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The electromagnetic Green’s dyadic, which corresponds to the vacuum
expectation value of the time-ordered product of electric fields, satisfies
the di↵erential equation

✓
1

!2
r⇥r⇥�1

◆
�(r, r0;!) = 1�(r � r0),

or, for the divergenceless dyadic �0 = �� 1,
✓

1

!2
r⇥r⇥�1

◆
�0(r, r0;!) =

1

!2
(rr� 1r2)�(r � r0),

For a situation with cylindrical symmetry, and perfect conducting
boundary conditions, the modes decouple into transverse electric and
transverse magnetic modes, and we can write

�0 = EGE + HGH ,

in terms of transverse electric and magnetic Green’s functions, where the
polarization tensors have the structure (translationally invariant in z)

E = �r2(ẑ⇥r)(ẑ⇥r0),
H = (r⇥ (r⇥ ẑ))(r0 ⇥ (r0 ⇥ ẑ)).
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Acting on a completely translationally invariant function,

E + H = �r2
?(rr� 1r2),

where

r2 = r2
? +

@2

@z2
.

Further useful properties of E and H are

TrE = TrH = r2r2
?,

r⇥ E⇥
 
r= Hr2, r⇥H⇥

 
r= Er2,

E(r, r0) · H(r00, r000) = H(r, r0) · E(r00, r000) = 0,

E(r, r0) · E(r00, r000) = E(r, r000)r02?r002,
H(r, r0) · H(r00, r000) = H(r, r000)r02?r002,

identifying the intermediate coordinates r0 and r00.
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Energy

For electomagnetism, the energy density is

u = T 00 =
E 2 + B2

2
,

so by use of the Maxwell equations this becomes, in terms of the
imaginary frequency ⇣ = �i!,

u =
1

2
Tr


1 +

1

⇣2

�
r21�rr

��
· EE.

Quantum mechanically, we replace the product of electric fields by the
Green’s dyadic:

hE(r)E(r0)i =
1

i
�(r, r0).

Because we will be regulating all integrals by point splitting, we can ignore
delta functions (contact terms) in evaluations, so since r · �0 = 0, the
quantum vacuum energy is
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E =

Z
(dr)hu(r)i

=
1

2i

Z
(dr) Tr

Z 1

�1

d!

2⇡
e�i!⌧ 1

⇣2
(r2 + ⇣2)�0(r, r0)

��
r0!r

=

Z
(dr)

Z
d⇣

2⇡
e i⇣⌧ Tr�0(r, r),

where in the last equation we have performed the rotation to Euclidean
space, so ⌧ is a Euclidean time-splitting parameter, going to zero through
positive values. This is a well-known formula. In view of the traces, in
terms of the scalar TE and TM Green’s functions,

E = �
Z

(dr)

Z
d⇣

2⇡
e i⇣⌧⇣2(GE + GH).
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Annular Region
We now specialize to the situation at hand, an annular region bounded by
two concentric cylinders, intercut by a co-axial wedge, as illustrated. The
inner cylinder has radius a, the outer b, and the wedge angle is ↵. The
axial direction is chosen to coincide with the z axis.

↵
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The explicit form for the Green’s dyadic is

�0(r, r0) = � 2

↵

X

m

Z 1

�1

dk

2⇡
e ik(z�z 0) 1

2

⇥

E(r, r0) cos ⌫✓ cos ⌫✓0gE

⌫ (⇢, ⇢0) + H(r, r0) sin ⌫✓ sin ⌫✓0gH
⌫ (⇢, ⇢0)

�
.

Here ⌫ = mp where p = ⇡/↵. The H mode vanishes on the radial planes,
and correspondingly,

gH
⌫ (a, ⇢0) = gH

⌫ (b, ⇢0) = 0.

The normal deriviative of the E mode vanishes on the radial planes, as it
does on the circular arcs:

@

@⇢
gE

⌫ (⇢, ⇢0)

����
⇢=a,b

= 0.

