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1. Introduction

The ordinary type of information data for approximation of functighs

or functionals of them in the univariate case consists of function values
{f(x1),..., f(zm)}. The classical Lagrange interpolation formula and the
Gauss quadrature formula are famous examples. The simplicity of the ap-
proximation rules, their universality, the elegancy of the proofs and the
beauty of these classical results show that the function values are really the
most natural pieces of information in the reconstruction of functions and
functionals. The direct transformation of the univariate results to the multi-
variate setting faces however various difficulties. For example, the problem
of constructing a polynomiaP(x, y) of degreen,

P(z,y)= Y aga'y
i+j<n
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40 B. Bojanov, G. Petrova

satisfying given Lagrangean interpolation conditions

. n 42
P(xjay]):f]7 .7:177< 2 >7

leads to a linear system in unknowfi;; } which has not always a unique
solution. A more convincing example is the long years struggle of many
mathematicians to construct cubature formulas of the form

N
// fx,y)dedy = Cif (x5, y;)
7 =

with preassigned numbeé¥ of nodes that integrate exactly all polynomials
P(z,y) of degree as high as possible over a given simple dof2ai@nly

a few cubatures of this type are known explicitly. This indicates that the
setting of the multivariate approximation problems did not reach yet its
most natural formulation and in particular, the assertion that the sampling of
function values is the most natural basis for recovery of functions should be
metwith a certain doubt. The research practice in mathematics shows that the
"naturally” posed problems have nice solutions and far going extensions.
What is then the most natural type of information for reconstruction of
functions inIR?. The recent development in tomography, as well as the
power of the Radon transform and other results in multivariate interpolation
suggest as a reasonable choice the data of mean values

{Aﬂ

where{I;} are line segments. A remarkable result in this direction is the
Hakopian interpolation formula (see [1]) which can be viewed as a multi-
variate extension of the Lagrange interpolation formula. It seems that many
classical approximation problems in the univariate case dealing with point
evaluations should admit natural extensions in the multivariate case (i.e., in
IR?) if the approximation is based on integrals over hyperplanes of dimen-
siond — 1.

In this paper we consider the extremal problem of Gauss about quadra-
ture formulas of highest algebraic degree of precision, formulated in an
appropriate form for numerical integration over the unit dise= {(z, y) :

x? + y? < 1} with respect to a mean value information data. Precisely, we
construct a quadrature formula of the form

[Ammw@zéMﬁf

of highest degree of precision with respect to the class of algebraic polyno-
mials of two variables.
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New Gaussian quadrature 41

2. Preliminaries

As usual, we use the notation
T (IR?) ::{ Z aijxiyj}
i+j<n

for the set of all algebraic polynomials of total degreel'he dimension of
™, (IR?) is equal to("$?).

Let £2 be a given bounded domain in the plafi&. Our main result
concerns the case whehnis the unit discD. We shall consider integrable
functionsf (z, y) on (2. For the sake of simplicity, we suppose tlfiét, y) is
supported o2, that s, f (z, y) vanishes outsid€. Any pair of parameters
(t,0) defines a line

I(t,0) :={(z,y) : xcos + ysinf = t}.
We assume that € [0, 7) and
I(t,0) N2 £0.
Theprojection Py (t,6) of f along the linel (¢, §) is defined by
oo

Py(t,0) ::/ f(tcosf — ssinf, tsinf 4 scosf) ds.

—00

Sometimes, instead d@t;(t, #), we shall use the notation

/ f(z,y)ds
I(t,0)

for the projection when we want to stress that the integral is taken over the
line segment (¢,6) N (2.
Given the paramete(g;, 0;), we set

I = I(tg,0r), k=1,...,n,
[:={L,.... I},

Ly, = Ly, 9, (z,y) := x cos O + ysin O, — ty.

