
What Is Vacuum Energy,
That Mathematicians Should be Mindful of It?

I shall discuss vacuum energy as a purely mathemati-
cal problem, suppressing or postponing physics issues.

The setting

Let H be a second-order, elliptic, self-adjoint PDO,
on scalar functions, in a d-dimensional region Ω.
Prototype: A billiard. H = −∇2, Ω ⊂ Rd, bound-
ary conditions (say Dirichlet, u = 0 on ∂Ω).
Generalizations:
• electromagnetic field (vector functions) (other talks

today)
• other boundary conditions
• Riemannian manifold (Laplace–Beltrami operator)
• potential: −∇2 + V (x)
Technical assumptions:
• smoothness as needed
• self-adjointness (spectral decomposition of L2(Ω))
• positivity (H ≥ 0; 0 is not an eigenvalue) for sim-

plicity
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Total energy

A finite total energy is expected when
• Spectrum is discrete.
• Ω is compact (or V is confining).
Example 1: The (Dirichlet) interval

Ω = (0, L), H = − d2

dx2
, u(0) = 0 = u(L).

Spectral decomposition
(eigenvalues and normalized eigenvectors)

Hϕn = Enϕn , ‖ϕn‖2 =
∫

Ω

|ϕn(x)|2 dx = 1.

u(x) =
∞∑

n=1

cnϕn(x), cn = 〈ϕn, u〉 =
∫

Ω

ϕn(x)u(x) dx.

Define ωn =
√

En .
Ex. 1: Fourier sine series.
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Functional calculus and integral kernels

f(H)u ≡
∞∑

n=1

f(En)〈ϕn, u〉ϕn .

At least formally, f(H)u(x) =
∫

Ω

G(x, x̃)u(x̃) dx̃,

G(x, y) =
∞∑

n=1

f(En)ϕn(x)ϕn(y).

If f is sufficiently rapidly decreasing, this converges to
a smooth function.

Trace: TrG ≡
∫

Ω

G(x, x) dx =
∞∑

n=1

f(En).

Cylinder (Poisson) kernel

Let ft(E) = e−t
√

E . ft(H)u0 is the solution of

∂2u

∂t2
= Hu, u(0, x) = u0(x),

that is well-behaved as t → +∞.

3



Kernel T (t, x, y) =
∞∑

n=1

e−tωnϕn(x)ϕn(y).

Trace TrT =
∫

Ω

T (t, x, x) dx =
∞∑

n=1

e−tωn .

Asymptotics (t ↓ 0)

TrT ∼
∞∑

s=0

est
−d+s +

∞∑
s=d+1

s−d odd

fst
−d+s ln t.

• Gilkey & Grubb, Commun. PDEs 23 (1998), 777.
• Fulling & Gustafson, Electr. J. DEs 1999, # 6.
• Bär & Moroianu, Internat. J. Math. 14 (2003), 397.

Define the vacuum energy as E = − 1
2e1+d

(modulo “local” terms to be determined by physical
considerations).
Formally, E is the “finite part” of

1
2

∞∑
n=1

ωn = − 1
2

d

dt

∑
n

e−ωnt

∣∣∣∣∣
t=0

.
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Ex. 1: (case L = π)

T (t, x, y) =
2
π

∞∑
k=1

sin(kx) sin(ky)e−kt

=
t

π

∞∑
N=−∞

[
1

(x− y − 2Nπ)2 + t2
− 1

(x + y − 2Nπ)2 + t2

]

(image sum = sum over classical paths)

=
1
2π

[
sinh t

cosh t− cos(x− y)
− sinh t

cosh t− cos(x + y)

]
.

So (reverting to general L)

Tr T =
1
2

sinh(πt/L)
cosh(πt/L)− 1

− 1
2

∼ L

πt
− 1

2
+

πt

12L
+ O(t3).

Thus E = − π

24L
(O(t) term times − 1

2 ).

(There are no logarithms in this problem.)
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Energy density

(remains meaningful when Ω is noncompact and H
has some continuous spectrum)
Leave out the integration in the trace:

T (t, x, x) =
∫ ∞

0

e−t
√

E dP (E, x, x)

∼
∞∑

s=0

es(x)t−d+s +
∞∑

s=d+1
s−d odd

fs(x)t−d+s ln t.

Define E(x) = − 1
2e1+d(x).

In quantum field theory (with ξ = 1
4 )

E(x) = finite part of
1
2

[(
∂u

∂t

)2

+ u Hu

]
.

Example 2: The (Dirichlet) half-line

Ω = (0,∞), H = − d2

dx2
, u(0) = 0.

P (E, x, y) =
∫ √

E

0

2
π

sin(kx) sin(ky) dk

(Fourier sine transform).
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T (t, x, y) =
t

π

[
1

(x− y)2 + t2
− 1

(x + y)2 + t2

]
,

T (t, x, x) ∼ 1
πt
− t

π(2x)2

∞∑
k=0

(−1)k

(
t

2x

)2k

as t ↓ 0,

so E(x) =
1

8πx2
.

Contrast heat kernel: K(t, x, x) ∼ (4πt)−d/2+O(t∞)
(for fixed x /∈ ∂Ω) regardless of boundary conditions!

Ex. 1: E(x) = − π

24L2
+

π

8L2
csc2

(πx

L

)
.

π

8L2
csc2

(πx

L

)
∼ 1

8πx2
as x → 0, similar as x → L.

E(x) = bulk (true Casimir) energy + boundary energy.∫ L

0

E(x) dx = E +∞ !

