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Introduction

Vacuum energy density for a massive scalar field

This paper is based on Patrick Hays’s paper on a confined massive field in
two dimensions. In the paper “Vacuum fluctuations of a confined massive
field in two dimensions,” the zero-point energy of a massive scalar field
confined to a two-dimensional M.I.T. bag model, is computed.

Motivation

We follow the mathematical style of Fulling’s paper “Vacuum energy as
spectral geometry.” The vacuum energy is treated as a purely
mathematical problem, an underdeveloped aspect of the spectral theory of
self-adjoint second-order differential operators. What I am basically doing
is to note the common generalization between the P. Hay’s paper and S.
Fulling’s paper.
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Vacuum energy density
Boundary vacuum energy from closed and periodic orbits

We consider a finite interval with either a Dirichlet or a Neumann boundary condition at each end. Thus
H = − d2

dx2 + m2 acts in L2(0, L) on the domain defined by

u(1−l)(0) = 0, u(1−r)(L) = 0, l , r ∈ {0, 1} (1)

The Green function can be constructed from G∞ by the method of images. The Green function can be expressed as

G (ω2, x , y) = G∞(y) + (−1)lG∞(−y) + (−1)rG∞(2L− y) + (−1)l+rG∞(2L + y) (2)

+ (−1)l+rG∞(−2L + y) + (−1)2l+rG∞(−2L− y) (3)

+ (−1)l+2rG∞(4L− y) + (−1)2l+2rG∞(4L + y) + · · · (4)

and the above Green function has to satisfy the equation:

δ(x − y) = −∂
2G

∂x2
+ (m2 − λ)G (5)

This is the same as the equation satified by G∞ and G in [2] except that −λ has been replaced by m2 − λ . So, we
should be abe to use the same formulas as in [2] but we need to replace ω(≡

√
λ) by

κ ≡
√
ω2 −m2. (6)
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Green Function

Let’s check from first principles that the new G∞ satisfies the right Green equations. We want

−∂
2G

∂x2
− κ2G = δ(x − y), (7)

so for x − y we want
∂2G

∂x2
= −κ2G . (8)

Thus

G (x , y) =

{
Ae−iκ(x−y), x < y ,

Be iκ(x−y), x > y .
(9)

Therefore, our G∞ is given by

G∞(ω2, x , y) =
i

2κ
e−κ|x−y |. (10)

When we go to the variable κ the situation is slighly more complicated; κ is not just ω minus a constant

Remark:The Weyl and periodic terms will not be the same as in the massless case,
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The Hamiltonian, now contains a potential term which comes from the massive scalar field. I will adopt the
convention that

(Hx − κ)G (ω2, x , y) = δ(x − y). (11)

All we know is that G (ω2, x , y) must satisfy the above equation. Let us not loose sight of our objective, to find the
local spectral density from closed and periodic orbits. So, we have

π
κ

ω
σ(ω) ≡ 2κ Im G (ω2, x , x) (12)

=
n=∞∑
n=0

(−1)n(l+r) cos(2κnL) +
∞∑
n=0

(−1)l+n(l+r) cos(2κ(nL + x)) (13)

+
∞∑
n=1

(−1)−l+n(l+r) cos(2κ(nL− x)) +
∞∑
n=1

(−1)n(l+r) cos(2κnL) (14)

= 1 + 2
∞∑
n=1

(−1)n(l+r) cos(2κnL) +
∞∑

n=−∞
(−1)l+n(l+r) cos(2κ(x + nL)) (15)

≡ π κ
ω

(σav + σper + σbdry ) ≡ π κ
ω

(σav + σosc) (16)

where κ ≡
√
ω2 −m2.
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In the case ξ = 1
4 , the contribution of the space derivatives is identical to that of the time derivatives, so we can

write

T00(t, x) ≡ E (t, x) = −1

2

∂

∂t

∫ ∞
0

σ(ω)e−ωt dω ≡ EWeyl(t, x) + Eper (t, x) + Ebdry (t, x). (17)