Clearly Ly, € m(IR?).
Assume thatl; are n distinct lines defined by the parameters
{(t, 0k)} 17—, . We shall study quadrature formulas of the form

(1) ]ty duy~ kéAk /I f(z,y) ds
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inthe class of integrable functiodis (£2). HereA,, are real coefficients. The
algebraic degree of precisioof the quadrature (1) (abbreviated to AQP

is the maximal integem so that the quadrature (1) integrates exactly all
polynomialsP(z, y) of degree less than or equakta Our first observation
is:

(2) ADP(1) < 2n

for each choice of the coefficients, and the parametefsy, 6;,). To show
this, we introduce the polynomial

w(z,y) = w(l;z,y) : Hszxy
Clearlyw?(z,y) € man(IR?) andw?(z,y) > 0. Thus

// (x,y)dxdy >0, while ZAk/ (x,y)ds = 0.

Hence the quadrature (1) is not exactd6(z, y) and this proves (2).

The maximal ADP that could be achieved by a quadrature (1), using
n evaluations of the projection & — 1. Does there exist a quadrature
of ADP equal to2n — 1? There is no strong evidence for an affirmative
answer, since the dimension of the space of polynomials of d@gred is
(2”2“) and hence much greater than the nunibeof the parameters, used
in the quadrature 4, tx, 0, k = 1,...,n). However, we construct here a
quadrature with ADP= 2n — 1 in the casdg? = D.

Next we derive a simple necessary condition for (1) to have ABP
2n — 1.

Lemma 1. If the quadrature formula (1) is exact for all polynomials of
degree2n — 1 then the polynomiab(z,y) = Ly, (z,y)--- L1, (z,y) is
orthogonal to anyQ € ,_1(IR?) in £2.

Proof. For an arbitrary elemer@® € ,_(IR?)

w(,9)Q(x,y) € man—1(IR?)

and therefore (1) will be exact for it. Namely,

// w(z,y)Q(z,y) dr dy :Z /kjf[lLIj(ﬂfvy)Q(%y)dS

which proves the lemma. D
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New Gaussian quadrature 43

A quadrature formula of the form (1) with ADP 2n — 1 will be called
GaussianLemma 1 asserts that we can construct such a formula only for
domainsf?, for which one can find a polynomial of the form

n
H (akm + bry + Ck), with ay, b, ¢ € IR,
k=1

which is orthogonal o2 to all polynomials fromw,, 1 (IR?).

Lemma 2.If (1) is a Gaussian quadrature formula thef), > 0 for k =
1,...,n.

Proof. Construct the polynomials
wr(z,y) = wr(l;x,y) : H Li(z,y), k=1,...,n
J=Llj#k
Since (1) is Gaussian ang (z, y) € ma,—2(IR?), we have
] ct@ydedy =Y 4; [ wh@yds = A [ i) ds,
2 j=1 j Ik
which implies thatd;, > 0fork=1,...,n. O

The following lemma gives a relation between two Gaussian quadrature
formulas.

Lemma 3. Assume that (1) and the quadrature formula

//fxydmdyNZBk/ (z,y)ds

are Gaussian. Then

B (CU mulUn)ne#o, k=1,...n
1=1,1£k =1

Proof. Consider the polynomial
k(J;x,y) = H Ljy(z,y), k=1,...,n
I=1,l#k

Apply now the both quadratures to

w([,m,y)wk(J,x,y) € WQn—l(BQ)a k= 17 cee, N
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We have
0= / w(l;z, y)wi(J; x,y) de dy

I
EB/ w(l;z,y)wk(J;x,y) ds

:B/ (I;z,y)wi(J; x,y) ds.
But according to the mean value theorem
/ w(l;z,y)wi(J; 2, y) ds = w(l; My)wg(J; My)d(J N $2),
Ji

whereM;, € J, andd(Jx N £2) is the length of the line segmedt N £2.
Finally,

e U mud)mne

1=1,l#k =1
and the proof is completed. O

3. Gaussian quadrature

Denote byU,,(t) the Tchebycheff polynomial of second kind of degree
ie.,
Un(z) = w, where x = cos#.
sin 6

Letn,...,n, be the zeroes df,,(z), that is,n; = cos n+1, k=1,.