The physicist says: Two kinds of renormalization.
The mathematician says: Nonuniform convergence.
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.

This regularization method has no special physical
significance. But similar results are found by physical
modeling of “softer” boundaries.
• Ford & Svaiter, Phys. Rev. D 58 (1998) 065007.
• Graham & Olum, Phys. Rev. D 67 (2003) 085014.
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Spectral density, counting function, etc.

TrT =
∫ ∞

0

e−tω dN,

TrK =
∫ ∞

0

e−tE dN,

T (t, x, x) =
∫ ∞

0

e−tω dP (x, x),

K(t, x, x) =
∫ ∞

0

e−tE dP (x, x).

N(E) = N(ω2) = number of eigenvalues ≤ E,
P (E, x, y) = projection kernel onto spectrum ≤ E.

TrT ∼
∞∑

s=0

est
−d+s +

∞∑
s=d+1

s−d odd

fst
−d+s ln t,

TrK ∼
∞∑

s=0

bst
(−d+s)/2,

and similarly for the local quantities.
Recall: Semiclassical approximation reveals oscillatory
structures in N and P correlated with periodic and
closed classical orbits.
• Schaden & Spruch, Phys. Rev. A 58 (1998) 935.
• Mazzitelli et al., Phys. Rev. A 67 (2003) 013807.
• Jaffe & Scardicchio, Nucl. Phys. B 704 (2005) 552.
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Theorem. The bs are proportional to coefficients
in the high-frequency asymptotics of Riesz means of
N (or P ) with respect to E. The es and fs are pro-
portional to coefficients in the asymptotics of Riesz
means with respect to ω. If d− s is even or positive,

es = π−1/22d−sΓ((d− s + 1)/2)bs .

If d− s is odd and negative,

fs =
(−1)(s−d+1)/22d−s+1

√
π Γ((s− d + 1)/2)

bs ,

but es is undetermined by the br .

These new es (of which the first is the vacuum en-
ergy) are a new set of moments of the spectral dis-
tribution. What are they good for, mathematically?
Unlike the old ones, they are nonlocal in their de-
pendence on the geometry of Ω (and the coefficients
of H). Thus they embody (at least partially) the
global dynamical structure of the system; they are a
half-way house between the heat-kernel coefficients
and a full semiclassical closed-orbit analysis.
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But what about the zeta function?

Let fs(H) = H−s, ζ(s, H) ≡ Tr fs(H). Then

ζ(s, H) = ζ(2s,
√

H).

Zeta functions are related to integral kernels by

∫ ∞

0

ts−1T (t, H) dt = Γ(s)ζ(s,
√

H), etc.

Thus bn and en are residues at poles of Γ(s)ζ(s, H)
(at s = 1

2 (d − n)) and Γ(s)ζ(s,
√

H) (at s = d − n),
respectively. So (when there’s no logarithm)

Γ
(

d− n

2

)−1

bn =
1
2

Γ(d− n)−1en .

Γ(d− n) may have a pole where Γ
(

1
2 (d− n)

)
does not;

the information in the corresponding en is thereby
expunged from the heat-kernel expansion. That quan-
tity is not a residue of the zeta function but a value
of zeta at a regular point — a more subtle object to
calculate. (Logarithmic terms give rise to coinciding
poles of ζ and Γ.)
• Gilkey, Duke Math. J. 47 (1980), 511.
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Questions for investigation

1. How (if at all) is chaos reflected in vacuum en-
ergy?

2. What determines the sign of vacuum energy in
each situation? (seems to be related to the phase
of the periodic-orbit oscillations) c©

3. Do other spectral functions give new geometrical
information?

(
e−tE1/3

? (etE − 1)−1 ?
)

4. What is the boundary behavior of regularized vac-
uum energy density in generic, multidimensional
situations? c©

5. What is the behavior of vacuum energy density
near edges and corners; how does it contribute to
renormalized total energy? (exterior of a cube?) c©

6. Is the prediction of low-lying spectrum (and long-
time dynamics) more accurate than stationary-
phase proofs suggest? (quantum graphs?)

7. How does vacuum energy depend on mass (in
Klein–Gordon sense)?

c© proposed Focused Research Group of Estrada, Fulling,
Kaplan, Kirsten, and Milton

12



Mass dependence of vacuum energy

Let H = H0 + µ (µ = m2 in usual notation).
Let T (µ, t) stand for either TrT or T (t, x, x);
K(µ, t) similarly for the heat kernel.
Mass dependence of K is trivial:

K(µ, t) = K(0, t)e−µt

(
∂K

∂µ
= −tK

)
.

T =
∑

n

e−t
√

En+µ or
∫

e−t
√

E+µ dP (E).

Proposition:
∂2

∂µ ∂t

(
T

t

)
=

T

2
.

Let F (s, t) be the Laplace transform of T (µ, t)/t with
respect to µ.

s
dF

dt
− ∂

∂t

T (0, t)
t

=
t

2
F.

dF

dt
− t

2s
F =

∂

∂t

T (0, t)
st

.
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F (s, t) = C(s)et2/4s + et2/4s

∫ t

t0

e−v2/4s ∂

∂v

T (0, v)
sv

dv.

Since T and hence F → 0 as t → ∞, we may choose
t0 = ∞ and conclude C(s) = 0.

Theorem:

F (s, t) = −et2/4s

∫ ∞

t

e−v2/4s ∂

∂v

T (0, v)
sv

dv.

Thus, in principle, T (µ, t) can be calculated from
T (0, v).
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