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1. Introduction

The ordinary type of information data for approximation of functionsf
or functionals of them in the univariate case consists of function values
{f(x1), . . . , f(xm)}. The classical Lagrange interpolation formula and the
Gauss quadrature formula are famous examples. The simplicity of the ap-
proximation rules, their universality, the elegancy of the proofs and the
beauty of these classical results show that the function values are really the
most natural pieces of information in the reconstruction of functions and
functionals. The direct transformation of the univariate results to the multi-
variate setting faces however various difficulties. For example, the problem
of constructing a polynomialP (x, y) of degreen,

P (x, y) =
∑

i+j≤n

aijx
iyj
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40 B. Bojanov, G. Petrova

satisfying given Lagrangean interpolation conditions

P (xj , yj) = fj , j = 1, . . . ,

(
n+ 2

2

)
,

leads to a linear system in unknowns{aij} which has not always a unique
solution. A more convincing example is the long years struggle of many
mathematicians to construct cubature formulas of the form∫ ∫

Ω
f(x, y) dx dy ≈

N∑
j=1

Cjf(xj , yj)

with preassigned numberN of nodes that integrate exactly all polynomials
P (x, y) of degree as high as possible over a given simple domainΩ. Only
a few cubatures of this type are known explicitly. This indicates that the
setting of the multivariate approximation problems did not reach yet its
most natural formulation and in particular, the assertion that the sampling of
function values is the most natural basis for recovery of functions should be
met with a certain doubt. The research practice in mathematics shows that the
”naturally” posed problems have nice solutions and far going extensions.
What is then the most natural type of information for reconstruction of
functions inIR2. The recent development in tomography, as well as the
power of the Radon transform and other results in multivariate interpolation
suggest as a reasonable choice the data of mean values

{
∫

Ik

f},

where{Ik} are line segments. A remarkable result in this direction is the
Hakopian interpolation formula (see [1]) which can be viewed as a multi-
variate extension of the Lagrange interpolation formula. It seems that many
classical approximation problems in the univariate case dealing with point
evaluations should admit natural extensions in the multivariate case (i.e., in
IRd) if the approximation is based on integrals over hyperplanes of dimen-
siond− 1.

In this paper we consider the extremal problem of Gauss about quadra-
ture formulas of highest algebraic degree of precision, formulated in an
appropriate form for numerical integration over the unit discD := {(x, y) :
x2 + y2 ≤ 1} with respect to a mean value information data. Precisely, we
construct a quadrature formula of the form∫ ∫

D
f(x, y) dx dy ≈

n∑
k=1

λk

∫
Ik

f

of highest degree of precision with respect to the class of algebraic polyno-
mials of two variables.
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New Gaussian quadrature 41

2. Preliminaries

As usual, we use the notation

πn(IR2) :=
{ ∑

i+j≤n

aijx
iyj
}

for the set of all algebraic polynomials of total degreen. The dimension of
πn(IR2) is equal to

(n+2
2
)
.

Let Ω be a given bounded domain in the planeIR2. Our main result
concerns the case whenΩ is the unit discD. We shall consider integrable
functionsf(x, y) onΩ. For the sake of simplicity, we suppose thatf(x, y) is
supported onΩ, that is,f(x, y) vanishes outsideΩ. Any pair of parameters
(t, θ) defines a line

I(t, θ) := {(x, y) : x cos θ + y sin θ = t}.
We assume thatθ ∈ [0, π) and

I(t, θ) ∩Ω 6≡ ∅.
Theprojection Pf (t, θ) of f along the lineI(t, θ) is defined by

Pf (t, θ) :=
∫ +∞

−∞
f(t cos θ − s sin θ, t sin θ + s cos θ) ds.

Sometimes, instead ofPf (t, θ), we shall use the notation∫
I(t,θ)

f(x, y) ds

for the projection when we want to stress that the integral is taken over the
line segmentI(t, θ) ∩Ω.

Given the parameters(tk, θk), we set

Ik := I(tk, θk), k = 1, . . . , n,

I := {I1, . . . , In},
LIk

≡ Ltk,θk
(x, y) := x cos θk + y sin θk − tk.

ClearlyLIk
∈ π1(IR2).

