What Is Vacuum Energy, That Mathematicians Should be Mindful of It?

I shall discuss vacuum energy as a purely mathematical problem, suppressing or postponing physics issues.

The setting

Let H be a second-order, elliptic, self-adjoint PDO, on scalar functions, in a d-dimensional region Ω. Prototype: A billiard. $H=-\nabla^{2}, \Omega \subset \mathbf{R}^{d}$, boundary conditions (say Dirichlet, $u=0$ on $\partial \Omega$).
Generalizations:

- electromagnetic field (vector functions) (other talks today)
- other boundary conditions
- Riemannian manifold (Laplace-Beltrami operator)
- potential: $-\nabla^{2}+V(x)$

Technical assumptions:

- smoothness as needed
- self-adjointness (spectral decomposition of $L^{2}(\Omega)$)
- positivity ($H \geq 0 ; 0$ is not an eigenvalue) for simplicity

Total energy

A finite total energy is expected when

- Spectrum is discrete.
- Ω is compact (or V is confining).

Example 1: The (Dirichlet) interval

$$
\Omega=(0, L), \quad H=-\frac{d^{2}}{d x^{2}}, \quad u(0)=0=u(L)
$$

Spectral decomposition
(eigenvalues and normalized eigenvectors)

$$
\begin{gathered}
H \varphi_{n}=E_{n} \varphi_{n}, \quad\left\|\varphi_{n}\right\|^{2}=\int_{\Omega}\left|\varphi_{n}(x)\right|^{2} d x=1 \\
u(x)=\sum_{n=1}^{\infty} c_{n} \varphi_{n}(x), \quad c_{n}=\left\langle\varphi_{n}, u\right\rangle=\int_{\Omega} \overline{\varphi_{n}(x)} u(x) d x
\end{gathered}
$$

Define $\omega_{n}=\sqrt{E_{n}}$.
Ex. 1: Fourier sine series.

Functional calculus and integral kernels

$$
f(H) u \equiv \sum_{n=1}^{\infty} f\left(E_{n}\right)\left\langle\varphi_{n}, u\right\rangle \varphi_{n}
$$

At least formally, $f(H) u(x)=\int_{\Omega} G(x, \tilde{x}) u(\tilde{x}) d \tilde{x}$,

$$
G(x, y)=\sum_{n=1}^{\infty} f\left(E_{n}\right) \varphi_{n}(x) \overline{\varphi_{n}(y)}
$$

If f is sufficiently rapidly decreasing, this converges to a smooth function.

Trace:

$$
\operatorname{Tr} G \equiv \int_{\Omega} G(x, x) d x=\sum_{n=1}^{\infty} f\left(E_{n}\right)
$$

Cylinder (Poisson) kernel
Let $f_{t}(E)=e^{-t \sqrt{E}} . \quad f_{t}(H) u_{0}$ is the solution of

$$
\frac{\partial^{2} u}{\partial t^{2}}=H u, \quad u(0, x)=u_{0}(x)
$$

that is well-behaved as $t \rightarrow+\infty$.

Kernel

$$
T(t, x, y)=\sum_{n=1}^{\infty} e^{-t \omega_{n}} \varphi_{n}(x) \overline{\varphi_{n}(y)}
$$

Trace

$$
\operatorname{Tr} T=\int_{\Omega} T(t, x, x) d x=\sum_{n=1}^{\infty} e^{-t \omega_{n}}
$$

Asymptotics $(\underset{\infty}{t} 0)$

$$
\operatorname{Tr} T \sim \sum_{s=0}^{\infty} e_{s} t^{-d+s}+\sum_{\substack{s=d+1 \\ s-d \text { odd }}}^{\infty} f_{s} t^{-d+s} \ln t
$$

- Gilkey \& Grubb, Commun. PDEs 23 (1998), 777.
- Fulling \& Gustafson, Electr. J. DEs 1999, \# 6.
- Bär \& Moroianu, Internat. J. Math. 14 (2003), 397.

