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An introductory polemic
An irritating technicality that must be handled somehow in a standard calculus course
is the definition of the inverse secant function at negative arguments. There is no par-
ticularly natural choice of principal branch from among the infinitely many candidates,
and the derivatives of different branches can differ in sign (see the figure below). Some
textbook authors adopt the convention

π ≤ sec−1 x <
3π

2
for x ≤ −1,

d

dx
sec−1 x = 1

x
√

x2 − 1
, (1)

while others prefer

π

2
< sec−1 x ≤ π for x ≤ −1,

d

dx
sec−1 x = 1

|x |√x2 − 1
. (2)

Then authors and lecturers have a responsibility to warn students about the existence
of the other convention.

One might have expected that after more than a decade of calculus reform, the
secant function and its inverse would have been de-emphasized to the vanishing point,
along with its even less useful siblings, cosecant and cotangent, and their inverses. The
persistence of sec−1 presumably stems from the perceived need to provide a formula
(see (17)) for the indefinite integral

∫
dx

x
√

x2 − 1
(3)

by inverting whichever of the differentiation formulas (1) and (2) one adopts. More
generally, it is argued that the secant and tangent functions unavoidably arise when
algebraic functions are integrated by trigonometric substitutions, so students should
have at least a nodding acquaintance with the variety of integrals involving them.

There is, however, an alternative approach to integrals involving
√

x2 − 1 or√
x2 + 1, which has unaccountably fallen out of favor in recent decades: hyperbolic

substitution.
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The hyperbolic sine and cosine are defined by

cosh u ≡ 1
2 (e

u + e−u), sinh u ≡ 1
2(e

u − e−u). (4)

Their usefulness as replacements for trigonometric functions in integration by substi-
tution stems from the identities

cosh2 u − sinh2 u = 1,
d

du
cosh u = sinh u,

d

du
sinh u = cosh u. (5)

The hyperbolic functions (4) are important in their own right, constituting the natu-
ral basis of solutions of the differential equation

d2 y

du2
= y

satisfying unit Dirichlet and Neumann initial data at u = 0; in this role they are indis-
pensable in upper-division courses in applied mathematics. In a linear algebra course,
(4) provides a beautiful example of a change of basis, of undeniable practical impor-
tance, in a real vector space with no intrinsic inner product or geometrical interpreta-
tion. Most important in the present context, hyperbolic substitutions are much simpler
and nicer than trigonometric substitutions of the tangent and secant varieties. For one
thing, the inverse hyperbolic functions can be expressed in terms of more elementary
functions (logarithms and square roots—see (11) and (12)). Furthermore, the branch
structure of these inverses is very simple: sinh is bijective, and cosh has a two-branched
inverse (just like the square root), with no multiples of π

2 to be memorized. Neverthe-
less, many teachers of calculus have a strange dislike for the hyperbolic functions and
prefer not to cover them at all. (An independent case in favor of the hyperbolics has
been made by Gearhart and Shultz [1].)

In this article I hope to convince the reader that there is nothing that the secant and
inverse secant do in the traditional “techniques of integration” chapter that cannot be
done better by the hyperbolic sine and cosine and their inverses. It is time for sec,
csc, cot, sec−1, csc−1, and cot−1 to be retired from our calculus syllabus, replaced by
sinh and cosh. Our students will learn about two elegant and useful transcendental
functions while being freed from six complicated and boring ones.

The rest of the article has two parts. First, we derive several alternative antideriva-
tive formulas, (13), (14), (16), with clear advantages over the traditional formulas (17).
Then we’ll see that hyperbolic substitution provides an easy way of evaluating or evad-
ing (depending on context) the difficult integrals of powers of the secant that crop up
in trigonometric substitutions.

The integral formerly known as sec−1

Since the integration problem (3) is the inverse secant’s alleged reason for existence,
let us see what a hyperbolic substitution does to it. Recall first that (3) makes no sense
(in real analysis) unless |x | ≥ 1. We assume temporarily that x > 0, hence x ≥ 1, and
set

x = cosh u (u ≥ 0); dx = sinh u du, x2 − 1 = sinh2 u. (6)

382 c© THE MATHEMATICAL ASSOCIATION OF AMERICA



Therefore,
∫

dx

x
√

x2 − 1
=

∫
du

cosh u
. (7)

(As an aside, note that not much is gained here by introducing the name sech u for the
integrand of (7).) To continue we need

∫
du

cosh u
= 2 tan−1(eu) + C, (8)

which can be either verified by differentiation or “discovered” through these interme-
diate steps:

∫
2 du

eu + e−u
=

∫
2eu du

e2u + 1
=

∫
2 dv

v2 + 1
= 2 tan−1 v + C.