Using Equation 3.914.1 from [4], we obtain the following expression:∫ ∞
0

e−t
√
m2+κ2

cos(2nLκ) dκ =
mt√

t2 + (2nL)2
K1(m

√
t2 + (2nL)2) (18)

Let’s compute the EWeyl term for the massive case:

EWeyl(t) = −1

2

d

dt

∫ ∞
0

σWeyl(ω)e−ωt dω (19)

and doing the change of variables, ω2 = κ2 + m2, gives

EWeyl(t) = − 1

2π

d

dt

∫ ∞
0

√
κ2 + m2

κ
· κ√

κ2 + m2
e−t

√
κ2+m2

dκ (20)

= − 1

2π

d

dt

∫ ∞
0

e−t
√
κ2+m2

dκ = − 1

2π

d

dt
mK1(mt). (21)
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When ν is fixed and z → 0,

Kν(z) ∼ 1

2
Γ(ν)

(
1

2
z

)−ν
(Re ν > 0) (22)

and in our case, ν = 1 and hence

K1(z = mt) ∼ 1

2
Γ(1)

(
1

2
mt

)−1

=
1

mt
(23)

Therefore for small mt, our expression becomes

EWeyl(t) ∼ − 1

2π

d

dt
mK1(mt) = − 1

2π

d

dt

(
m

1

mt

)
=

1

2πt2
(24)

To put equation 24 into the usual form for renormalization calcualtions, we need to expand it in power (Laurent)
series in t. The leading term will be O(t−2) and should match the massless case. The Laurent series in t for
equation can be expressed as

EWeyl(t) ∼ − 1

2π

d

dt

[
1

t
+

1

4
m(mt)

(
2 log(mt) + 2γ − 1− 2 log(2)

)
+ O

(
(mt)2

)]
(25)

∼ 1

2πt2
− m2

4π
− 1

8π
m2(2 log(mt) + 2γ − 1− 2 log(2)) + O (t) (26)

∼ 1

2π

[
1

t2
− m2

2
log

(
mt

2

)
− m2

4
(1 + 2γ)

]
+ O (t) (27)
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The periodic term for the massive case is given by

Eper (t) = − 1

π

d

dt

∞∑
n=1

(−1)n(l+r)

∫ ∞
0

ω

κ
σper (ω)e−ωt dω (28)

= − 1

π

d

dt

∞∑
n=1

(−1)n(l+r)

∫ ∞
0

e−t
√
m2+κ2

cos(2nLκ) dκ (29)

= − 1

π

d

dt

∞∑
n=1

(−1)n(l+r) mt√
(2nL)2 + t2

K1(m
√

(2nL)2 + t2) shrink(30)

Therefore,

lim
m→0

Eper (t) ∼ − 1

π

d

dt

∞∑
n=1

t

(2nL)2 + t2
− lim

m→0

1

π

d

dt

∞∑
n=1

m2t

4

[(
2 log

(
m
√

(2nL)2 + t2

)
(31)

+ 2γ − 1− 2 log(2)

)
+ O

(
m2(4L2n2 + t2)

)]
(32)

∼ − 1

π

d

dt

∞∑
n=1

t

(2nL)2 + t2
= − 1

π

d

dt

1

4

(
π coth

(
πt
2L

)
L

− 2

t

)
(33)

∼ π

8L2
csch2

(πt
2L

)
− 1

2πt2
(34)

and we can clearly see that the above result agrees with [2, p. 15].
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The periodic term, Eper (t), will approach a contant value as t → 0:

lim
t→0

Eper (t) ∼ − lim
t→0

1

π

d

dt

∞∑
n=1

t

(2nL)2 + t2
(35)

− lim
t→0

1

π

d

dt

∞∑
n=1

m2t

4

[(
2 log

(
m
√

(2nL)2 + t2

)
+ 2γ − 1− 2 log(2)

)
(36)

+ O(m2(4L2n2 + t2))

]
(37)

At this point, let’s split the periodic terms into the massless contribution and the massive contribution. The
massless contribution to the periodic energy will be denoted by Em=0

per (t) and the massive contribution will be
denoted by Em

per (t).
So,

lim
t→0

Em=0
per (t) = lim

t→0

[
− 1

π

d

dt

∞∑
n=1

t

(2nL)2 + t2

]
= lim

t→0

[
− 1

π

∞∑
n=1

d

dt

t

(2nL)2 + t2

]
(38)