Thus TE modes correspond to scalar Neumann modes, TM, Dirichlet.
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TE and TM modes

Both scalar Green’s functions satisfy the same equation:

✓
�1

⇢

@

@⇢
⇢

@

@⇢
+ 2 +

⌫2

⇢2

◆
gE ,H

⌫ =
1

⇢
�(⇢� ⇢0).

gH
⌫ (⇢, ⇢0) = I⌫(⇢<)K⌫(⇢>)

� K⌫(a)K⌫(b)

�
I⌫(⇢)I⌫(⇢0)� I⌫(a)I⌫(b)

�
K⌫(⇢)K⌫(⇢0)

+
I⌫(a)K⌫(b)

�
(I⌫(⇢)K⌫(⇢0) + K⌫(⇢)I⌫(⇢0)),

gE
⌫ (⇢, ⇢0) = I⌫(⇢<)K⌫(⇢>)

� K 0⌫(a)K 0⌫(b)

�̃
I⌫(⇢)I⌫(⇢0)� I 0⌫(a)I 0⌫(b)

�̃
K⌫(⇢)K⌫(⇢0)

+
I 0⌫(a)K 0⌫(b)

�̃
(I⌫(⇢)K⌫(⇢0) + K⌫(⇢)I⌫(⇢0)),
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where the characteristic denominators are

�⌫(a, b) = I⌫(b)K⌫(a)� I⌫(a)K⌫(b),

�̃⌫(a, b) = I 0⌫(b)K 0⌫(a)� I 0⌫(a)K 0⌫(b).
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Point Splitting
Now we have for the energy per length in the z direction

E = �
Z

d⇣

2⇡

dk

2⇡
⇣2e i⇣⌧e ikZ

Z b

a
d⇢ ⇢[gE

⌫ (⇢, ⇢) + gH
⌫ (⇢, ⇢)],

where we have kept the time-di↵erence, and z-di↵erence, nonzero:

⌧ = tE � t 0E , Z = z � z 0, ⌧, Z ! 0.

In the both the Dirichlet and Neumann cases:

Z b

a
d⇢ ⇢ gH

⌫ (⇢, ⇢) =
1

2

@

@
ln �,

Z b

a
d⇢ ⇢ gE

⌫ (⇢, ⇢) =
1

2

@

@
ln2�̃,

Therefore, the energy per unit length is given by

E = � 1

4⇡

Z 1

0
d 2f (�, �)

X

m

@

@
ln2��̃.
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Here, to explore the e↵ects of di↵erent point-splitting schemes, we write

⇣ =  cos �, k =  sin �, ⌧ = � cos �, Z = � cos �,

and then we define the cuto↵ function

f (�, �) =

Z 2⇡

0

d�

2⇡
cos2 �e i� cos(���),

which equals 1/2 for � = 0. For finite �, temporal splitting corresponds to

f (�, 0) = J0(�)� 1

�
J1(�),

while z-splitting corresponds to

f (�, ⇡/2) =
1

�
J1(�).
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Torque
To compute the torque on one of the radial planes, we need to compute
the angular component of the stress tensor,

hT ✓✓i = �1

2
hE 2

✓ � B2
⇢ � B2

z i

= � 1

2i


✓̂ · � · ✓̂ +

1

!2
⇢̂ · r ⇥ �⇥

 
r0 ·⇢̂ +

1

!2
ẑ · r ⇥ �⇥

 
r0 ·̂z

�
.

The torque then is immediately obtained by integrating this over one radial
side of the annular region:

⌧ =

Z b

a
d⇢ ⇢ hT ✓✓i =

1

↵

X

m

⌫2
Z 1

0

d 

4⇡
J0(�)

Z b

a

d⇢

⇢
[gE

⌫ (⇢, ⇢)+gH
⌫ (⇢, ⇢)].

Similar results are obtained for the radial integral for the TM and TE parts:

Z b

a

d⇢

⇢
gH

⌫ (⇢, ⇢) = � ↵

2⌫2

@

@↵
ln �,

Z b

a

d⇢

⇢
gE

⌫ (⇢, ⇢) = � ↵

2⌫2

@

@↵
ln �̃.
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Neutral direction?

Thus the electromagnetic torque on one of the planes is

⌧ = � @

@↵

1

4⇡

X

m

Z 1

0
d J0(�) ln��̃.

Comparing with the expression for the energy, we see this indeed the
negative derivative with respect to the wedge angle of the interior energy
provided � = ⇡/2, that is, for point-splitting in the z direction. We will
now proceed to evaluate the energy, by expliciting isolating the divergent
contributions as � ! 0, and extract the finite parts. Will it be true, as in
the scalar case, that after renomalization the finite torque is equal to the
negative derivative of the finite energy with respect to the wedge angle?
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Divergent terms for TE energy

We now turn to the examination of the Neumann or TE contribution to
the Casimir energy of the annular region. That energy is

Ẽ = � 1

4⇡

Z 1

0
d 2f (�, �)

1X

m=0

@

@
ln2�̃.