Formula (8) is arguably less recondite than

∫
sec θ dθ = ln | sec θ + tan θ | + C, (9)

which inevitably plays a leading role in traditional treatments of trigonometric substi-
tution. (And alas, there is seldom time in class to present the interesting history [3]
of (9).)

Remark. The function

gd u ≡ 2 tan−1(eu) − π

2
, (10)

which satisfies the convenient initial condition gd 0 = 0, is called the Gudermannian
and can be used to express hyperbolic functions as trigonometric functions (of a dif-
ferent variable) and vice versa [2, Secs. 1.48 and 1.49]; for example, if θ = gd u, then
sec θ = cosh u, a formula quite pertinent to the equivalence of (14) and (16) below.
For more on the history and applications of gd, see Robertson [4].

As previously remarked, one of the great charms of hyperbolic functions (as op-
posed to trig functions) is that their inverses can be expressed in terms of already
familiar functions:

sinh−1 x = ln(x +
√

x2 + 1) for all x ; (11)

cosh−1 x = ln(x +
√

x2 − 1) for x ≥ 1, (12)

where cosh−1 denotes the positive branch. Note that the right-hand side of (11) is
indeed an odd function, though it may not look like one. To prove (11) and (12),
simply apply the definitions (4) to their right-hand sides and simplify down to x .

Combining (7), (8), (6), and (12), one arrives at

∫
dx

x
√

x2 − 1
= 2 tan−1(x +

√
x2 − 1) + C, (13)
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at least for x ≥ 1. It is now an elementary, though lengthy, exercise in differentiation
to verify (13) for x ≤ −1 as well. However, an alternative approach leads to a neater
result. For negative x we can let x = − cosh u and repeat the previous calculation to
obtain ∫

dx

x
√

x2 − 1
= 2 tan−1(|x | +

√
x2 − 1) + C, (14)

which of course agrees with (13) in the positive case. The formula (14) is even in x ,
whereas (13) is not. This is not a contradiction: The constants of integration on the two
disconnnected domains, x ≥ 1 and x ≤ −1, are independent. At negative x , (13) and
(14) with the same C simply differ by a constant (see the figure).

To relate these formulas to the traditional ones based on (1) and (2), we start with a
known but nontrivial trigonometric identity,

sec θ + tan θ = tan

(
θ

2
+ π

4

)
, (15)

whose proof we omit. Now let |x | = sec θ with θ in the first quadrant. Then tan θ =√
x2 − 1, and (14) becomes, up to the arbitrary constant,

∫
dx

x
√

x2 − 1
= 2 tan−1(sec θ + tan θ)

= 2

(
θ

2
+ π

4

)

= sec−1 |x | + π

2
.

In other words,
∫

dx

x
√

x2 − 1
= sec−1 |x | + C (16)

is an alternative formula for the indefinite integral (for either sign of x). Similarly, after
appropriate bookkeeping with quadrants, one can relate (13) or (14) at negative x to
one’s favorite definition of sec−1 there.

It is to be hoped that any authors and lecturers who are still unconvinced of the
virtues of hyperbolic substitution will at least adopt (16) in place of either of the tradi-
tional formulas,

∫
dx

x
√

x2 − 1
= sec−1 x + C,

∫
dx

|x |√x2 − 1
= sec−1 x + C. (17)

For (16) is analogous to the familiar formula
∫

dx

x
= ln |x | + C, (18)

it is even in x (unlike either of (17)), and it avoids any reference to the inverse secant
function at negative arguments!

Our conclusions so far are summarized and made more precise in the following
theorem and figure.
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Theorem. Define

f1(x) = 2 tan−1
(|x | +

√
x2 − 1

)
,

f2(x) = 2 tan−1
(
x +

√
x2 − 1

)
,

f3(x) = sec−1 |x |.
Further, let f4(x) be the branch of the inverse secant determined by (1), and f5(x) the
branch determined by (2) (with 0 ≤ sec−1 x < π/2 for x ≥ 1). Then

(a) f1 and f3 (and only they) are even functions, and f1 = f3 + π/2.