Assume thatIk are n distinct lines defined by the parameters
{(tk, θk)}n

k=1. We shall study quadrature formulas of the form

(1)
∫ ∫

Ω
f(x, y) dx dy ≈

n∑
k=1

Ak

∫
Ik

f(x, y) ds
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42 B. Bojanov, G. Petrova

in the class of integrable functionsL1(Ω). HereAk are real coefficients. The
algebraic degree of precisionof the quadrature (1) (abbreviated to ADP(1)
is the maximal integerm so that the quadrature (1) integrates exactly all
polynomialsP (x, y) of degree less than or equal tom. Our first observation
is:

(2) ADP(1) < 2n

for each choice of the coefficientsAk and the parameters(tk, θk). To show
this, we introduce the polynomial

ω(x, y) = ω(I;x, y) :=
n∏

k=1

LIk
(x, y).

Clearlyω2(x, y) ∈ π2n(IR2) andω2(x, y) ≥ 0. Thus∫ ∫
Ω
ω2(x, y) dx dy > 0, while

n∑
k=1

Ak

∫
Ik

ω2(x, y) ds = 0.

Hence the quadrature (1) is not exact forω2(x, y) and this proves (2).
The maximal ADP that could be achieved by a quadrature (1), using

n evaluations of the projection is2n − 1. Does there exist a quadrature
of ADP equal to2n − 1? There is no strong evidence for an affirmative
answer, since the dimension of the space of polynomials of degree2n−1 is(2n+1

2
)

and hence much greater than the number3n of the parameters, used
in the quadrature (Ak, tk, θk, k = 1, . . . , n). However, we construct here a
quadrature with ADP= 2n− 1 in the caseΩ = D.

Next we derive a simple necessary condition for (1) to have ADP=
2n− 1.

Lemma 1. If the quadrature formula (1) is exact for all polynomials of
degree2n − 1 then the polynomialω(x, y) = LI1(x, y) · · ·LIn(x, y) is
orthogonal to anyQ ∈ πn−1(IR2) in Ω.

Proof. For an arbitrary elementQ ∈ πn−1(IR2)

ω(x, y)Q(x, y) ∈ π2n−1(IR2)

and therefore (1) will be exact for it. Namely,∫ ∫
Ω
ω(x, y)Q(x, y) dx dy =

n∑
k=1

Ak

∫
Ik

n∏
j=1

LIj (x, y)Q(x, y) ds

=
n∑

k=1

Ak.0 = 0,

which proves the lemma.2
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New Gaussian quadrature 43

A quadrature formula of the form (1) with ADP= 2n− 1 will be called
Gaussian. Lemma 1 asserts that we can construct such a formula only for
domainsΩ, for which one can find a polynomial of the form

n∏
k=1

(akx+ bky + ck), with ak, bk, ck ∈ IR,

which is orthogonal onΩ to all polynomials fromπn−1(IR2).

Lemma 2. If (1) is a Gaussian quadrature formula thenAk > 0 for k =
1, . . . , n.

Proof. Construct the polynomials

ωk(x, y) = ωk(I;x, y) :=
n∏

j=1,j 6=k

LIj (x, y), k = 1, . . . , n.

Since (1) is Gaussian andω2
k(x, y) ∈ π2n−2(IR2), we have

∫ ∫
Ω
ω2

k(x, y) dx dy =
n∑

j=1

Aj

∫
Ij

ω2
k(x, y) ds = Ak

∫
Ik

ω2
k(x, y) ds,

which implies thatAk > 0 for k = 1, . . . , n. 2

The following lemma gives a relation between two Gaussian quadrature
formulas.

Lemma 3.Assume that (1) and the quadrature formula

∫ ∫
Ω
f(x, y) dx dy ≈

n∑
k=1

Bk

∫
Jk

f(x, y) ds

are Gaussian. Then

Jk ∩
(
(

n⋃
l=1,l 6=k

Jl) ∪ (
n⋃

l=1

Il)
)

∩Ω 6≡ ∅, k = 1, . . . , n.

Proof. Consider the polynomial

ωk(J ;x, y) =
n∏

l=1,l 6=k

LJl
(x, y), k = 1, . . . , n.

