambda \notin \mathbb{Z} \\ \lambda x_j Pf\left(r^{\lambda-2}\right) + C_{n-1} n_j \delta_*^{[-\lambda-n+1]} & \lambda \in \mathbb{Z} \end{cases}$$
(18)

where C_{n-1} is the surface area of the n-1 unit sphere.

Proof.

By definition,

$$\left\langle \frac{\partial^{*}}{\partial x_{j}} Pf\left(r^{\lambda}\right), \phi \right\rangle = -\left\langle Pf\left(r^{\lambda}\right), \frac{\partial\phi}{\partial x_{j}} \right\rangle = -F.p. \lim_{\varepsilon \to \infty} \int_{|\mathbf{x}| \ge \varepsilon} r^{\lambda} \frac{\partial\phi}{\partial x_{j}} d\mathbf{x}$$
(19)
$$= F.p. \lim_{\varepsilon \to \infty} \int_{|\mathbf{x}| \ge \varepsilon} \frac{\overline{\partial}H(r-\varepsilon)r^{\lambda}}{\partial x_{j}} \phi d\mathbf{x} = \left\langle \frac{\overline{\partial}H(r-\varepsilon)r^{\lambda}}{\partial x_{j}}, \phi \right\rangle$$

We already know the usual distributional derivative of $H(r - \varepsilon) r^{\lambda}$ is given by [2,Kanwal]

$$\frac{\overline{\partial}}{\partial x_{j}}\left(H\left(r-\varepsilon\right)r^{\lambda}\right) = \lambda x_{j}r^{\lambda-2}H\left(r-\varepsilon\right) + r^{\lambda}n_{j}\delta\left(\mathbb{S}_{\varepsilon}\right)$$

Proof.

So equation 19 becomes

$$F.p.\lim_{\varepsilon \to \infty} \left\langle \frac{\overline{\partial}}{\partial x_j} \left(H(r-\varepsilon) r^{\lambda} \right), \phi \right\rangle$$

= $F.p.\lim_{\varepsilon \to \infty} \left\langle \lambda x_j r^{\lambda-2} H(r-\varepsilon) + r^{\lambda} n_j \delta\left(\mathbb{S}_{\varepsilon}\right), \phi \right\rangle$
= $\left\langle \lambda x_j Pf\left(r^{\lambda-2}\right), \phi \right\rangle + F.p.\lim_{\varepsilon \to \infty} \left\langle r^{\lambda} n_j \delta\left(\mathbb{S}_{\varepsilon}\right), \phi \right\rangle$
By 29, $\lim_{\varepsilon \to 0} \left\langle r^{\lambda} n_j \delta\left(\mathbb{S}_{\varepsilon}^{n-1}\right), \phi(\mathbf{x}) \right\rangle = C_{n-1} n_j \delta_*^{[1-n-\lambda]}$ So the theorem holds.

Example

When $n = 3, \lambda = -1$, the first derivative of 1/r is

$$\frac{\partial^*}{\partial x_i} \left(pf\left(r^{-1}\right) \right) = -x_j Pf\left(r^{-3}\right) + 4\pi n_j \delta_*^{[-1]}$$

Yunyun Yang (Louisiana State University) Distributions in Spaces with Thick Points II

Second Order Distributional Derivative of r^{λ}

Lemma

$$x_j \delta_*^{[Q]} = w_j \delta_*^{[Q-1]}.$$

Theorem

If λ is an integer,

$$\frac{\partial^{*2}}{\partial x_{j}\partial x_{k}}\left(pf\left(r^{\lambda}\right)\right) = \delta_{jk}\lambda Pf\left(r^{\lambda-2}\right) + \lambda\left(\lambda-2\right)x_{j}x_{k}Pf\left(r^{\lambda-4}\right) + C_{n-1}\left(2\lambda-2\right)n_{j}n_{k}\delta_{*}^{\left[-\lambda-n+2\right]} + C_{n-1}\delta_{jk}\delta_{*}^{\left[-\lambda-n+2\right]}$$

Second Order Distributional Derivative of r^{λ}

Proof.

Take the derivative of the first order derivative $\frac{\partial^{*}}{\partial x_{i}}\left(pf\left(r^{\lambda}\right)\right) = \lambda x_{j}Pf\left(r^{\lambda-2}\right) + C_{n-1}n_{j}\delta_{*}^{\left[-\lambda-n+1\right]}$, we have $\frac{\partial^{*2}}{\partial x_j \partial x_k} \left(pf\left(r^{\lambda}\right) \right) = \frac{\partial^*\left(x_j\right)}{\partial x_k} \lambda Pf\left(r^{\lambda-2}\right) + x_j \lambda \frac{\partial^*\left(Pf\left(r^{\lambda-2}\right)\right)}{\partial x_k}$ $+C_{n-1}\frac{\partial^*\left(n_j\delta_*^{[-\lambda-n+1]}\right)}{\partial x_{\nu}}$ $= \delta_{jk}\lambda Pf\left(r^{\lambda-2}\right) + \lambda x_{j}\left(\lambda-2\right)Pf\left(r^{\lambda-4}\right)$ $+\lambda x_{j} C_{n-1} n_{k} \delta_{*}^{[-\lambda-n+3]} + C_{n-1} \frac{\partial^{*} \left(n_{j} \delta_{*}^{[-\lambda-n+1]}\right)}{\partial x_{i}}$

Proof.

