# Spectral Functions for Regular Sturm-Liouville Problems 

Guglielmo Fucci<br>Department of Mathematics<br>East Carolina University

May 15, 2013

## Regular One-dimensional Sturm-Liouville Problems

Let $I=[0,1] \subset \mathbb{R}$, and let $\mathcal{L}$ be the following symmetric second order differential operator

$$
\mathcal{L}=-\frac{\mathrm{d}}{\mathrm{~d} x}\left(p(x) \frac{\mathrm{d}}{\mathrm{~d} x}\right)+V(x)
$$

with $p(x)>0$ for $x \in I$, and $p(x)$ and $V(x)$ in $\mathscr{L}^{1}(I, \mathbb{R})$. For the differential operator $\mathcal{L}$ we consider the differential equation

$$
\begin{equation*}
\mathcal{L} \varphi_{\lambda}=\lambda^{2} \varphi_{\lambda} \tag{1}
\end{equation*}
$$

where $\lambda \in \mathbb{C}$ and $\varphi_{\lambda} \in C^{2}(I)$.
The differential equation (1) endowed with self-adjoint boundary conditions imposed on $\varphi_{\lambda}$ is called a regular Sturm-Liouville problem. Furthermore, the parameter $\lambda \in \mathbb{R}$ denotes the eigenvalues of the SL problem. Self-adjoint boundary conditions can be divided in two mutually excluding classes:

- Separated Boundary Conditions
- Coupled boundary conditions.


## Separated Boundary Conditions

Separated boundary conditions have the following general form

$$
\begin{aligned}
& A_{1} \varphi_{\lambda}(0)-A_{2} p(0) \varphi_{\lambda}^{\prime}(0)=0 \\
& B_{1} \varphi_{\lambda}(1)+B_{2} p(1) \varphi_{\lambda}^{\prime}(1)=0
\end{aligned}
$$

with $A_{1}, A_{2}, B_{1}, B_{2} \in \mathbb{R}$ and $\left(A_{1}, A_{2}\right) \neq(0,0)$, and $\left(B_{1}, B_{2}\right) \neq(0,0)$.
Eigenvalues. For each $\lambda$ we choose a solution $\varphi_{\lambda}$ satisfying the initial conditions

$$
\varphi_{\lambda}(0)=A_{2}, \quad \text { and } \quad p(0) \varphi_{\lambda}^{\prime}(0)=A_{1}
$$

The eigenfunctions of the Sturm-Liouville problem are, then, those that also satisfy the condition

$$
\Omega(\lambda)=B_{1} \varphi_{\lambda}(1)+B_{2} p(1) \varphi_{\lambda}^{\prime}(1)=0
$$

which represents an implicit equation for the eigenvalues $\lambda$.
Remarks: Well-known examples

- For $A_{1}=B_{1}=0$ and $A_{2}=B_{2}=0$ we get Neuman and Dirichlet boundary conditions, respectively.
- When $A_{1}=B_{1}$ and $A_{2}=-B_{2}$ we have Robin Boundary conditions.
- By setting $A_{1}=B_{2}=0$ or $A_{2}=B_{1}=0$ we obtain mixed or hybrid boundary conditions.


## Coupled Boundary Conditions

Coupled boundary conditions can be expressed in general as

$$
\binom{\varphi_{\lambda}(1)}{p(1) \varphi_{\lambda}^{\prime}(1)}=e^{i \gamma} \mathrm{~K}\binom{\varphi_{\lambda}(0)}{p(0) \varphi_{\lambda}^{\prime}(0)}
$$

where $-\pi<\gamma \leq 0$ or $0 \leq \gamma<\pi$ and $\mathrm{K} \in \mathrm{SL}_{2}(\mathbb{R})$. For $\gamma=0$ and $\mathrm{K}=I_{2}$ we have periodic boundary conditions.
Eigenvalues. We write the solution as

$$
\varphi_{\lambda}(x)=\alpha u_{\lambda}(x)+\beta v_{\lambda}(x)
$$

where for each $\lambda, u_{\lambda}(x)$ and $v_{\lambda}(x)$ are defined by the initial conditions

$$
\varphi_{\lambda}(0)=\beta \quad \text { and } \quad p(0) \varphi_{\lambda}^{\prime}(0)=\alpha
$$

By imposing coupled boundary conditions and by denoting $\left[k_{i j}\right]=K$ we obtain the linear system

$$
\begin{aligned}
\alpha\left[u_{\lambda}(1)-e^{i \gamma} k_{12}\right]+\beta\left[v_{\lambda}(1)-e^{i \gamma} k_{11}\right] & =0 \\
\alpha\left[p(1) u_{\lambda}^{\prime}(1)-e^{i \gamma} k_{22}\right]+\beta\left[p(1) v_{\lambda}^{\prime}(1)-e^{i \gamma} k_{21}\right] & =0
\end{aligned}
$$

which has a non-trivial solution if and only if

$$
\Delta(\lambda)=2 \cos \gamma-\left[k_{22} v_{\lambda}(1)-k_{12} u_{\lambda}(1)+k_{11} p(1) u_{\lambda}^{\prime}(1)-k_{12} p(1) v_{\lambda}^{\prime}(1)\right]=0
$$