Apply now the both quadratures to

ω(I;x, y)ωk(J ;x, y) ∈ π2n−1(IR2), k = 1, . . . , n.
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We have

0 =
∫ ∫

Ω
ω(I;x, y)ωk(J ;x, y) dx dy

=
n∑

l=1

Bl

∫
Jl

ω(I;x, y)ωk(J ;x, y) ds

= Bk

∫
Jk

ω(I;x, y)ωk(J ;x, y) ds.

But according to the mean value theorem∫
Jk

ω(I;x, y)ωk(J ;x, y) ds = ω(I;Mk)ωk(J ;Mk)d(Jk ∩Ω),

whereMk ∈ Jk andd(Jk ∩ Ω) is the length of the line segmentJk ∩ Ω.
Finally,

Mk ∈ ((
n⋃

l=1,l 6=k

Jl) ∪ (
n⋃

l=1

Il)) ∩Ω

and the proof is completed. 2

3. Gaussian quadrature

Denote byUn(t) the Tchebycheff polynomial of second kind of degreen,
i.e.,

Un(x) =
sin(n+ 1)θ

sin θ
, where x = cos θ.

Let η1, . . . , ηn be the zeroes ofUn(x), that is,ηk = cos kπ
n+1 , k = 1, . . . , n.

Theorem 1.The quadrature formula

(∗)
∫ ∫

D
f(x, y) dx dy ≈

n∑
k=1

Ak

∫ √
1−η2

k

−
√

1−η2
k

f(ηk, y) dy,

with

Ak =
π

n+ 1
sin

kπ

n+ 1
k = 1, . . . , n,

is exact for each polynomialf ∈ π2n−1(IR2).

Proof. Assume thatf(x, y) is any polynomial fromπ2n−1(IR2). Then it can
be presented in the form

f(x, y) =
2n−1∑
k=0

ak(x)yk, where ak(x) ∈ π2n−k−1(IR)
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and thus

∫ ∫
D
f(x, y) dx dy =

∫ 1

−1

∫ √
1−x2

−√
1−x2

2n−1∑
k=0

ak(x)yk dy dx

=
2n−1∑

k=0,k=2s

2
2s+ 1

∫ 1

−1

√
1 − x2ak(x)(1 − x2)s dx.

Observe that the univariate polynomialsak(x)(1 − x2)s under the integral
sign are of degree less than or equal to2n − 1. Then we can compute the
integral exactly using the classical Gaussian quadrature formula on[−1, 1]
with weightξ(t) =

√
1 − t2. Precisely,

∫ 1

−1

√
1 − x2ak(x)(1 − x2)s dx =

n∑
l=1

π

n
ak(ηl)(1 − η2

l )
s.

Therefore

∫ ∫
D
f(x, y) dx dy =

n∑
l=1

π

n+ 1
sin2 lπ

n+ 1

2n−1∑
k=0,k=2s

2
2s+ 1

(1 − η2
l )

sak(ηl)

=
n∑

l=1

π

n+ 1
sin

lπ

n+ 1

2n−1∑
k=0,k=2s

ak(ηl)
2

2s+ 1

(√
1 − η2

l

)
2s+1

=
n∑

l=1

π

n+ 1
sin

lπ

n+ 1

∫ √
1−η2

l

−
√

1−η2
l

2n−1∑
k=0

ak(ηl)yk dy

=
n∑

l=1

π

n+ 1
sin

lπ

n+ 1

∫ √
1−η2

l

−
√

1−η2
l

f(ηl, y) dy

and the proof is completed. 2

4. Ridge polynomials. Orthogonal polynomials

Given the real functionρ(t) on IR and a parameterθ ∈ [0, π) we define on
IR2 the associatedridge functionρ(θ;x, y) with directionθ in the following
way

ρ(θ;x, y) := ρ(x cos θ + y sin θ).

Clearly the ridge function is constant along any line of directionθ. As a
consequence of this, one can compute

∫ ∫
D
ρ(θ;x, y) dx dy =

∫ 1

−1

∫ √
1−t2

−√
1−t2

ρ(t) ds dt = 2
∫ 1

−1

√
1 − t2ρ(t) dt
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and thus, by the Gaussian quadrature,

∫ ∫
D
ρ2n−1(θ;x, y) dx dy =

2π
n+ 1

n∑
k=1

sin2 kπ

n+ 1
ρ2n−1(ηk)

for every ridge polynomialρ2n−1(θ;x, y) of degree2n−1. This conclusion
is just a particular case of Theorem 1, applied to the ridge polynomialρ2n−1.
It shows that the use of a certain ridge polynimial basis inπN (IR2) could
produce a simple integration rule. The following is a well-known fact (see
for example [3]).

