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Introduction

Vacuum energy density for a massive scalar field

This paper is based on Patrick Hays's paper on a confined massive field in
two dimensions. In the paper “Vacuum fluctuations of a confined massive
field in two dimensions,” the zero-point energy of a massive scalar field
confined to a two-dimensional M.I.T. bag model, is computed. )
We follow the mathematical style of Fulling's paper “Vacuum energy as
spectral geometry.” The vacuum energy is treated as a purely
mathematical problem, an underdeveloped aspect of the spectral theory of
self-adjoint second-order differential operators. What | am basically doing
is to note the common generalization between the P. Hay's paper and S.
Fulling's paper.

Fernando Daniel Mera (Northeastern Universi Energy density for a massive scalar field May 16, 2013 2/23



Vacuum energy density

Boundary vacuum energy from closed and periodic orbits

We consizder a finite interval with either a Dirichlet or a Neumann boundary condition at each end. Thus
H= —:75 + m? acts in L2(0, L) on the domain defined by

u@No)y=0, W NL)=0, Ire{o1} (1)

The Green function can be constructed from G, by the method of images. The Green function can be expressed as

G(w?, x,¥) = Goo(y) + (=1) Goo(—y) + (~1) Goo(2L — y) + (~1)"*" G (2L + y) ()
(D) G (2L +y) + (-1 Go(—2L — y) ®3)
+(71)I+2’G00(4L7y)+(71)2l+2r600(4L+y)+"' (4)

and the above Green function has to satisfy the equation:

G+m%mm (5)

dx—y)= T2

This is the same as the equation satified by G, and G in [2] except that —\ has been replaced by m? — X . So, we
should be abe to use the same formulas as in [2] but we need to replace w(=+v'\) by

Kk =vw?2 — m2. (6)
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Green Function

Let's check from first principles that the new G, satisfies the right Green equations. We want

TS k6= s(x—y) ™)
so for x — y we want "
27(2; = —k%G. (8)
Thus )
Gxoy) = {/;:;’;(i;)f* o ©

Therefore, our G is given by )
[
Goo(w?, x,y) = € sy, (10)

When we go to the variable x the situation is slighly more complicated; & is not just w minus a constant

Remark:The Weyl and periodic terms will not be the same as in the massless case,
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The Hamiltonian, now contains a potential term which comes from the massive scalar field. | will adopt the
convention that
(Hx — £)G(W?, x,y) = 8(x — y). (11)

All we know is that G(w?, x, y) must satisfy the above equation. Let us not loose sight of our objective, to find the
local spectral density from closed and periodic orbits. So, we have

Wﬁo(w) =2k Im G(w?, x,x) (12)
w
= 3" (1) cos(2knL) + D (=1)+0H0 cos(2k(nL + x)) (13)
n=0 n=0
+ Z(fl)”*”(’“) cos(2k(nL — x)) + Z(fl)”(’”) cos(2knL) (14)
n=1 n=1
=142 (-1)"") cos(2knL) + > (—1)F) cos(2r(x + nl)) (15)
n=1 n=-00
K K
= ﬁ;(ﬁav + Oper + O'bdry) = 7T;(”av + ”osc) (16)
where £k =vVw?2 — m2.
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In the case £ = %, the contribution of the space derivatives is identical to that of the time derivatives, so we can
write
10

Too(t,x) = E(t,x) = 75&/0 o(w)e ™" dw = Eweyi(t, x) + Eper(t, X) + Epdry(t, X)- (17)

Using Equation 3.914.1 from [4], we obtain the following expression:
W t
/ e VHR Cos(2nli) di = —— Ky (my/ 12 + (20L)2) (18)
Jo 12+ (2nL)?

Let's compute the Eyye, term for the massive case:

1 d i —wt
EWey/(t) = 24t b UWeyI(W)e dw (19)
and doing the change of variables, w? = 2 4+ m?, gives
V2 .
Eweyi(t) = / VRAM K eV g, (20)
271' dt VK2 + m?
__1d eV, _ 1 d
= “ordt ), e dk = T mKi(mt). (21)
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When v is fixed and z — 0,

Ky () ~ %r(u) (%z) (Re v > 0) (22)
and in our case, ¥ = 1 and hence L
Ki(z = mt) ~ 7F(1)<%mt> = % (23)
Therefore for small mt, our expression becomes
1d 1 d 1 1
Eeyi(t) ~ —gamKl(mt) =5 (mﬁ> =5 (24)

To put equation 24 into the usual form for renormalization calcualtions, we need to expand it in power (Laurent)
series in t. The leading term will be O(t2) and should match the massless case. The Laurent series in t for
equation can be expressed as

Epeyi(t) ~ 7%% [% + %m(mt) (2 log(mt)+2y—-1-2 |0g(2)> +0 ((mt)z)] (25)
Fltz - T—; — 8lﬂ_m2(2 log(mt) 4+ 2y —1—2log(2)) + O (t) (26)