## Spectral Zeta Function

The implicit equations for the eigenvalues provide an integral representation of the spectral zeta function valid for $\Re(s)>1 / 2$ as

$$
\zeta^{\left\{\begin{array}{l}
\mathrm{S}
\end{array}\right\}}(s)=\frac{1}{2 \pi i} \int_{\mathcal{C}}\left\{\begin{array}{l}
\mathrm{S} \\
\mathrm{C}
\end{array}\right\} \mathrm{d} \lambda \lambda^{-2 s} \frac{\partial}{\partial \lambda} \ln \left\{\begin{array}{l}
\Omega(\lambda) \\
\Delta(\lambda)
\end{array}\right\} .
$$

By deforming the contour to the imaginary axis and by changing variables $i \lambda \rightarrow z$ one obtains the representation

$$
\left.\zeta^{\left\{{ }_{\mathrm{C}}^{\mathrm{S}}\right.}\right\}(s)=\frac{\sin \pi s}{\pi} \int_{0}^{\infty} \mathrm{d} z z^{-2 s} \frac{\partial}{\partial z} \ln \left\{\begin{array}{c}
\Omega(z) \\
\Delta(z)
\end{array}\right\}
$$

valid for $1 / 2<\Re(s)<1$.
To perform the analytic continuation to the left of the strip $1 / 2<\Re(s)<1$ we subtract and add from the integrand a suitable number of terms from the asymptotic expansion of $\ln \Omega(z)$ and $\ln \Delta(z)$ for $z \rightarrow \infty$.
The desired asymptotic expansion is obtained through a WKB analysis of the solutions of Sturm-Liouville problem.

## Remark:

- For a general one-dimensional Sturm-Liouville differential operator with general self-adjoint boundary conditions, $\Omega(z)$ and $\Delta(z)$ are not known explicitly.


## WKB Expansion

In the parameter $z$, the Sturm-Liouville differential equation reads

$$
\left[-\frac{\mathrm{d}}{\mathrm{~d} x}\left(p(x) \frac{\mathrm{d}}{\mathrm{~d} x}\right)+V(x)\right] \varphi_{z}(x)=-z^{2} \varphi_{z}(x)
$$

By introducing the auxiliary function

$$
\mathcal{S}(x, z)=\frac{\partial}{\partial x} \ln \varphi_{z}(x)
$$

the equation above is equivalent to the following

$$
[p(x) \mathcal{S}(x, z)]^{\prime}=V(x)+z^{2}-p(x) \mathcal{S}^{2}(x, z)
$$

As $z \rightarrow \infty$ we assume that $\mathcal{S}(x, z)$ has the asymptotic expansion

$$
\mathcal{S}(x, z) \sim z S_{-1}(x)+S_{0}(x)+\sum_{i=1}^{\infty} \frac{S_{i}(x)}{z^{i}}
$$

Once the asymptotic expansion of $\mathcal{S}(x, z)$ is known, the one for the solution $\varphi_{z}(x)$ will immediately follow.

## WKB Expansion

By substituting the asymptotic form of $\mathcal{S}(x, z)$ in the previous non-linear differential equation we obtain

$$
\begin{aligned}
S_{-1}^{ \pm}(x) & = \pm \frac{1}{\sqrt{p(x)}}, \quad S_{0}^{ \pm}(x)=-\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} x} \ln \left(p(x) S_{-1}^{ \pm}(x)\right)=-\frac{p^{\prime}(x)}{4 p(x)} \\
S_{1}^{ \pm}(x) & =\frac{1}{2 p(x) S_{-1}^{ \pm}(x)}\left[V(x)-p(x)\left(S_{0}^{ \pm}\right)^{2}(x)-\left(p(x) S_{0}^{ \pm}(x)\right)^{\prime}\right]
\end{aligned}
$$

and for $i \geq 1$

$$
S_{i+1}^{ \pm}(x)=-\frac{1}{2 p(x) S_{-1}^{ \pm}(x)}\left[\left(p(x) S_{i}^{ \pm}(x)\right)^{\prime}+p(x) \sum_{m=0}^{i} S_{m}^{ \pm}(x) S_{i-m}^{ \pm}(x)\right]
$$

The terms $S_{i}^{+}(x)$ and $S_{i}^{-}(x)$ provide the exponentially growing and decaying parts of the solution $\varphi_{z}(x)$ as

$$
\varphi_{z}(x)=A \exp \left\{\int_{0}^{x} \mathcal{S}^{+}(t, z) \mathrm{d} t\right\}+B \exp \left\{\int_{0}^{x} \mathcal{S}^{-}(t, z) \mathrm{d} t\right\}
$$

with $A$ and $B$ uniquely determined by the initial conditions.