Define the vacuum energy as $E=-\frac{1}{2} e_{1+d}$ (modulo "local" terms to be determined by physical considerations).
Formally, E is the "finite part" of

$$
\frac{1}{2} \sum_{n=1}^{\infty} \omega_{n}=-\left.\frac{1}{2} \frac{d}{d t} \sum_{n} e^{-\omega_{n} t}\right|_{t=0}
$$

Ex. 1: $\quad($ case $L=\pi)$

$$
\begin{aligned}
& T(t, x, y)=\frac{2}{\pi} \sum_{k=1}^{\infty} \sin (k x) \sin (k y) e^{-k t} \\
= & \frac{t}{\pi} \sum_{N=-\infty}^{\infty}\left[\frac{1}{(x-y-2 N \pi)^{2}+t^{2}}-\frac{1}{(x+y-2 N \pi)^{2}+t^{2}}\right] \\
& =\frac{1}{2 \pi}\left[\frac{\sinh t}{\cosh t-\cos (x-y)}-\frac{\sinh t}{\cosh t-\cos (x+y)}\right]
\end{aligned}
$$

So (reverting to general L)

$$
\begin{aligned}
\operatorname{Tr} T & =\frac{1}{2} \frac{\sinh (\pi t / L)}{\cosh (\pi t / L)-1}-\frac{1}{2} \\
& \sim \frac{L}{\pi t}-\frac{1}{2}+\frac{\pi t}{12 L}+O\left(t^{3}\right)
\end{aligned}
$$

Thus $\quad E=-\frac{\pi}{24 L} \quad\left(O(t)\right.$ term times $\left.-\frac{1}{2}\right)$.
(There are no logarithms in this problem.)

Energy Density

(remains meaningful when Ω is noncompact and H has some continuous spectrum)
Leave out the integration in the trace:

$$
\begin{aligned}
T(t, x, x) & =\int_{0}^{\infty} e^{-t \sqrt{E}} d P(E, x, x) \\
& \sim \sum_{s=0}^{\infty} e_{s}(x) t^{-d+s}+\sum_{\substack{s=d+1 \\
s=d \text { odd }}}^{\infty} f_{s}(x) t^{-d+s} \ln t
\end{aligned}
$$

Define $\quad E(x)=-\frac{1}{2} e_{1+d}(x)$.
In quantum field theory (with $\xi=\frac{1}{4}$)

$$
E(x)=\text { finite part of } \frac{1}{2}\left[\left(\frac{\partial u}{\partial t}\right)^{2}+u H u\right]
$$

Example 2: The (Dirichlet) half-line

$$
\begin{aligned}
& \Omega=(0, \infty), \quad H=-\frac{d^{2}}{d x^{2}}, \quad u(0)=0 \\
& P(E, x, y)=\int_{0}^{\sqrt{E}} \frac{2}{\pi} \sin (k x) \sin (k y) d k
\end{aligned}
$$

(Fourier sine transform).

$$
\begin{aligned}
& \quad T(t, x, y)=\frac{t}{\pi}\left[\frac{1}{(x-y)^{2}+t^{2}}-\frac{1}{(x+y)^{2}+t^{2}}\right], \\
& T(t, x, x) \sim \frac{1}{\pi t}-\frac{t}{\pi(2 x)^{2}} \sum_{k=0}^{\infty}(-1)^{k}\left(\frac{t}{2 x}\right)^{2 k} \quad \text { as } t \downarrow 0, \\
& \text { so } \quad E(x)=\frac{1}{8 \pi x^{2}} .
\end{aligned}
$$

Contrast heat kernel: $\quad K(t, x, x) \sim(4 \pi t)^{-d / 2}+O\left(t^{\infty}\right)$ (for fixed $x \notin \partial \Omega$) regardless of boundary conditions!
Ex. 1: $\quad E(x)=-\frac{\pi}{24 L^{2}}+\frac{\pi}{8 L^{2}} \csc ^{2}\left(\frac{\pi x}{L}\right)$.
$\frac{\pi}{8 L^{2}} \csc ^{2}\left(\frac{\pi x}{L}\right) \sim \frac{1}{8 \pi x^{2}}$ as $x \rightarrow 0, \quad$ similar as $x \rightarrow L$.
$E(x)=$ bulk (true Casimir) energy + boundary energy.

$$
\int_{0}^{L} E(x) d x=E+\infty!
$$

The physicist says: Two kinds of renormalization. The mathematician says: Nonuniform convergence.