Theorem 1.The quadrature formula

(%) //Df(x,y)dxdy%kz:flk

with

1/17nz
[k, y) dy,
/_\/W
T km
g 1 = 1 .o
Ae= sy kb
is exact for each polynomigl € ma,, 1 (IR?).

Proof. Assume thaf (x, y) is any polynomial fromry,,_; (IR?). Then it can
be presented in the form

2n—1

)= an(e)yt,  where a(x) € m 41 (IR)
k=0
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and thus
\/ﬁ2n1 .
x,y)dxd —/ / T dy dz
/ f(z,y)dzdy Wko ap(z)y” dy

2n—1
= V1 —a? 1 —2°%)* da.
:gﬁs 23+1/_1 x2ap(z)( %) dx

k

Observe that the univariate polynomialgz)(1 — z2)* under the integral
sign are of degree less than or equa2to— 1. Then we can compute the
integral exactly using the classical Gaussian quadrature formylaion |
with weight£(t) = v/1 — 2. Precisely,

1 n
[ VI Pa@) -2 de = 3" Zam) (1 - )"
Therefore

"o lm
y)dedy = in? 1—n?)®
//Df(xy) T ay ;n—i—lsm ] 2s+1( 0 ) ar(m)
n T Ir 2n—1 9
_ : 2 \2s+1
_Zn+181nn+l Z ak(m)2s+1< 1_77l>s
k=0,k=2s
L I 1—pp 2nl k
= Z sin Z ax(m)y" dy
—ontl o on+l//im? (=

i ™ T Y g
= nm,y)ay
-1 +1 7”L—|-1 7‘/177712

and the proof is completed. O

4. Ridge polynomials. Orthogonal polynomials

Given the real functiop(¢) on IR and a parametér € [0, 7) we define on
IR? the associateddge functionp(; z, y) with directiond in the following
way

p(0;z,y) = p(zcosh + ysinb).

Clearly the ridge function is constant along any line of directios a
consequence of this, one can compute

// Ga:yda:dy—/ / dsdt—2/ Mp
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and thus, by the Gaussian quadrature,

o & km
1 (0; dedy = —— in? -
//Dpz 105z, y) dx dy n+1k§::151n T 1(1x)

for every ridge polynomiabs,, 1 (6; x, y) of degre€n — 1. This conclusion

is just a particular case of Theorem 1, applied to the ridge polyngmyjal; .

It shows that the use of a certain ridge polynimial basis ir{/??) could
produce a simple integration rule. The following is a well-known fact (see
for example [3]).

Lemma 4. Every polynomial of degree in = andy is a sum ofn + 1
ridge polynomials (with any preassigned directiohisés, ..., 6, which
are distinct moduler) of degreen.

The ridge polynomials, associated with the Tchebycheff polynomial
U, (t) play an essential role in this study. A simple consequence of The-
orem 1 and Lemma 1 is the following

Corollary 1.
3) // Un(0;2,y) Pz, y)dedy =0
D

for eachP(z,y) € m,—1(IR?) andd.
Now we give an explicit formula for the projection of a ridge polynomial.

Lemma 5.LetQ(t) be a polynomial of degree presented in the form
Qt) = a;Uj(1).
j=0

Then the projection of the associate ridge polynor@iéd; x, y) of direction
« along the linel (¢, 0) is given by the formula

Po(t,0) =2v/1—22 Y jjf' U1 Sin<sﬂ'in+( ;)_(9@ - o)
§j=0

Proof. It suffices to proof the lemma far = 0. So, we assume further that

a=0.
Clearly
V1-t2
Po(t.0 :/ tcosf — ysin0) d
alt,0)= [ Qltcosd —ysind)dy
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and after the substitution= cos 7 we get
sin 7
Pg(cosT,0) = / Q(cosTcos — ysinb) dy.
—sinT

Settingu = cos T cos § — y sin 8, we arrive at the formula

1 cos(7—0)

Py(cosT,0) = Q(u) du,

sin ¢ cos(T+0)
which can be found also in [3]. Now we perform the integration, taking
into account the given presentation @{¢) and the relatioril;_ () =

(7 +1)U;(t) between the Tchebycheff polynomials of first and second kind.
We have

1 & oay

sin 6 4 Oj—l-l

Po(cosT,0) = {Tj1(cos(r — 6)) — Ty (cos(r + 6))}

sin(j + 1)7 sin(j + 1)0

sin 0

sin 7

sinT sin 0

sin 0

2N
zn: i sin(j + 1)7 sin(j + 1)0
N

which is the wanted formula. The proof is completedX

An immediate consequence from Lemma 5 is the following integration
formula, derived in [2].