(b) On the interval [1, ∞), all five functions are antiderivatives of 1/(x
√

x2 − 1 ),
and f1 = f2, f3 = f4 = f5.

(c) On the interval (−∞, −1], the first four functions and − f5 are antiderivatives
of 1/(x

√
x2 − 1 ), and f2 = f1 − π , f4 = f3 + π , f5 = π − f3.
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Figure 1. Graphs of the functions f1– f5 discussed in the theorem. (Redundant names for
the curves on the right are omitted.) Thick curves are the traditional rival branches of the
inverse secant. Dashed curves are graphs of other logically possible definitions of sec−1.
Thin solid curves are not branches of sec−1 x , but nevertheless are useful as antiderivatives
of 1/x

√
x2 − 1.
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Integrating powers of the secant
Trigonometric substitution has an unpleasant habit of resulting in integrals like the
one in (9), or, more generally,

∫
secp θ dθ with p a positive integer, that look at least

as hard as the original algebraic integration problem. Making the natural substitution
x = tan θ (−π

2 < θ < π

2 ) yields

∫
secp θ dθ =

∫
(x2 + 1)(p−2)/2 dx . (19)

The right-hand side of (19) is elementary if p is even, but what if p is odd? The advice
given to the student by the traditional textbook is, “Make the trigonometric substitution
x = tan θ ,” which takes us straight back to the left-hand side of (19). Velleman [5] (see
also [3]) shows that the substitution y = sin θ turns the left-hand side into the integral
of a rational function, which can be integrated by partial fractions. Here we investigate
what hyperbolic substitution in the right-hand side has to offer.

The appropriate substitution this time is

x = sinh u; dx = cosh u du,
√

x2 + 1 = cosh u. (20)

It turns (19) into
∫

coshp−1 u du.
Let’s concentrate first on the case p = 1 (that is, (9)):

∫
(x2 + 1)−1/2 dx =

∫
du = u + C

= sinh−1 x + C

= ln(x +
√

x2 + 1) + C (21)

by (11). If our original interest was in integrating the algebraic function, we are done;
if we really cared about the secant integral for its own sake, we now use x = tan θ to go
from (21) to (9) in the quadrants where sec θ > 0. (How to handle the other quadrants
is left to the reader’s taste.)

For p = 3 we have
∫ √

x2 + 1 dx =
∫

cosh2 u du. (22)

There are two ways to proceed, depending on taste. First, the hyperbolic functions obey
identities in close parallel to those for trigonometric functions; one can memorize, look
up, or rederive the identity exactly corresponding to the one one would use to evaluate∫

cos2 θ dθ . On the other hand, it is again a great charm of hyperbolic functions that
they can always be eliminated through (4) in favor of the exponential function, which
obeys a much simpler and shorter, but equally powerful, list of identities. (Indeed,
many students learn, even if their calculus books never tell them, that the best way to
recover trig identities is to use the function eiθ in this same way.) Thus we have

∫
cosh2 u du = 1

4

∫
(e2u + e−2u + 2) du

= 1

4

(
1

2
e2u − 1

2
e−2u + 2u

)

386 c© THE MATHEMATICAL ASSOCIATION OF AMERICA



= 1

4
(sinh 2u + 2u)

= 1

2
(sinh u cosh u + u)

= 1

2
(x

√
x2 + 1 + sinh−1 x),

hence ∫ √
x2 + 1 dx = 1

2
x
√

x2 + 1 + 1

2
ln(x +

√
x2 + 1) + C, (23)

and ultimately
∫

sec3 θ dθ = 1

2
tan θ sec θ + 1

2
ln |sec θ + tan θ | + C. (24)

Larger odd values of p can in principle be treated in the same way, although, as always
in this type of problem, the complexity increases.

Acknowledgments. I thank Philip Yasskin for comments on the manuscript, and a referee for
contributing the more heuristic proof of (8).
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Where there are numbers, there is beauty.—Proclus

√
2 = 1 + 1/3 − 1/5 − 1/7 + 1/9 + 1/11 − · · ·

1 − 1/3 + 1/5 − 1/7 + 1/9 − 1/11 + · · ·
= 1 + 1/3 − 1/5 − 1/7 + 1/9 + 1/11 − · · ·

π/4

= e1/2−1/4+1/6−1/8+1/10−···.
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