Boundary energy density for $\Omega=(0,1)$

Regularized energy density $E(t, x)$ for $\Omega=(0, \infty)$

$$
E(t, x)=-\frac{1}{2} \frac{\partial}{\partial t} T(t, x, x)=-\frac{1}{2 \pi} \frac{t^{2}-4 x^{2}}{\left(t^{2}+4 x^{2}\right)^{2}}
$$

This regularization method has no special physical significance. But similar results are found by physical modeling of "softer" boundaries.

- Ford \& Svaiter, Phys. Rev. D 58 (1998) 065007.
- Graham \& Olum, Phys. Rev. D 67 (2003) 085014.

Spectral density, counting function, etc.

$$
\begin{aligned}
& \operatorname{Tr} T=\int_{0}^{\infty} e^{-t \omega} d N, T(t, x, x)=\int_{0}^{\infty} e^{-t \omega} d P(x, x), \\
& \operatorname{Tr} K=\int_{0}^{\infty} e^{-t E} d N, K(t, x, x)=\int_{0}^{\infty} e^{-t E} d P(x, x) .
\end{aligned}
$$

$N(E)=N\left(\omega^{2}\right)=$ number of eigenvalues $\leq E$, $P(E, x, y)=$ projection kernel onto spectrum $\leq E$.

$$
\begin{gathered}
\operatorname{Tr} T \sim \sum_{s=0}^{\infty} e_{s} t^{-d+s}+\sum_{\substack{s=d+1 \\
s-d \text { odd }}}^{\infty} f_{s} t^{-d+s} \ln t \\
\operatorname{Tr} K \sim \sum_{s=0}^{\infty} b_{s} t^{(-d+s) / 2}
\end{gathered}
$$

and similarly for the local quantities.
Recall: Semiclassical approximation reveals oscillatory structures in N and P correlated with periodic and closed classical orbits.

- Schaden \& Spruch, Phys. Rev. A 58 (1998) 935.
- Mazzitelli et al., Phys. Rev. A 67 (2003) 013807.
- Jaffe \& Scardicchio, Nucl. Phys. B 704 (2005) 552.

Theorem. The b_{s} are proportional to coefficients in the high-frequency asymptotics of Riesz means of N (or P) with respect to E. The e_{s} and f_{s} are proportional to coefficients in the asymptotics of Riesz means with respect to ω. If $d-s$ is even or positive,

$$
e_{s}=\pi^{-1 / 2} 2^{d-s} \Gamma((d-s+1) / 2) b_{s} .
$$

If $d-s$ is odd and negative,

$$
f_{s}=\frac{(-1)^{(s-d+1) / 2} 2^{d-s+1}}{\sqrt{\pi} \Gamma((s-d+1) / 2)} b_{s},
$$

but e_{s} is undetermined by the b_{r}.
These new e_{s} (of which the first is the vacuum energy) are a new set of moments of the spectral distribution. What are they good for, mathematically? Unlike the old ones, they are nonlocal in their dependence on the geometry of Ω (and the coefficients of H). Thus they embody (at least partially) the global dynamical structure of the system; they are a half-way house between the heat-kernel coefficients and a full semiclassical closed-orbit analysis.