2 2
N %Lizf%log(%l) J”T(sz)] +0() 7)
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The periodic term for the massive case is given by

1d & W _
EPer(t) = 7;& ;(71)n(/+r) /0 E(’Per(w)e “t dw (28)
1d ® T
__-“ -1 n(/+r)/ —tVm?+x 2nlk 2
o ,,z:‘:( ) A e cos(2nLk) dk (29)
1d & mt
=—=— —)H) Ky (my/(2nL)? + 2 shit
V) i (2nl)? + ) e
Therefore,
1d t 1d = m’t
i o_z4dN P e mt 24 2
aimy Eper () ~ =2 ¢ ; GrP 2 aowdr ; 4 [(2 log (m (2nL)2+t > (31)
+2y—1-2 Iog(2)> + 0 (m*(4L%n* + tz))] (32)
,liiéf,lil meoth (3) 2 (33)
mdt £ (2nL)2 + 12 wdt4 L t
T oseh? (FE) - L
sz (50) ~ 5 (34

and we can clearly see that the above result agrees with [2, p. 15].
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The periodic term, Eper(t), will approach a contant value as t — 0:

lim Eper (£) ~ — | lii (35)
0% Sper k) T dt et (2nL)2 + 2
1d o= mlt
_im 22 mt 24 42 1
tll—rHJﬂ'dt ; ) [(2|og (m (2nL)? + ¢ ) +2vy-1 2|og(2)> (36)
+ O(m?(4L2n + tz))] (37)
At this point, let's split the periodic terms into the massless contribution and the massive contribution. The
massless contribution to the periodic energy will be denoted by EjZ” 0(t) and the massive contribution will be
denoted by E[7 (t).
So,
1d 1= d t
lim Eg2 O(t) = lim | —=— im | — - 38
1T per () tm)[ mdt ; 2nL)? +t2] rH}J[ ﬂ;dt(QnL)QthZ] (38)
1, 4122 g2 h2 (Zt 1
il Z = lim L(?) - (39)
T (41202 + £2)? t—0 16L2 4rt2
7rcsch (7) 1 m
=lim( —52 )= —— 4
JL“o( 812 27Tt2> 2412 (40)

and this agrees with [2, pg. 16].
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Calculation of the term Epgy, (t, x)

The interesting term is the boundary term, Eygy, (t,x), which is given by

“1Y o & oo
Ebary (£, x) = _ Qﬂ) 5 > (-1yntn /0 %cos(Zn(x-&-nL))e’“’t dw (41)
N G I /°° — /T
DI n;m( 1) A cos(2k(x + nL))e dr (42)

Now, we do a change of variables so that we can integrate with respect to x instead of w. After doing the change
of variables we obtain

Ebary (t,) = ’(;)I% i (-2 /00o cos(2r(x + nL))e” ™ dr 43)
=y Syt Mt e Y+ n
5 ot n;w( 1) am (2 + L))+ ) (44)

since w dw = K dk.

Fernando Daniel Mera (Northeastern Universi Energy density for a massive scalar field May 16, 2013 10 / 23



In the boundary case, things get more complicated because we now have to deal with position, x. Then the
boundary term, Epgry(x,t) can be expressed as

D' K mt 2. 2
Ebary (x, 1) = ath( 1) 4(”"“2“2& my/4(x + nL)2 + ¢ (45)

=—00

Let's go back to computing the boundary term. The boundary term can be expressed as

—1)/ sl m
Ebdry(X7 t) = 7( 27]1-_) % n;m(*l)n(H»r)\/ﬁﬁ K1 <m\/m) (46)

(47)
Using the asymptotic expansion of Ki(z) for small argument yields
(-1 o / mt 1

Epdry(x, t) ~ — (-1t (48)

o dr VA(x + nL)2 + 2 m\/4(x + nL)2 + 12

(_1)/ 0 & n(l+r) t
=— = -1 [ S— 4

21 Ot Z =1 4(x + nL)>+ 2 (49)

n=—o0

and this agrees with the result obtained in [2].
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Let's go back to the massive case. In the massive case, we quickly discover that we can't obtain an explicit formula
for the infinite sum. Then