= lim
t→0

[
− 1

π

∞∑
n=1

4L2n2 − t2

(4L2n2 + t2)2

]
= lim

t→0

[
πcsch2

(
πt
2L

)
16L2

− 1

4πt2

]
(39)

= lim
t→0

(
πcsch2

(
πt
2L

)
8L2

− 1

2πt2

)
= − π

24L2
(40)

and this agrees with [2, pg. 16].
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Calculation of the term Ebdry(t, x)

The interesting term is the boundary term, Ebdry (t, x), which is given by

Ebdry (t, x) = −(−1)l

2π

∂

∂t

∞∑
n=−∞

(−1)n(l+r)

∫ ∞
0

ω

κ
cos(2κ(x + nL))e−ωt dω (41)

= −(−1)l

2π

∂

∂t

∞∑
n=−∞

(−1)n(l+r)

∫ ∞
0

cos(2κ(x + nL))e−t
√
κ2+m2

dκ (42)

Now, we do a change of variables so that we can integrate with respect to κ instead of ω. After doing the change
of variables we obtain

Ebdry (t, x) = −(−1)l

2π

∂

∂t

∞∑
n=−∞

(−1)n(l+r)

∫ ∞
0

cos(2κ(x + nL))e−t
√
κ2+m2

dκ (43)

= −(−1)l

2π

∂

∂t

∞∑
n=−∞

(−1)n(l+r) mt√
(2(x + nL))2 + t2

K1(m
√

(2(x + nL))2 + t2) (44)

since ω dω = κ dκ.
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In the boundary case, things get more complicated because we now have to deal with position, x . Then the
boundary term, Ebdry (x , t) can be expressed as

Ebdry (x , t) =
(−1)l

2π

∂

∂t

∞∑
n=−∞

(−1)n(l+r) mt√
4(x + nL)2 + t2

K1

(
m
√

4(x + nL)2 + t2

)
(45)

Let’s go back to computing the boundary term. The boundary term can be expressed as

Ebdry (x , t) = −(−1)l

2π

∂

∂t

∞∑
n=−∞

(−1)n(l+r) mt√
4(x + nL)2 + t2

K1

(
m
√

4(x + nL)2 + t2

)
(46)

(47)

Using the asymptotic expansion of K1(z) for small argument yields

Ebdry (x , t) ∼ (−1)l

2π

∂

∂t

∞∑
n=−∞

(−1)n(l+r) mt√
4(x + nL)2 + t2

1

m
√

4(x + nL)2 + t2
(48)

= −(−1)l

2π

∂

∂t

∞∑
n=−∞

(−1)n(l+r) t

4(x + nL)2 + t2
(49)

and this agrees with the result obtained in [2].
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Let’s go back to the massive case. In the massive case, we quickly discover that we can’t obtain an explicit formula
for the infinite sum. Then

Ebdry (x , t) = −(−1)l

2π

∂

∂t

∞∑
n=−∞

(−1)n(l+r)

[
t

4(Ln + x)2 + t2
(50)

+
m2t

4

(
2 log

(
m
√

4(Ln + x)2 + t2

)
+ 2γ − 1− 2 log(2)

)
(51)

+ O

(
(m
√

4(Ln + x)2 + t2)2

)]
(52)

Let’s assume that l + r is an odd integer. For the odd case, we have

Ebdry (x , t) = −(−1)lπ

16L2

[
coth

(
π(t − 2ix)

2L

)
csch

(
π(t − 2ix)

2L

)
(53)

+ coth

(
π(t + 2ix)

2L

)
csch

(
π(t + 2ix)

2L

)]
(54)

+
(−1)lm2t

16L

(
csch

(
π(t − 2ix)

2L

)
+ csch

(
π(t + 2ix)

2L

))
(55)

+
(−1)l

2π

∞∑
n=−∞

[
(−1)n

4
m2

(
2 log

(
m
√

4(Ln + x)2 + t2

)
+ 2γ − 1− 2 log(2)