But what about the zeta function?
Let $f_{s}(H)=H^{-s}, \quad \zeta(s, H) \equiv \operatorname{Tr} f_{s}(H)$. Then

$$
\zeta(s, H)=\zeta(2 s, \sqrt{H})
$$

Zeta functions are related to integral kernels by

$$
\int_{0}^{\infty} t^{s-1} T(t, H) d t=\Gamma(s) \zeta(s, \sqrt{H}), \quad \text { etc. }
$$

Thus b_{n} and e_{n} are residues at poles of $\Gamma(s) \zeta(s, H)$ (at $s=\frac{1}{2}(d-n)$) and $\Gamma(s) \zeta(s, \sqrt{H})$ (at $\left.s=d-n\right)$, respectively. So (when there's no logarithm)

$$
\Gamma\left(\frac{d-n}{2}\right)^{-1} b_{n}=\frac{1}{2} \Gamma(d-n)^{-1} e_{n}
$$

$\Gamma(d-n)$ may have a pole where $\Gamma\left(\frac{1}{2}(d-n)\right)$ does not; the information in the corresponding e_{n} is thereby expunged from the heat-kernel expansion. That quantity is not a residue of the zeta function but a value of zeta at a regular point - a more subtle object to calculate. (Logarithmic terms give rise to coinciding poles of ζ and Γ.)

- Gilkey, Duke Math. J. 47 (1980), 511.

Questions for investigation

1. How (if at all) is chaos reflected in vacuum energy?
2. What determines the sign of vacuum energy in each situation? (seems to be related to the phase of the periodic-orbit oscillations) ©
3. Do other spectral functions give new geometrical information? $\left(e^{-t E^{1 / 3}} ? \quad\left(e^{t E}-1\right)^{-1} ?\right)$
4. What is the boundary behavior of regularized vacuum energy density in generic, multidimensional situations? ${ }^{\text {© }}$
5. What is the behavior of vacuum energy density near edges and corners; how does it contribute to renormalized total energy? (exterior of a cube?) ©
6 . Is the prediction of low-lying spectrum (and longtime dynamics) more accurate than stationaryphase proofs suggest? (quantum graphs?)
6. How does vacuum energy depend on mass (in Klein-Gordon sense)?
(c) proposed Focused Research Group of Estrada, Fulling, Kaplan, Kirsten, and Milton

Mass dependence of vacuum energy

Let $H=H_{0}+\mu \quad\left(\mu=m^{2}\right.$ in usual notation $)$.
Let $T(\mu, t)$ stand for either $\operatorname{Tr} T$ or $T(t, x, x)$;
$K(\mu, t)$ similarly for the heat kernel.
Mass dependence of K is trivial:

$$
\begin{gathered}
K(\mu, t)=K(0, t) e^{-\mu t} \quad\left(\frac{\partial K}{\partial \mu}=-t K\right) . \\
T=\sum_{n} e^{-t \sqrt{E_{n}+\mu}} \quad \text { or } \quad \int e^{-t \sqrt{E+\mu}} d P(E) .
\end{gathered}
$$

Proposition:

$$
\frac{\partial^{2}}{\partial \mu \partial t}\left(\frac{T}{t}\right)=\frac{T}{2}
$$

Let $F(s, t)$ be the Laplace transform of $T(\mu, t) / t$ with respect to μ.

$$
\begin{aligned}
& s \frac{d F}{d t}-\frac{\partial}{\partial t} \frac{T(0, t)}{t}=\frac{t}{2} F \\
& \frac{d F}{d t}-\frac{t}{2 s} F=\frac{\partial}{\partial t} \frac{T(0, t)}{s t}
\end{aligned}
$$

$$
F(s, t)=C(s) e^{t^{2} / 4 s}+e^{t^{2} / 4 s} \int_{t_{0}}^{t} e^{-v^{2} / 4 s} \frac{\partial}{\partial v} \frac{T(0, v)}{s v} d v
$$

Since T and hence $F \rightarrow 0$ as $t \rightarrow \infty$, we may choose $t_{0}=\infty$ and conclude $C(s)=0$.

Theorem:

$$
F(s, t)=-e^{t^{2} / 4 s} \int_{t}^{\infty} e^{-v^{2} / 4 s} \frac{\partial}{\partial v} \frac{T(0, v)}{s v} d v
$$

Thus, in principle, $T(\mu, t)$ can be calculated from $T(0, v)$.