As in the Dirichlet case, we expand the Bessel functions according to the
uniform asymptotic expansion, which here reads

I 0⌫(⌫z) ⇠ 1p
2⇡⌫t

1

z
e⌘⌫

 
1 +

1X

k=1

vk(t)

⌫k

!
,

K 0⌫(⌫z) ⇠ �
r

⇡

2⌫t

1

z
e�⌘⌫

 
1 +

1X

k=1

(�1)k
vk(t)

⌫k

!
,

where t = (1 + z2)�1/2, d⌘/dz = 1/(zt), and the vk(t) are polynomials of
degree 3k.
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Asymptotic behavior of integrand:

Because of this behavior, the second product of Bessel functions in �̃ is
exponentially subdominant. Thus the logarithm in the energy is

ln2�̃ ⇠ constant + ⌫[⌘(z)� ⌘(z̃)] +
⇣
t�1/2 + t̃�1/2

⌘

+ ln

 
1 +

1X

k=1

vk(t)

⌫k

!
+ ln

 
1 +

1X

k=1

(�1)k
vk(t̃)

⌫k

!
,

where z̃ = za/b, t̃ = (1 + z̃2)�1/2. Here the constant means a term
independent of , which will not survive di↵erentiation. Note that the 1/z
behavior seen in the prefactors in the UAE is cancelled by the
multiplication of �̃ by 2. In the following, we will consider the z-splitting
regulator, � = ⇡/2, since the result for time-splitting may be obtained by
di↵erentiation:

Ẽ(0) =
@

@�
[�Ẽ(⇡/2)].
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Leading Weyl divergence
We now extract the divergences, that is, the terms proportional to
nonpositive values of �, just as in I. We label those terms by the
corresponding power of 1/�. The calculation closely parallels that in I,
except for the additional zero mode, m = 0. Except for that term, the
leading divergence is exactly that found in I,

Ẽm>0
4 = �↵(b2 � a2)

4⇡2�4
+

b � a

8⇡�3
.

However, the m = 0 term yields

Ẽm=0
4 = �b � a

4⇡�4
,

thereby (correctly) reversing the sign of the second term in Eq. (7). Thus
the leading divergence is again the expected Weyl volume divergence:

Ẽ(4) = � A

2⇡2�4
, A =

1

2
↵(b2 � a2).
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Perimeter and corner divergences

Evidently, the O(⌫�3) term, for m > 0, is exactly reversed in sign from
that for the Dirichlet term,

Ẽm>0
3 = �↵(a + b)

16⇡�3
+

1

8⇡�2
,

but again the sign of the subleading term is reversed by including m = 0:

Ẽm=0
3 = � 1

4⇡�2
.

Thus, we get the correct surface area and corner terms:

Ẽ(3) = � P

16⇡�3
, P = ↵(a + b) + 2(b � a),

Ẽ(2) = � C

48⇡�2
, C = 6.
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Subleading divergences

Closely following the path blazed in computing the divergent terms coming
from the polynomial asymptotic corrections in the Dirichlet case in I, but
including the m = 0 terms, we find

Ẽ2 =
3

64⇡

1

�

✓
1

a
� 1

b

◆
,

Ẽ1 = � 5

1024

↵

⇡

1

�

✓
1

a
+

1

b

◆
+

3 ln �

128⇡

✓
1

a2
+

1

b2

◆
.
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m = 0 terms
Before proceeding, it is time to recognize that use of the uniform
asymptotic expansion is apparently inconsistent for m = 0, because ⌫ = 0
then. So let us calculate the m = 0 contribution directly from

Ẽm=0 = � 1

4⇡

Z 1

0
d 2 J1(�)

�

@

@
ln2[I 00(b)K 00(a)� I 00(a)K 00(b)],

where the divergent terms arise from the large argument expansions

I 00(x) ⇠ ex

p
2⇡x

✓
1� 3

8z
� 15

128z2
+ . . .

◆
,

K 00(x) ⇠ e�x

r
⇡

2x

✓
1 +

3

8z
� 15

128z2
+ . . .

◆
,

Inserting this into Ẽm=0 we obtain

Ẽm=0 ⇠ � 1

4⇡�

Z 1

0
d J1(�)


(b � a) + 1 +

3

8

✓
1

b
� 1

a

◆
+

3

82

✓
1

b2
+

1

a2

◆
+ . . .