)
(56)

+ O(m4(4(Ln + x)2 + t2))

]
(57)

or,

Ebdry (x , t) ∼
[

cot
(
πx
L

)
csc
(
πx
L

)
8L2

−
t2
(
π2
(
2 cot3

(
πx
L

)
+ cot

(
πx
L

))
csc
(
πx
L

))
64L4

+ · · ·
]

(58)

+

[
−
t2πm2 cot

(
x
L

)
csc
(
x
L

)
16L2

+ · · ·
]

(59)

+
(−1)l

2π

∞∑
n=−∞

[
(−1)n

4
m2

(
2 log

(
m
√

4(Ln + x)2 + t2

)
(60)

+ 2γ − 1− 2 log(2))

)
+ O(m4(4(Ln + x)2 + t2))

]
+ O(t4) (61)
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and when t = 0, we obtain

Ebdry (x , 0) =
cot
(
πx
L

)
csc
(
πx
L

)
8L2

− (−1)l

2π

∞∑
n=−∞

(−1)n

4
m2

(
2 log (mLn) + 2γ − 1

)
(62)

For the even case we obtain,

Ebdry (x , t) = −
(−1)lπ

(
cosh

(
πt
L

)
cos
(

2x
L

)
− 1
)

4L2
(
cos
(

2x
L

)
− cosh

(
πt
L

))2
−

(−1)lπm2t sinh
(
πt
L

)
8L(cos

(
2x
L

)
− cosh

(
πt
L

)
)

(63)

+
(−1)l

2π

∞∑
n=−∞

[
1

4
m2

(
2 log

(
m
√

4(Ln + x)2 + t2

)
+ 2γ − 1− 2 log(2)

)
(64)

+ O
(
m4(4(Ln + x)2 + t2

)
)

]
(65)

Can we match this result against some results of [1] or Appendix B of the predecessor paper by Bender and Hays
[3]?
Ignoring the mass terms, we obtain the following expression:

Ebdry (x , t) ∼ −
(−1)lπ

(
cosh

(
πt
L

)
cos
(

2x
L

)
− 1
)

4L2
(
cos
(

2x
L

)
− cosh

(
πt
L

))2
(66)

and now let’s assume that t is very small and that x is fixed. Assuming that l = 1, and using a power series
expansion we obtain the following expression:

Ebdry (x , t) ∼
π csc2

(
x
L

)
8L2

−
t2
(
π3
(
cos
(

2x
L

)
+ 2
)

csc4
(
x
L

))
32L4

+ O(t4). (67)

When t = 0, we obtain

Ebdry (x , 0) ∼
π csc2

(
x
L

)
8L2

(68)

and the above result agrees with [2].
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Then,

Ebdry (x , t) ∼
π csc2

(
x
L

)
8L2

−
t2
(
π3
(
cos
(

2x
L

)
+ 2
)

csc4
(
x
L

))
32L4

+
π2m2t2 csc2

(
x
L

)
16L2

(69)

+
(−1)l

2π

∞∑
n=−∞

[
1

4

(
2m2 log

(
2m
√

(Ln + x)2

)
+ 2γm2 −m2 − 2m2 log(2)

)
(70)

+
m2t2

16(Ln + x)2

]
+ O

(
t4
)

(71)

and when t = 0, we have

Ebdry (x , 0) ∼
π csc2

(
x
L

)
8L2

+
(−1)l

2π

∞∑
n=−∞

1

4

(
2m2 log

(
2m
√

(Ln + x)2

)
+ 2γm2 −m2 − 2m2 log(2)

)
(72)

When the mass is sufficiently small or equal to 0, the above analysis yields the correct answers time after time. So
far, Dr. Fulling and I haven’t spotted any serious errors with the above asymptotic analysis. It seems to me that
the above is valid when m→ 0 because the above answers also seem to agree with Hay’s paper [1].
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The boundary term can be expressed as

Ebdry (x , t) = −(−1)l

2π

∂

∂t

∞∑
n=−∞

(−1)n(l+r) mt√
4(x + nL)2 + t2

K1(m
√

4(x + nL)2 + t2) (73)