Corollary 2. For eacht and®d,

V1-t2? 1)0
/ Upn,(tcos + ssinf) ds \/l—tQU M
_VieZ sin ¢

A similar formula can be given for the projection of any polynomial
f € m,(IR?). Indeed, according to Lemma #can be written in the form

i=0

and consequently,

Zzbazm 017-75 y)
m=0

=0
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where
n
(5) Qi(t) = Y amUn(t).
m=0

Then, by Corollary 2,

no(nog oI
P(t,0) —Z{ > biGim Upn(t cos @ + ssin 6) ds}

o lmoomt1l/vie
L& sin(m + 1)(0 — 6;)
= 2V1— 12 im m(t
mzzjo ;c sin(f — 6;) Un(t)

with ¢, = biain/(m + 1). Thus, we proved the following

Corollary 3. Let f be any polynomial from,, (IR?). Assume thaf is given
by (4) with@); presented in the form (5). Then

©6) Prto)=2vI-2 Y :1(:-7”1 Si“(znﬁelz(zi)_ %) U,

m=0 =0

One can see from (6) that the projection of any polynorjial 7, (IR?)
is afunction of the form/1 — ¢2p(t) wherep(t) is an algebraic polynomial
of degreen. This fact was used already in the proof of Theorem 1. Moreover,
(6) can be used to find the coefficients of this polynomial in terms of the
directions{0,, }.

Using Corollary 2, one may construct an orthonormal basis of ridge
polynomials inm,, (IR?), as shown in the next lemma.

Lemma 6. Setf,,; := /7 for j = 0,...,m, m = 0,...,n. The ridge
polynomials

1
(7) N

form an orthonormal basis i, (IR?).

Un(Omj;z,y), m=0,...,n, j=0,...,m,

Proof. The relation

/ / U (O 2, ) Up(Opss 0, y) dady = 0, for m # k,
D

follows immediately from Corollary 1. In the case = k, by Corollary 2,

/ / Una (O @, ) Unn (6 2, ) dz dy
D

1
- / Unn(t) / Upn (6 2, y)ds
-1 I(tvemj)

2 1 sin(m + 1)(0pmi — Omy)
= 7+1/_1 V1-t2Ug (t)dy = m0jj,

Sil’l(@mi — em])
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since
sin(m + 1) (0mi — Omj) sin(i — j)m
= = 1 K
St (Ormi — ) e g ey T S LR
where
s [0 i)
T ifiE

The proof is completed. O

Lemma 1 shows that the orthogonal polynomials, as in the univariate
case, are closely related with the construction of Gaussian quadratures.
We next discuss another orthonormal basisfoin r,, (IR?) (see [5]).
These are the polynomials,,,;(z,y), m = 0,...,n, j = 0,...,m,
defined via
(8)

Fon(2,9) = Qu_(x, k) (1—22) Py(——~

Vi-22
wherePy(t) is thek — th Legendre polynomial an@,,_ (¢, k) is the poly-
nomial of degreg(n — k), orthogonal in(—1,1) with weight {(¢) =
(1-— t2)’“+%. Since @,,—(t, k) is a Jacobi polynomial with parameters
a = 3 =k + 3 and for the Jaccobi polynomial&®? (¢) the equality

) = Qn-r(z, F)Wi(z,y),

d 1 a
G} = S+ at B+ DL @)

holds, then

dk
Qn,k(t, k‘) = CkﬁUn(t)a k=0,....,n, ¢ € IR.