## Asymptotic Expansion: Separated Boundary Conditions

For separated boundary conditions the implicit equation for the eigenvalues is

$$
\begin{aligned}
\ln \Omega(z) & \sim \ln \left[-A_{2} p(0) \mathcal{S}^{-}(0, z)+A_{1}\right]+\ln \left[B_{2} p(1) \mathcal{S}^{+}(1, z)+B_{1}\right] \\
& -\ln \left[p(0)\left(\mathcal{S}^{+}(0, z)-\mathcal{S}^{-}(0, z)\right)\right]+\int_{0}^{1} \mathcal{S}^{+}(t, z) \mathrm{d} t
\end{aligned}
$$

By introducing the function $\delta(x)=1$ for $x=0$, and $\delta(x)=0$ for $x \neq 0$ one can further expand $\ln \Omega(z)$ to obtain

$$
\begin{aligned}
\ln \Omega(z) & =-\frac{1}{4} \ln p(0) p(1)+\left[1-\delta\left(A_{2}\right)\right] \ln A_{2} \sqrt{p(0)}+\left[1-\delta\left(B_{2}\right)\right] \ln B_{2} \sqrt{p(1)} \\
& +\delta\left(A_{2}\right) \ln A_{1}+\delta\left(B_{2}\right) \ln B_{1}-\ln 2 z+\left[2-\delta\left(A_{2}\right)-\delta\left(B_{2}\right)\right] \ln z \\
& +z \int_{0}^{1} S_{-1}^{+}(t) \mathrm{d} t+\sum_{i=1}^{\infty} \frac{\mathcal{M}_{i}}{z^{i}}
\end{aligned}
$$

## Remark:

- The terms $\mathcal{M}_{i}, i \geq 1$, are expressed only in terms of $p^{(n)}(x)$ and $V^{(n)}(x)$ with $n \leq i+1$ and their powers.


## Asymptotic Expansion: Coupled Boundary Conditions

For coupled boundary conditions the implicit equation for the eigenvalues is

$$
\begin{aligned}
& \ln \Delta(z) \sim-\ln \left[p(0)\left(\mathcal{S}^{+}(0, z)-\mathcal{S}^{-}(0, z)\right)\right]+\int_{0}^{1} \mathcal{S}^{+}(t, z) \mathrm{d} t \\
& \quad+\ln \left[-k_{21}-k_{22} p(0) \mathcal{S}^{-}(0, z)+k_{11} p(1) \mathcal{S}^{+}(1, z)+k_{12} p(1) p(0) \mathcal{S}^{-}(0, z) \mathcal{S}^{+}(1, z)\right]
\end{aligned}
$$

The large- $z$ asymptotic behavior depends on whether $k_{12}$ vanishes or not. Both cases are described by the expression

$$
\begin{aligned}
\ln \Delta(z) & =-\frac{1}{4} \ln p(0) p(1)+\left[1-\delta\left(k_{12}\right)\right] \ln k_{12} \sqrt{p(0) p(1)} \\
& +\delta\left(k_{12}\right) \ln \left(k_{22} \sqrt{p(0)}+k_{11} \sqrt{p(1)}\right) \\
& +\left[2-\delta\left(k_{12}\right)\right] \ln z-\ln 2 z+z \int_{0}^{1} S_{-1}^{+}(t) \mathrm{d} t+\sum_{i=1}^{\infty} \frac{\mathcal{N}_{i}}{z^{i}}
\end{aligned}
$$

## Remark:

- The terms $\mathcal{N}_{i}, i \geq 1$, are expressed only in terms of $p^{(n)}(x)$ and $V^{(n)}(x)$ with $n \leq i+1$ and their powers.