Euan(x.t) =~ G0 SS Capn [ L (50)
v 2m Ot 4(Ln+x)2 + t2

+ 7 (g (my/ain i+ 2) +20- 1 21052)) o1

+0 ((m 4(Ln+x)2+ tz)Qﬂ (52)
Let's assume that / + r is an odd integer. For the odd case, we have
Epary(x,t) = (;612?‘ {coth (ﬂ(t ;LZiX)> csch (Tr(t ;inx)) (53)
ot (250 o (20 &
L O (g (20 (280 o
+ (;71)/ i [#mz (2 log (m\/m) +2y-1- 2|og(2)) (56)
+ O(m*(4(Ln+ x)* + rz))] (57)
: o0 [cot SLC:C () (5 (2cot? ("T)ﬁILiot (%)) esc (%)) L. ] (58)
N [ t2rm? coltw) csc (§) +] (59)
( 1)1 Z {( 1)" <2I0g (m 4(Ln+x)2+t2) (60)
+2y-1-2 Iog(Z))) + O(m*(4(Ln + x)? + tz))] +0(t% (61)
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and when t = 0, we obtain

Enay (.0 = 2B e (8) _ (1) 5= (2108 (min) +20 1) (62)

n=—o0

For the even case we obtain,

(-)'m (cosh(%)cos@ D __(CD)mmtsinn () (63)

412 (cos (2*) — cosh (5t )) N 8L(cos (%) — cosh (7))

+ (;i)l i Hmz (2 log { my/4(Ln+ x)? + t2> +2y-1-2 Iog(2)) (64)

n=—oc

Epary(x,t) =

+ 0 (m*(4(Ln+ x)? + tz))} (65)

Can we match this result against some results of [1] or Appendix B of the predecessor paper by Bender and Hays
(317
Ignoring the mass terms, we obtain the following expression:

_(71)’ 7 (cosh (Zt) cos (2) —1)

Ebary (x, t) ~ (66)
v 412 (cos (%) — cosh ("T‘))z
and now let's assume that t is very small and that x is fixed. Assuming that / = 1, and using a power series
expansion we obtain the following expression:
mesc? () 2 (3 (cos (%) +2) esct (%)) 4
Ebdry(x,t) ~ . 2 + O(t*). (67)
When t = 0, we obtain
mesc? (X
Euy(5,0) ~ 1) (68)

812

and the above result agrees with [2].
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Then,

mesc? (X)) t2(n3 (cos () +2) esc* (¥)) | m2mPt2esc? (%)

Eoary (. t) ~ —gz— — 3200 1612 (69)
+ (;TIr)I Z B <2m2 log <2ma/(Ln + X)2> +2ym? — m? - 2m? Iog(2)> (70)

0o
+ 16(;_,:1:)()2] +0 (t4) (71)

and when t = 0, we have

Epdry(x,0) ~

mesc? (5)  (-1) 1 5
—— L - 2 L2 2 5.2
o2 + o g 7 (2m log <2m (Ln+ x) ) +2ym* — m~ —2m |0g(2)> (72)

When the mass is sufficiently small or equal to 0, the above analysis yields the correct answers time after time. So
far, Dr. Fulling and | haven't spotted any serious errors with the above asymptotic analysis. It seems to me that
the above is valid when m — 0 because the above answers also seem to agree with Hay's paper [1].
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The boundary term can be expressed as

I G ) L A e mt 2. 2
Ebary (%, £) = =5 = nz (-1) TN t2K1(m,/4(x+nL) +t2) (73)

=—00

Let's assume that / + r is an even integer. Then we integrate the local energy denisty and we obtain

Ebd,y(t):f = mz/ \/m Ki(my/4(x + nL)? + t2) dx (75)

and hence,
o oL (2Ln—t42x)(2Ln + t + 2x) Ky (m t2+4(Ln+x)2)
Ebary( ( 76
Y prd (4(Ln + x)2 + 12)>2 (76)
mt?Ky (m t2 +4(Ln+ X)Q)
- 4(Ln+x)2 +t2 ) o ()

and doing a change of variables x’ = Ln + x, we obtain
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—1) &, pLnt1) 2x' — 2x") Ky (mv/E2 + 4x72 2 /2 + 4x2
(1) = LS [ (B0 2O IAVELSE) ol a0 o)
T =i (t2 + 4x72)3/ t2 4 4x
(=1 [ (X —t) (t+2x) Ki(mVEZ +4x2)  mt?Ko(mVE2 +4x2)\ |,
=— m - dx (79)
T Jo (2 1 4x2)3/2 2+ 4x2
and doing another change of variables u = 4x’? + t?, we have
(e (u? —26%) Ky (mu)  mt?Ko (mu) u
Eran() === [ m . - ) (80)
1\ 00 2 —2t2 K. 2
_ (-1 / . (u ) K1 (mu) _ mt?Ko (mu) du (81)
T Je 202\ u? — 2 uvu? — 2
1 2. 1 H —mt
Epary(t) = — 7m tEi(—mt) + 7m (mtEi(—mt) 4+ e~™) (82)
and,
lim Epgry (t) = — 1 lim 171'm21.‘Ei(7mt’) + 17rm (mtEi(—mt) + e~™) (83)
£ oA T t—=0\ 4 4
(=0 mr\  (-1)'m
T oor \4) 7 4 (84)
And for the Dirichlet case (/ = 0) we obtain
m
Evay (0) = (85)
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Future Work

There are 4 calculations in Section 4 of [2]:
o local spectral density (o, p. 12),
o “global” eigenvalue density (p or N, p. 13 and p. 14),
o total energy (E, pp. 15-16), and
o local energy density (Tog or E(t,x), pp. 18-20).