Note that
(v? +2°p31 — D3a 1) (¥ + 2%P3,  — Dhs )
Wi(z.v) if k=2s
E\Z,Y) = )
y(y? + $2P%s+1,1 - P%s+1,1)~--(3/2 + 93217%5“,3 - p%s+17s)
if k=2s+1
wherepy, | = 1,...,[%] are the positive zeroes @t,(t). Therefore the

polynomialsF,,;(z,y) vanish on elipses. This fact leads to the conclusion,
that the two orthogonal systems (7) and (8) are different.

The next result due to Marr [4] gives the projection of any orthogonal
polynomial along any lind (¢, 6).
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Lemma 7. Assume thatv(z,y) is a polynomial fromm, (IR?) which is
orthogonal to each polynomid) € 7, _1(IR?) on the unit discD. Then,

/ w(z,y)ds = L\/ 1 — 12U, (t)w(cos B, sin 6).
1(t,0) n+1

The proof of this nice observation can be found in [4]. In particular, when
0=0

"/1—t2
/ wit,y)dy = AVI—BUu(t) te(-1,1), AR
*‘/1*t2

We can derive it here easily from our auxiliary results in the previous section.
To do this, note that

Z 037x y

with some coefficient$b; }. Then, according to (6),

2 " sin(n+1)(0 — 0,;)
y)ds = ——V/1 — 12U, (¢ :
/I(t,e)w(x y) ds n+1 2::

sin(6 — 6,;)

2
= ?\/1 — 12U, (t)w(cos 6, sin 6).
n

Theorem 2.If the polynomial(x,y) := Ly, (z,y) - - - L1, (z, y) is orthog-
onal tor,,_1(IR?) then

km
te€{m,..., =
k€ {m M } (7 co8 ——

k=1,...,n)

or cos(0y — 6;) = t; for somei.

Proof. From Marr’'s Lemma and the fact, tha{z,y) vanishes on/, it
follows that

2
0= / w(z,y)ds = ——1/1 — 12U, (tg)w(cos Oy, sin Oy
I,

n-+1
2 2 n
=1 1-— tkUn(tk)i:r[l(COS(ek —0;) —t;).

Sincety, € (—1,1), Theorem 2 is proved. O
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5. Characterization of the Gaussian quadratures

It seems that the quadrature formula given in Theorem 1 with ADFh — 1

is unique (up to rotation). In this section we give a certain characterization of
the Gaussian quadratures which supports our suggestion. We derive a simple
observation, that gives a necessary condition for the quadrature (1) for the
unit disk D to have ADP= 2n — 1. Let A4, ..., A; be the common points

of the unit circle{(z,y) : 22 +y? = 1} and the lined := {I1,...,I,},
induced by (1), enumerated with respect to their natural position on the
circle. LetA; 11 = A;. Then the folowing criterion is true.

Criterion. If there are two consecutive poinds and A, 1, j € {1,..., s},
such that the length of the arc, determined by them is greater;ﬁj[f@nthen
(1) is not Gaussian.

Proof. Assume the opposite and consider the/set line segmentg ;, 0 <
[0,2m), 1 <j < ”T‘H, Jj - integer, with endpoint&os 6, sin 8) and(cos(6+
2m) sin(6 4+ 2I7)) and the sef. Then, there is a line segmelpt; with
the property

lop,NI;=0 foreachk=1,... n.
Without loss of generality = 0 and therefore,
lO,j = I(nj, 0)

But by Lemma 3, applied to the Gaussian formulas (1) and (*),

oy 0 (C U I 0) U (L) L)) D £0.
k=1kj k=1

The proof is completed. O
The following necessary condition is also true.