## Analytic Continuation of the Spectral Zeta Function

From the integral representation of $\zeta\left\{{ }_{\mathrm{C}}^{\mathrm{S}}\right\}(s)$ we add and subtract $L$ leading terms of the respective asymptotic expansions to obtain

$$
\zeta{ }^{\left\{\begin{array}{l}
\mathrm{S} \\
\mathrm{C}
\end{array}\right.}(s)=Z{ }^{\left\{\begin{array}{l}
\mathrm{S} \\
\mathrm{C}
\end{array}\right.}(s)+\sum_{i=-1}^{L} A_{i}^{\left\{\begin{array}{l}
\mathrm{S} \\
\mathrm{C}
\end{array}\right.}(s)
$$

with $Z\left\{\begin{array}{l}\stackrel{\mathrm{S}}{\mathrm{C}}\} \\ (s)\end{array}\right.$ an analytic function for $\Re s>-(L+1) / 2$, and $A_{i}^{\left\{\begin{array}{l}\{ \\ \mathrm{C}\end{array}\right\}}(s)$ meromorphic functions for $s \in \mathbb{C}$. In particular we have

$$
\begin{aligned}
\zeta^{\mathrm{S}}(s) & =Z^{\mathrm{S}}(s)+\frac{\sin \pi s}{\pi}\left[\frac{1-\delta\left(A_{2}\right)-\delta\left(B_{2}\right)}{2 s}+\frac{1}{2 s-1} \int_{0}^{1} S_{-1}^{+}(t) \mathrm{d} t-\sum_{i=1}^{L} i \frac{\mathcal{M}_{i}}{2 s+i}\right] \\
\zeta^{\mathrm{C}}(s) & =Z^{\mathrm{C}}(s)+\frac{\sin \pi s}{\pi}\left[\frac{1-\delta\left(k_{12}\right)}{2 s}+\frac{1}{2 s-1} \int_{0}^{1} S_{-1}^{+}(t) \mathrm{d} t-\sum_{i=1}^{L} i \frac{\mathcal{N}_{i}}{2 s+i}\right]
\end{aligned}
$$

## Remarks:

- $\zeta^{\mathrm{S}}(s)$ and $\zeta^{\mathrm{C}}(s)$ are meromorphic functions of $s \in \mathbb{C}$ with only a simple pole at $s=1 / 2$.


## Functional Determinant and Heat Kernel Coefficients

From the analytically continued expression of the spectral zeta function one can compute

- The functional determinant, $\operatorname{det}(\mathcal{L})=\exp \left\{-\zeta^{\prime}(0)\right\}$.
- The coefficients of the asymptotic expansion of $\theta(t)=\operatorname{Tr}_{\mathscr{L}^{2}} e^{-t \mathcal{L}}$.

For the HKC, by using the Mellin transform one has

$$
a_{\frac{1}{2}-s}=\Gamma(s) \operatorname{Res} \zeta(s), \quad a_{\frac{1}{2}+n}=\frac{(-1)^{n}}{n!} \zeta(-n)
$$

when $s=1 / 2$ and $s=-(2 n+1) / 2$ with $n \in \mathbb{N}_{0}$. In our case we have

$$
a_{0}^{\mathrm{S}}=a_{0}^{\mathrm{C}}=\frac{1}{2 \sqrt{\pi}} \int_{0}^{1} \frac{\mathrm{~d} t}{\sqrt{p(t)}}
$$

$a_{\frac{1}{2}}^{\mathrm{S}}=\frac{1-\delta\left(A_{2}\right)-\delta\left(B_{2}\right)}{2}, a_{\frac{2 m+1}{2}}^{\mathrm{S}}=-\frac{1}{(m-1)!} \mathcal{M}_{2 m}, a_{n+1}^{\mathrm{S}}=-\frac{2^{2 n} n!}{\sqrt{\pi}(2 n)!} \mathcal{M}_{2 n+1}$,
$a_{\frac{1}{2}}^{\mathrm{C}}=\frac{1-\delta\left(k_{12}\right)}{2}, \quad a_{\frac{2 m+1}{2}}^{\mathrm{C}}=-\frac{1}{(m-1)!} \mathcal{N}_{2 m}, \quad a_{n+1}^{\mathrm{C}}=-\frac{2^{2 n} n!}{\sqrt{\pi}(2 n)!} \mathcal{N}_{2 n+1}$,
with $m \in \mathbb{N}^{+}$and $n \in \mathbb{N}_{0}$.

## Further Research

The analysis outlined above represents the foundation for further research

- Analysis of the Casimir energy and force for a one-dimensional piston modeled by a compact potential with separated or coupled boundary conditions. Study of the behavior of the force as the boundary conditions change.
- Generalize the technique presented here to study spectral functions for Laplace operator on manifolds of the type $I \times N$ or $I \times{ }_{f} N$ with $N$ being a compact Riemannian manifold, and $I=[a, b] \subset \mathbb{R}$. These results could be applied to the analysis of the Casimir effect for potential pistons with arbitrary cross-section.
- It would be particularly interesting to develop a method similar to the one presented in this paper to obtain the analytic continuation of the spectral zeta function for one-dimensional singular Sturm-Liouville problems:
- The functions $p(x)$ and $V(x)$ become unbounded in the neighborhood of the endpoints of $I$.
- The interval $I=\mathbb{R}$ is unbounded and the potential $V(x) \rightarrow+\infty$, as $|x| \rightarrow \infty$, is confining.