�

⇠ �b � a

4⇡�3
� 1

4⇡�2
+

3

32⇡�

✓
1

a
� 1

b

◆
+

3

64⇡
lnµ�

✓
1

a2
+

1

b2

◆
.

Kim Milton (University of Oklahoma) Annular torque and energy QV-2013 20 / 34



IR divergence; remaining log divergence

Here, in the last term we introduced a mass, 2 ! 2 + µ2, in order to
eliminate the infrared divergence. These terms all agree with the
corresponding terms found from the uniform asysmptotic expansion by
taking m = 0.
There is one remaining divergent term, arising from the 1/⌫3 term, but
here we exclude m = 0, because that subtraction is not necessary to make
the m = 0 contribution to the energy finite at � = 0. That term is

Ẽ0 ⇠
↵

180⇡2
ln �

✓
1

b2
� 1

a2

◆
.
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Summary of divergences

Let us summarize the divergent terms for the Neumann or TE modes:

Ẽdiv = � A

2⇡2�4
� P

16⇡�3
� C

48⇡�2

+
3

64⇡�

✓
1

a
� 1

b

◆
� 5↵

1024⇡�

✓
1

a
+

1

b

◆

+
3 ln �

128⇡

✓
1

a2
+

1

b2

◆
� ↵ ln �

180⇡2

✓
1

a2
� 1

b2

◆
.

This small-� Laurent expansion exactly agrees with that found by the
heat-kernel calculation of Nesterenko, Pirozhenko, and Dittrich, who
consider a wedge intercut with with a single coaxial circular cylinder with
radius R.
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Relation between heat kernel and cylinder kernel

From the latter heat-kernel coe�cients the cylinder-kernel coe�encts can
be readily extracted. The cylinder kernel T (t) is defined in terms of the
eigenvalues of the Laplacian in d dimensions,

T (t) =
X

j

e��j t ⇠
1X

s=0

est
s�d +

X

s=d+1
s�dodd

fst
s�d ln t,

where the expansion holds as t ! 0 through positive values. The energy is
given by

E (t) = �1

2

@

@t
T (t),

which corresponds to the energy computed here with � = 0, that is,
time-splitting. In view of the relation between z and t splitting, we see that
the z-splitting result should be identical to that of � 1

2t T (t) with t ! �.
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In this way we transcribe the results of Nesterenko et al., for the cylinder
kernel per unit length:

� 1

2t
T (t) ⇠ � A

2⇡2t4
� P

16⇡t3
� 1

16⇡2t2
+

3� 5↵/16

64⇡Rt
+

ln t

16⇡2R2

✓
3⇡

8
� 4↵

45

◆
.

This exactly agrees with our result when a ! R and b !1 (except in the
first two terms). The reason for the factor of 2 discrepancy in the third
(corner) term is that Nesterenko et al. have only two corners, not four.
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Extraction of finite part
Just as in the Dirichlet case considered in I, the divergent terms have finite
remainders, which we state here (the m = 0 terms do not contribute to
these):

Ẽf = � ⇡2

2880↵3

✓
1

a2
� 1

b2

◆
� ⇣(3)

64⇡↵2

✓
1

a2
+

1

b2

◆
+

1

576↵

✓
1

a2
� 1

b2

◆

+
1

64⇡b2


13

8
+ � � ln 4b↵ + 3 ln µ

�
+ (b ! a)

+
↵

⇡b2

✓
� 1

180⇡
ln

b↵

⇡
+

1079

69120

◆
� (b ! a)

+
29

46080

↵2

⇡

✓
1

a2
+

1

b2

◆
� 5

12012

↵3

⇡4
⇣(3)

✓
1

a2
� 1

b2

◆
+ ẼR .

The last two explicitly given terms are what come from the next two terms
in the uniform expansion for m > 0. Note that we have made no
approximation here, we have merely added and subtracted the leading
terms in the uniform asymptotic expansion of the integrand for the energy.
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Remainder

The remainder, therefore, consists of two parts, that arising from m = 0:

ẼR0 = � 1

8⇡

Z 1

0
d 




@

@
ln2�̃m=0 � (b � a)� 1

� 3

8

✓
1

b
� 1

a

◆
� 3

8(2 + µ2)

✓
1

b2
+

1

a2

◆�
,

and the rest coming from the terms with m > 0:

Ẽ 0R = � 1

8⇡b2

1X

m=1

⌫3
Z 1

0
dz z2


f̃ (⌫, z , a/b) +

�2X

n=4

f̃m(⌫, z , a/b)

�
.