Lemma 8.1If (1) is a Gaussian quadrature formula fd@», then the polyno-
mial w(z,y) := Ly, (x,y)...Ls, (x,y) has the property

(9) w(=z,—y) = (=1)"w(z,y)

and whem > 2 there are indexeg, k € {1,...,n}, such that

1 1
t: |> =, and |t [< =.
412 5, 1< 3

Proof. Lemma 1 shows that(z, y) is orthogonal to any) € 7,1 (IR?) in
D with weightp(z,y) = 1. The domairD andp(z, y) are central symmetric
and therefore (see [6])(x, y) has the property (9).
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Whenn > 2 ADP = 2n — 1 > 3 and because (1) is exact for the
_ 2

polynomialsfl(x,y) =1, fo(z,y) = 22, f3(z,y) = y?, after a simple

computation one can obtain
" / T
k=1

Ap\/1 =2 (3tE cos® Oy, + (1 — t7)sin? Oy) = %7

Wl o

2
3

n
k=1
n

Aprn/1 —12(3t2sin 0 + (1 — t2) cos2 0 _T
kzz:l K/ i (3t K+ (1 —1) k) 1

and therefore,

> Apy/1— 1348 — 1) =0.
k=1
Sincet; € (—1,1) and, by Lemma 24, > 0, k = 1,...,n, one has
that there exist indexegs k € {1,...,n}, satisfying the above mentioned
condition. O

Actually Lemma 8 claims, thatthe setoflines= {I1, ..., I,,},induced
by a Gaussian quadrature formula (1) is central symmetric with respect to
the origin. Namely, after a suitable enumeration,

tp = —tprs, k=1,...,s, whenn=2s,
tk == —tk+s+1, k= 1,...,8, t5+1 :0, Whenn:25+1.

Taking into account all previous results a natural question comes up. Does
the set

I = {f em(R?) : f = [[(arz + by + ),
k=1

f orthogonal tom,_;(IR?)}

coincide with the set

FQ = {f € WH(JRQ) : f = H le(l"y))
k=1
I, ..., I, areinduced by a Gaussian quadrature (1)

Clearly, by Lemma 1/]/% C I3. There is an example (see [6]) of a
polynomial R(x,y) € I7, such that its linear multipliers are lines, passing
through the origin and the equidistant poifiss ’%, sin ’%), k=1,...,n,
on the unit circle{(z,y) : 2% + y? = 1}. Since each line generated by
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this polynomial passes through the origin, by the second part of Lemma 1,
R(z,y) fails to be an element af;,. This means that in order to charac-
terize the Gaussian quadrature formulas of type (1) we need more than the
orthogonality and the linear multiplier representation, used so far.

6. Uniqueness
In this section we shall examine more closely the uniqueness property of
(*) among a certain class of quadrature formulas.
Theorem 3.Among all quadrature formulas of the form
a0 [[ twydrdy=> B [V fiteydy,

D 1 —/1-t2

“l<ti<...<tp,<1

(*) is the only one, that is Gaussian.

Proof. Let (10) be a Gaussian quadrature formula. Ded@te= I(n,0)
andJy := J(tx,0). Then, by Lemma 3

n

0 U ol
1=1,l#k l

I’)ND#)

Cs=

1

and since all the lines are parallel one another, this is possible only when
te=m,, k=1,...,n.
It is easy to check, that if we apply (*) and (10) to the polynomials

n

wk(%y) = H (x_nj)2 GWQn—Q(RQ)a k= 17"'7“7
J=1,j#k

we derive that
Ak:Bk, ]{IZI,...,TL,

which proves the theorem. O

We next discuss quadrature formulas of the form

(11)
f@uy)dxdnyBl/a fler,y)dy + Bk/mfﬁuy)d&
//D —/1-2? ,;2 Iy
wherez; is fixed at the zero ot/,(t) with the greatest absolute value.
We prove the following theorem about the uniqueness of (*) as a Gaussian
quadrature formula among the formulas of the form (11).
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Theorem 4.(*) is the only Gaussian quadrature formula among the quadra-
ture formulas of type (11).

Proof. We shall make use of the orthonormal basis (8)fbin r, (IR?) .
Let ADP(11) = 2n — 1. Then, by Lemma 1,
(JJ(.’L’, y) = (x - 1’1)[1]2 (x7 y)"‘LIn (xﬁ y)

is orthogonal to any) € 7,1 (IR?) and therefore
w(z,y) = Z akﬂUn($)Wk($7y)
k=0 4

for some coefficient§ay}. On the other handy(x;,y) = 0 for eachy .
After comparisson of the coefficients of the univariate polynomial;, y),
we arrive at the equality
dk
akan(xl) :07 kZO,...,n.
According to the fact, that is the zero of/,(¢) with the greatest absolute
value, by Rolle’s theorem, we have that any zeétof %Un(t), k =

1,...,n — 1 satisfies the condition
’ t* ’< x1.
Therefore
dk
%Un(l‘l)#o, k‘:1,...,n,

which combined with the previous result gives
ar=...=a, =0.