(74)

Let’s assume that l + r is an even integer. Then we integrate the local energy denisty and we obtain

Ebdry (t) = −(−1)l

π

∂

∂t

∞∑
n=0

∫ L

0

mt√
4(x + nL)2 + t2

K1(m
√

4(x + nL)2 + t2) dx (75)

and hence,

Ebdry (t) = −(−1)l

π

∞∑
n=0

∫ L

0
m

((2Ln − t + 2x)(2Ln + t + 2x)K1

(
m
√
t2 + 4(Ln + x)2

)
(4(Ln + x)2 + t2)3/2

(76)

−
mt2K0

(
m
√
t2 + 4(Ln + x)2

)
4(Ln + x)2 + t2

)
dx (77)

and doing a change of variables x ′ = Ln + x , we obtain
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Ebdry (t) = −(−1)l

π

∞∑
n=0

∫ L(n+1)

Ln
m

(
(2x ′ − t) (t + 2x ′)K1(m

√
t2 + 4x ′2)

(t2 + 4x ′2)3/2
− mt2K0(m

√
t2 + 4x ′2)

t2 + 4x ′2

)
dx ′ (78)

= −(−1)l

π

∫ ∞
0

m

(
(2x ′ − t) (t + 2x ′)K1(m

√
t2 + 4x ′2)

(t2 + 4x ′2)3/2
− mt2K0(m

√
t2 + 4x ′2)

t2 + 4x ′2

)
dx ′ (79)

and doing another change of variables u = 4x ′2 + t2, we have

Ebdry (t) = −(−1)l

π

∫ ∞
t

m

((
u2 − 2t2

)
K1 (mu)

u3
− mt2K0 (mu)

u2

)
u

2
√
u2 − t2

du (80)

= −(−1)l

π

∫ ∞
t

m

((
u2 − 2t2

)
K1 (mu)

2u2
√
u2 − t2

− mt2K0 (mu)

u
√
u2 − t2

)
du (81)

Ebdry (t) = −
[

1

4
πm2tEi(−mt) +

1

4
πm

(
mtEi(−mt) + e−mt

)]
(82)

and,

lim
t→0

Ebdry (t) = −
[

(−1)l

π
lim
t→0

(
1

4
πm2tEi(−mt) +

1

4
πm

(
mtEi(−mt) + e−mt

))]
(83)

= −(−1)l

π

(
mπ

4

)
= −(−1)lm

4
(84)

And for the Dirichlet case (l = 0) we obtain

Ebdry (0) = −m

4
(85)
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Future Work

There are 4 calculations in Section 4 of [2]:

local spectral density (σ, p. 12),
“global” eigenvalue density (ρ or N, p. 13 and p. 14),
total energy (E , pp. 15-16), and
local energy density (T00 or E (t, x), pp. 18-20).

Question: Where do we stand on these four calculations?

Answer: And, my answer is simple, I have been focusing all of my attention on the local energy density calculations.
I ignored the other three calcualtions because I thought obtaining the local energy density was the top priority.
Hopefully, I will get around to improving the structure of the paper itself, but before I do that I would like to
receive more feedback.

The massive analogs of the formulas for ρWeyl , ρper , ρbdry will be computed along the following lines:

The massive analogs of the formulas for σ(ω) are related to the massless case by simply substituting κ for ω

and also multiplying it by the factor
πω

κ
.
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Future Work & The Current State of Affairs

At this point, the research notes lack structure, but the notes don’t lack direction. The direction that I am taking
is now to compute the massive analog of the counting function N(ω).

Once again, there should be agreement between the massive counting function and the massless counting function
when m→ 0.