Here, with the abbreviations I = I⌫(⌫z), Ĩ = I⌫(⌫za/b), etc., the log term
is

f̃ =

�
1 + 1

z2

�
(I K̃ 0 � KĨ 0) + a

b

⇣
1 + b2

a2z2

⌘
(I 0K̃ � K 0 Ĩ )

I 0K̃ 0 � K 0 Ĩ 0
.
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Subtractions
The subtractions are easily read o↵:

f̃4 = � 1

zt
+

a

b

1

z̃ t̃
, f̃3 = � 1

2⌫
(zt2 +

a

b
z̃ t̃2),

f̃2 =
1

8⌫2
zt3(�3 + 7t2)� a

b
(z ! z̃),

f̃1 =
1

8⌫3
zt4(�3 + 20t2 � 21t4) +

a

b
(z ! z̃),

f̃0 =
1

5760⌫4
zt5(�2835 + 39105t2 � 99225t4 + 65835t6)� a

b
(z ! z̃),

f̃�1 =
1

128⌫5
zt6(�108 + 2616t2 � 11728t4

+ 17640t6 � 8484t8) +
a

b
(z ! z̃),

f̃�2 =
1

32560⌫6
zt7(�598185 + 22680945t2

� 156073050t4 + 393353730t6

� 415212525t8 + 156010365t10)� a

b
(z ! z̃).

The last two subtractions are not necessary, but they improve convergence.Kim Milton (University of Oklahoma) Annular torque and energy QV-2013 27 / 34



Numerics
Recall how this worked in the Dirichlet case. There the finite part
(corrected) is

E f
4 = � ⇡2

2880

1

↵3

✓
1

a2
� 1

b2

◆
,

E f
3 =

⇣(3)

64⇡

1

↵2

✓
1

a2
+

1

b2

◆
,

E f
2 = � 1

144

1

↵

✓
1

a2
� 1

b2

◆
,

E f
1 =

1

128⇡
(� +

7

4
� ln 4b↵/µ)

1

b2
+ (b ! a),

E f
0 =

↵

4⇡2

✓
1

315
ln

⇡µ

b↵
� 397

15120

◆
1

b2
� (b ! a).

E�1 = � ↵2
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Energy for Dirichlet contribution

The total finite energy is the sum of these finite terms plus the remainder:

E f =
�2X

n=4

E f
n + ER ,

where the remainder has a similar form to that for the Neumann case:

ER = � 1

8⇡b2

1X

m=1

⌫3
Z 1

0
dz z2


f (⌫, z , a/b) +

�2X

n=4

fm(⌫, z , a/b)

�
,

where the expressions for the original integrand and the subtractions are
given in I. The following figure gives a typical result of the calculation
(corrected).
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Numerical results, Dirichlet
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Energy of a finite annular region, with a/b = 0.5. The solid curve is the
sum of the explicit finite contributions, while the dotted points are the
total energy including the remainder.
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Renormalization

The total energy becomes a linear function of ↵ for su�ciently large wedge
angles. Because of the logarithmic terms in the divergent parts in the
energy, the linear terms are undetermined. That is, we can add to the
energy an arbitrary term of the form

Ect = A + B↵.

We subtract o↵ the linear behavior seen in the previous figure, because the
energy should approach zero for su�ciently (but not very) large ↵. In this
way, we get the energies seen in the following figure.
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Renormalized results, Dirichlet
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Renormalized energies for a/b = .9, .7, .5, .3, .1.
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Similar results hold for the Neumann (TE) case:
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Renormalized energy for TE modes for a/b = 0.5.
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Conclusions

Because of curvature divergences, it is impossible to extract a unique finite
part of the energy. However, the divergences are all constant or linear in
the wedge angle ↵. Therefore, we can renormalize the energy by
subtracting the linear dependence for large angles, to make the energy go
to zero when the separation between the wedge planes is large. The
resulting energy is completely finite, independent of regularization scheme,
and exhibits no torque anomaly:

⌧ = � @

@↵
E(↵).

These results, of course, are consistent with, and generalize to
electromagnetism, the annular piston work with Jef Wagner and Klaus
Kirsten.
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