Since not allu, are zeroes, the only possibility left is wheg £ 0. Thus
w(z,y) = aoUn(),

which means that the quadrature formula is of the form (10). Then, by
Theorem 3, this formula is exactly (*).O

Now we introduce a new class of quadrature form&@#és) that contains
all ones of the type

(12) // f(@,y)drdy ~ ZBk/ f(x,y)ds,
where the set of lineg := {Ji, ..., J,} satisfies the following condition:

There is an indeX € {1,...,n} such that all the segments N D, [ =
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1,...,n, I # k, are in one of the halfplanes, determined.ijyand there is
no one in the other halfplane. For this set we have the following uniqueness
theorem.

Theorem 5.Formula (*) is the only Gaussian quadrature formula@rin).

Proof. Let (12) be a Gaussian quadrature formula. Without loss of generality,
we can assume that the line, determining (12) as an eleméntofis the
line with equation

Tr = tl, tl 2 0.

Letw(z,y) = Ly, (z,y)... Ly, (z,y). Then, by Lemma 1 and Lemma 7

V1—t2
(13) / wit,y)dy = AVI = PU(1), te(-1,1), AcR
A/ t2

Assume, thad = 0. From the mean value theorem, it follows that

oz/ﬂjzw(t,y)dy:2\/1—t2w(M(t)), te(~1,1),

M(t) € I(t,0) N D.
In particular,
wM@t) =0, |t|>t;, M()elI(t0)NnD.

This is impossible, since (12) as an element of the>set) does not vanish
on one of the halfplanes, determined Joy ThereforeAd # 0 and by (13),
whent = t;

Un(t1) = 0.

Letx; be the zero of/,, (¢) with the greatest absolute value. Assure# t,
and consider (*), which by Theorem 1 is Gaussian quadrature formula.
Hence, using Lemma 3, we have

n

1 0) 0 (U ) U (U 2a1.0))) 1 D £,
=1

1=2
which can not be true, since (12) belongst(:). This implies
t1 = x1.

In other words, the formula (12) is of type (11) and then, by Theorem 4,
(12) is actually (*). The proof is completed. O

We have to mention, that (*) has a higher degree of precision than any
quadrature formula derived from the multivariate Hakopian interpolation on
the unit diskD. Let us explain this more precisely.
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It was shown in [1], that ifYy, ..., Y, aren points on the unit circle
{(z,y) : 2* +y?> =1}and{V,,Y;},i=1,...,n,j =1,...,n, are the
line segments, connecting andY}, then for eacly(z,y) € C(D) there is
a unique polynomialf,, (g; =, y) € m,_2(IR?) such that

/ Hn(g;x,y)dsz/ g(z,y)ds, 1<i<j<n.
{yi,Y5} {v3.Y5}
This polynomial can be written as

Ho(giz,y)= > ok,z(x,y)/ g(,y)ds,

1<k,I<n {Ye, Y1}

whereoy (z,y) € m,—2(IR?). After integrating overD, we obtain the
qguadrature formula

a9 [[ s@yydedy [[ Hilgia.y) dady
N A

1<k,i<n {Y&, Y1}

where
Apy = //D or(z,y) dr dy.
(n+1)

Each quadrature of the form (14) uses integration aldhg- 75—
lines and as an element®i{ N), by Theorem 5, ADP14) < n(n+1) — 1.
On the other hand, if we are allowed to uSe= % line integrals, we
would prefer (*), since it is Gaussian and thus it has a degree of precision
n(n + 1) — 1. Therefore the quadrature formula (*) is better than any one

of the form (14).