Question: Where do we stand on these four calculations?
Answer: And, my answer is simple, | have been focusing all of my attention on the local energy density calculations.
| ignored the other three calcualtions because | thought obtaining the local energy density was the top priority.

Hopefully, | will get around to improving the structure of the paper itself, but before | do that | would like to
receive more feedback.

The massive analogs of the formulas for pweys, pper: Pbdry Will be computed along the following lines:

@ The massive analogs of the formulas for o(w) are related to the massless case by simply substituting « for w
. . . W
and also multiplying it by the factor —.
K
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Future Work & The Current State of Affairs

At this point, the research notes lack structure, but the notes don’t lack direction. The direction that | am taking
is now to compute the massive analog of the counting function N(w).

Once again, there should be agreement between the massive counting function and the massless counting function
when m — 0.

Let's examine the global situation first. The eigenvalue density is

L
) = [ 01ex) o = ity () + () + iy ) (86)
where L . -
" "t w Lw 2Lw Ir
PWey(w) = /o Oay dx = /0 - dx = g Pper = —— ;(—1)"( ) cos(2rknL), (87)
The eigenvalue density is
L
) = [ 0160x) 0 = (&) + par() + Py ) (88)
0
where L L
- Y _ 2L S et
Pweyi(w) = /0 Oay dx = /0 —dx = pper = n;( 1) cos(2rnlL), (89)
7(71)1 0 (71)n(l+r)w ) )
Poary = =5 ";w ——[sin(26L(n + 1)) = sin(2xLn)], (90)

where k =vVw?2 — m2.
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Future Work and State of Affairs

The eigenvalue counting function N(w) is zero for w < m and [ p for w > m. Therefore (for w > m),

Lor : Lk LVw?—m?
Nyt () = ,/ Wy e _bw-m (91)
TJo K W ™ ™
2L & "VK2 + m? K
N == 71"(’+’)/ vy v & 20l k) dr 2
per(w) = — ;( ) A - mcos( nL k) drk (92)
2L & n(nsin(2nlL k)
L AN GC0)
= ;( 1) >Tn (93)
X _1\n(l+r)
1 > (Gl sin(2nl k) (94)
s =1 n

The Fourier series in Nper can be evaluated to a sawtooth function. [See GR 1.441.1, GR 1.441.3, and [2] pp. 14
and pg. 9-10].

o) = [ asante) o = nim(—l)"“*“ [ costanto iy o (95)
= (;713’ i #[sm(m(w1))7sin(2nnL)] (96)

and,
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Future Work & State of Affairs

Nbdry(w) = /mw Pbdry(w) dw = 1 Z (—1)nt+n /0'i # [sin(ZmL(n +1)) —sin(2knL) I

2r = K2 + m?
(97)
= (_l)l i (—1)"““) /K 1[sin(2,‘~;L(n +1)) —sin(2xknl)] dx (98)
2r £ 0 K
n=—oo
In other words, we end up with the following expression:
(=1 §~o0 ¢ qyn(l+r) [r sin(2kL(n+1))—sin(2kLn) . .
Nogry (@) = 4 ™ >oo(-1) Jo TSRS !f I+r !s even, (99)
0 if [+ ris odd.
Consider the regularized vacuum energy
dl i —wt
E(t) = 53 p(w)e ™ dw = Epeyi(t) + Eper(t) + Ebary (1) (100)
0
where
Eper(t) = — Ld i(fl)"(’”) /Do cos(2knL)e” VT g, (101)
per wdt ot 0
Ld & mt
=== (1)) ——— Ky my/t2 + (2nL)? 102
ﬁdt;( ) t2 + (2nL)? p{my o (@nt) (102)

Fernando Daniel Mera (Northeastern Universi Energy density for a massive scalar field May 16, 2013



Taking the limit of m — 0 of Epe/(t) yields

Ld & mt
i = lim ——— E _1)n(+r) / 2
pimy Eper(£) = Jim = 5 ,,:1( 2 t2+(2nL)2K1 (m £+ (20l) )> (103)

Ld & mt
SO _Lra _\o(l4ry Y
,1,'510 T dt nZ:‘:( b t2 + (2nL)? (109
X [1 + 2(2log(z) + 27~ 1~ 210g(2)) + 0 () ] (105)
_Ld O~ yaen ;
" e

where z = m\/t? + (2nL)2. So, the massive analog of the periodic energy agrees with the massless case.
O

The End
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The End
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