Let’s examine the global situation first. The eigenvalue density is

ρ(ω) =

∫ L

0
σ(ω, x) dx = ρWeyl(ω) + ρper (ω) + ρbdry (ω), (86)

where

ρWeyl(ω) =

∫ L

0
σav dx =

∫ L

0

ω

πκ
dx =

Lω

πκ
, ρper =

2Lω

πκ

∞∑
n=1

(−1)n(l+r) cos(2κnL), (87)

The eigenvalue density is

ρ(ω) =

∫ L

0
σ(ω, x) dx = ρWeyl(ω) + ρper (ω) + ρbdry (ω), (88)

where

ρWeyl(ω) =

∫ L

0
σav dx =

∫ L

0

ω

πκ
dx =

Lω

πκ
, ρper =

2Lω

πκ

∞∑
n=1

(−1)n(l+r) cos(2κnL), (89)

ρbdry =
(−1)l

2π

∞∑
n=−∞

(−1)n(l+r)ω

κ2
[sin(2κL(n + 1))− sin(2κLn)], (90)

where κ =
√
ω2 −m2.
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The eigenvalue counting function N(ω) is zero for ω < m and
∫ ω

0 ρ for ω > m. Therefore (for ω > m),

NWeyl(ω) =
L

π

∫ κ

0

ω

κ
· κ
ω
dκ =

Lκ

π
=

L
√
ω2 −m2

π
. (91)

Nper (ω) =
2L

π

∞∑
n=1

(−1)n(l+r)

∫ κ

0

√
κ2 + m2

κ

κ√
κ2 + m2

cos(2nLκ) dκ (92)

=
2L

π

∞∑
n=1

(−1)n(l+r) sin(2nLκ)

2Ln
(93)

=
1

π

∞∑
n=1

(−1)n(l+r)

n
sin(2nLκ) (94)

The Fourier series in Nper can be evaluated to a sawtooth function. [See GR 1.441.1, GR 1.441.3, and [2] pp. 14
and pg. 9-10].

ρbdry (ω) =

∫ L

0
σbdry (ω) dx =

(−1)l

π

∞∑
n=−∞

(−1)n(l+r)

∫ L

0

ω

κ
cos(2κ(x + nL)) dx (95)

=
(−1)l

2π

∞∑
n=−∞

(−1)n(l+r)ω

κ2
[sin(2κL(n + 1))− sin(2κnL)] (96)

and,
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Nbdry (ω) =

∫ ω

m
ρbdry (ω) dω =

(−1)l

2π

∞∑
n=−∞

(−1)n(l+r)

∫ κ

0

√
κ2 + m2

κ2

[
sin(2κL(n + 1))− sin(2κnL)

]
κ√

κ2 + m2
dκ

(97)

=
(−1)l

2π

∞∑
n=−∞

(−1)n(l+r)

∫ κ

0

1

κ
[sin(2κL(n + 1))− sin(2κnL)] dκ (98)

In other words, we end up with the following expression:

Nbdry (ω) =

{
(−1)l

π

∑∞
n=0(−1)n(l+r)

∫ κ
0

sin(2κL(n+1))−sin(2κLn)
κ dκ if l + r is even,

0 if l + r is odd.
(99)

Consider the regularized vacuum energy

E (t) = − d

dt

1

2

∫ ∞
0

ρ(ω)e−ωt dω ≡ EWeyl(t) + Eper (t) + Ebdry (t) (100)

where

Eper (t) =− L

π

d

dt

∞∑
n=1

(−1)n(l+r)

∫ ∞
0

cos(2κnL)e−t
√
κ2+m2

dκ (101)

= −L

π

d

dt

∞∑
n=1

(−1)n(l+r) mt√
t2 + (2nL)2

K1

(
m
√
t2 + (2nL)2

)
(102)
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Taking the limit of m→ 0 of Eper (t) yields

lim
m→0

Eper (t) = lim
m→0
−L

π

d

dt

∞∑
n=1

(−1)n(l+r) mt√
t2 + (2nL)2

K1

(
m
√
t + (2nL)2)

)
(103)

∼ lim
m→0
−L

π

d

dt

∞∑
n=1

(−1)n(l+r) mt√
t2 + (2nL)2

(104)

×
[

1

z
+

1

4
z(2 log(z) + 2γ − 1− 2 log(2)) + O

(
z2
) ]

(105)

= −L

π

d

dt

∞∑
n=1

(−1)n(l+r) t

t2 + (2nL)2
, (106)

where z = m
√
t2 + (2nL)2. So, the massive analog of the periodic energy agrees with the massless case.

The End
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