7. Some examples

The quadrature formula (*) can be written in the form

[@mww@wémﬁﬁ

wherel,, k = 1,...,n, are the line segments P, parallel toy axis,
passing through the poinfsos n’%, 0) and
s kmw
A = in——, k=1,...,n.
k n—l—lsmn—i—l’ et

Next we give examples of our formula with calculated weights and nodes.
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n=1

The formula is exact for alP(x, y) € 71 (IR?).
k Coefficients Line segments
1| 1.57079632679415 x=0.0000000000000(

n=2

The formula is exact for alP(x, y) € 73(IR?).

k Coefficients Line segments

1 | 0.90689968211791 x=0.5000000000000Q
2 | 0.90689968211700 x=-0.5000000000000(

n=23

The formula is exact for alP(x, y) € 75 (IR?).
Coefficients Line segments
0.55536036726971 x=0.70710678118655
0.78539816339708 x=0.00000000000000
0.55536036726971 x=-0.70710678118655

WIN| P X

n=4

The formula is exact for alP(z, y) € 77 (IR?).
Coefficients Line segments
0.36931636609870 x=0.80901699437495
0.5975664329489% x=0.30901699437495
0.59756643294804 x=-0.30901699437494
0.36931636609734 x=-0.80901699437494

AWNRX

n=>5

The formula is exact for alP(z, y) € 7o (IR?).
Coefficients Line segments
0.26179938779933 x=0.86602540378444
0.45344984105895 x=0.50000000000000
0.52359877559866 x=0.00000000000000
0.45344984105850 x=-0.5000000000000(
0.26179938779842 x=-0.86602540378444

| WIN P X

n==6

The formula is exact for alP(x, y) € 711 (IR?).
Coefficients Line segments
0.19472656676044 x=0.90096886790242
0.35088514880954 x=0.62348980185873
0.43754662381298 x=0.22252093395631
0.43754662381298 x=-0.22252093395631
0.35088514880954 x=-0.62348980185873
1.19472656676044 x=-0.90096886790242

O W NP X
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n="7

The formula is exact for alP(x, y) € 713 (IR?).
Coefficients Line segments
0.1502794324710% x=0.92387953251129
0.27768018363486 x=0.70710678118655
0.36280664401738 x=0.38268343236509
0.39269908169854 x=0.00000000000000
0.36280664401738 x=-0.38268343236509
0.27768018363486 x=-0.70710678118654
0.15027943247128 x=-0.92387953251129

N OO AW N PX

n==~8

The formula is exact for alP(z, y) € m15(IR?).
Coefficients Line segments
0.11938755218353| x=0.93969262078591
0.22437520360108| x=0.76604444311899
0.30229989403915% x=0.50000000000000
0.343762755784618 x=0.17364817766693
0.34376275578461| x=-0.17364817766693
0.30229989403870| x=-0.5000000000000(
0.22437520360086| x=-0.7660444431189¢
0.11938755218364| x=-0.93969262078591

O N OO W NPX

n=9

The formula is exact for alP(x, y) € 717 (IR?).
Coefficients Line segments
0.09708055193641 x=0.95105651629515
0.1846581830493% x=0.80901699437495
0.25416018461601 x=0.58778525229247
0.29878321647448 x=0.30901699437495
0.31415926535919 x=0.00000000000000Q
0.29878321647402 x=-0.30901699437495
0.25416018461556 x=-0.58778525229247
0.18465818304867 x=-0.80901699437494
0.09708055193573 x=-0.951056516295115

OO N WN P X

n =10

The formula is exact for alP(z, y) € 717 (IR?).
Coefficients Line segments
0.0804626300772% x=0.95949297361450
0.15440665639539 x=0.84125353283118
0.21584157370421 x=0.65486073394529
0.25979029037080 x=0.41541501300189
0.28269234274376 x=0.14231483827329
0.28269234274376 x=-0.14231483827329
0.2597902903703% x=-0.41541501300189
0.21584157370398 x=-0.65486073394528
0.15440665639494 x=-0.8412535328311§
0.08046263007725% x=-0.95949297361450

OO N[O O BR[W[N| | X

[EnY
o
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