Together with the lemma 27,

$$\frac{\partial \left(n_{j} \delta_{*}^{[-\lambda-n+1]}\right)}{\partial x_{k}} = \left[\delta_{jk} + (\lambda-2) n_{j} n_{k}\right] \delta_{*}^{[-\lambda-n+2]}.$$
And by lemma 32, $x_{j} \delta_{*}^{[-\lambda-n+3]} = n_{j} \delta_{*}^{[-\lambda-n+2]}.$
So,

Theorem

If λ is an integer,

$$\frac{\partial^{*2}}{\partial x_{j}\partial x_{k}}\left(pf\left(r^{\lambda}\right)\right) = \delta_{jk}\lambda Pf\left(r^{\lambda-2}\right) + \lambda\left(\lambda-2\right)x_{j}x_{k}Pf\left(r^{\lambda-4}\right) + C_{n-1}\left(-n-1\right)n_{j}n_{k}\delta_{*}^{\left[-\lambda-n+2\right]} + C_{n-1}\delta_{jk}\delta_{*}^{\left[-\lambda-n+2\right]}$$

Theorem

If λ is an integer,

$$\frac{\partial^{*2}}{\partial x_{j}\partial x_{k}}\left(pf\left(r^{\lambda}\right)\right) = \delta_{jk}\lambda Pf\left(r^{\lambda-2}\right) + \lambda\left(\lambda-2\right)x_{j}x_{k}Pf\left(r^{\lambda-4}\right) + C_{n-1}\left(2\lambda-2\right)n_{j}n_{k}\delta_{*}^{[-\lambda-n+2]} + C_{n-1}\delta_{jk}\delta_{*}^{[-\lambda-n+2]}$$

Example

If $n = 3, \lambda = -1$,

$$\frac{\partial^{*2}}{\partial x_j \partial x_k} \left(pf\left(r^{-1}\right) \right) = 3x_j x_k Pf\left(r^{-5}\right) - \delta_{jk} Pf\left(r^{-3}\right) -16\pi n_j n_k \delta_* + 4\pi \delta_{jk} \delta_*$$

So in the thick point spaces,

$$\frac{\partial^*}{\partial x_j \partial x_k} \left(\frac{1}{r}\right) = \frac{3x_j x_k - r^2 \delta_{jk}}{r^5} - \left(\frac{16\pi x_j x_k \delta_* \left(\mathbf{x}\right)}{r^2}\right) + 4\pi \delta_{jk} \delta_* \qquad (20)$$

In particular, if $\phi(\mathbf{x}) \in \mathcal{D}(\mathbb{R}^n)$, *i.e.*, a_0 is a constant, then

$$-\int_{\mathbb{R}^3} \frac{16\pi x_j x_k}{r^2} \delta_* (\mathbf{x}) \phi(\mathbf{x}) dx = -4a_0 \int_{\mathbb{S}^2} n_i n_j d\sigma(\boldsymbol{\omega}) + 4\delta_{jk} a_0 = -a_0 \frac{16\pi}{3} \delta_{jk}$$
$$\int_{\mathbb{R}^3} 4\pi \delta_{jk} \delta_* (\mathbf{x}) \phi(\mathbf{x}) dx = 4\pi \delta_{jk} a_0$$

Hence the projection is given explicitly as:

$$\pi\left(\frac{\partial^*}{\partial x_i \partial x_j} \left(\frac{1}{r}\right)\right) = \frac{3x_i x_j - r^2 \delta_{ij}}{r^5} - \left(\frac{4\pi}{3}\right) \delta_{ij} \delta\left(\mathbf{x}\right)$$
(21)

Conclusion:

$$\frac{\partial^*}{\partial x_i \partial x_j} \left(\frac{1}{r}\right) = \frac{3x_i x_j - r^2 \delta_{ij}}{r^5} - \left(\frac{16\pi x_j x_k \delta_* \left(\mathbf{x}\right)}{r^2}\right) + 4\pi \delta_{jk} \delta_* \qquad (22)$$

is a thick distribution.

$$\pi\left(\frac{\partial^*}{\partial x_i \partial x_j} \left(\frac{1}{r}\right)\right) = \frac{3x_i x_j - r^2 \delta_{ij}}{r^5} - \left(\frac{4\pi}{3}\right) \delta_{ij} \delta\left(\mathbf{x}\right)$$
(23)

is a usual distribution.

References

Vibet, C. (1999)

Transient analysis of energy equation of dynamical systems, *IEEE Trans. Edu.* 42, 217-219.

Kanwal, R.P. (1998)

Generalized Functions: Theory and Technique, second edition.

Birkhauser, Boston.

Ricardo Estrada and Stephen A. Fulling. (2007) Functions and Distributions in Spaces with Thick Points.

International Journal of Applied Mathematics & Statistics, Vol 10, No. S07, 25-37.

Jerrold Franklin. (2010)

Comment in "Some novel delta-function identities".

American Journal of Physics, November 2010 - Volume 78, Issue 11, pp. 1225

References

Estrada, R., Essays in the Theory and Applications of Generalized Functions, Ph.D. Dissertation, Pennsylvania State University, 1980.

- [?]Estrada, R. and Kanwal, R. P., Distributional analysis of discontinuous fields, J.Math.Anal.Appl. 105 (1985), 478-490.
- [?]Estrada, R. and Kanwal, R. P., Higher order fundamental forms of a surface and their applications to wave propagation and distributional derivatives, Rend. Cir. Mat. Palermo 36 (1987), 27-62.

Thank you!