Lemma 4. Every polynomial of degreen in x and y is a sum ofn + 1
ridge polynomials (with any preassigned directionsθ0, θ1, . . . , θn which
are distinct moduloπ) of degreen.

The ridge polynomials, associated with the Tchebycheff polynomial
Un(t) play an essential role in this study. A simple consequence of The-
orem 1 and Lemma 1 is the following

Corollary 1.

(3)
∫ ∫

D
Un(θ;x, y)P (x, y) dx dy = 0

for eachP (x, y) ∈ πn−1(IR2) andθ.

Now we give an explicit formula for the projection of a ridge polynomial.

Lemma 5.LetQ(t) be a polynomial of degreen presented in the form

Q(t) =
n∑

j=0

ajUj(t).

Then the projection of the associate ridge polynomialQ(α;x, y) of direction
α along the lineI(t, θ) is given by the formula

PQ(t, θ) = 2
√

1 − t2
n∑

j=0

aj

j + 1
Uj(t)

sin(j + 1)(θ − α)
sin(θ − α)

.

Proof. It suffices to proof the lemma forα = 0. So, we assume further that
α = 0.

Clearly

PQ(t, θ) =
∫ √

1−t2

−√
1−t2

Q(t cos θ − y sin θ) dy
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and after the substitutiont = cos τ we get

PQ(cos τ, θ) =
∫ sin τ

− sin τ
Q(cos τ cos θ − y sin θ) dy.

Settingu = cos τ cos θ − y sin θ, we arrive at the formula

PQ(cos τ, θ) =
1

sin θ

∫ cos(τ−θ)

cos(τ+θ)
Q(u) du,

which can be found also in [3]. Now we perform the integration, taking
into account the given presentation ofQ(t) and the relationT ′

j+1(t) =
(j+1)Uj(t) between the Tchebycheff polynomials of first and second kind.
We have

PQ(cos τ, θ) =
1

sin θ

n∑
j=0

aj

j + 1
{Tj+1(cos(τ − θ)) − Tj+1(cos(τ + θ))}

= 2
n∑

j=0

aj

j + 1
sin(j + 1)τ sin(j + 1)θ

sin θ

= 2
n∑

j=0

aj

j + 1
sin(j + 1)τ

sin τ
sin(j + 1)θ

sin θ
sin τ

= 2
n∑

j=0

aj

j + 1
Uj(t)

√
1 − t2

sin(j + 1)θ
sin θ

,

which is the wanted formula. The proof is completed.2

An immediate consequence from Lemma 5 is the following integration
formula, derived in [2].

Corollary 2. For eacht andθ,

∫ √
1−t2

−√
1−t2

Um(t cos θ + s sin θ) ds =
2

m+ 1

√
1 − t2 Um(t)

sin(m+ 1)θ
sin θ

.

A similar formula can be given for the projection of any polynomial
f ∈ πn(IR2). Indeed, according to Lemma 4,f can be written in the form

(4) f(x, y) =
n∑

i=0

biQi(θi;x, y),

and consequently,

f(x, y) =
n∑

i=0

n∑
m=0

biaimUm(θi;x, y),
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where

(5) Qi(t) =
n∑

m=0
aimUm(t).

Then, by Corollary 2,

Pf (t, θ) =
n∑

i=0

{
n∑

m=0

biaim

m+ 1

∫ √
1−t2

−√
1−t2

Um(t cos θ + s sin θ) ds

}

= 2
√

1 − t2
n∑

m=0

n∑
i=0

cim
sin(m+ 1)(θ − θi)

sin(θ − θi)
Um(t)

with cim = biaim/(m+ 1). Thus, we proved the following

Corollary 3. Letf be any polynomial fromπn(IR2). Assume thatf is given
by (4) withQi presented in the form (5). Then

(6) Pf (t, θ) = 2
√

1 − t2
n∑

m=0

n∑
i=0

biaim

m+ 1
sin(m+ 1)(θ − θi)

sin(θ − θi)
Um(t).

One can see from (6) that the projection of any polynomialf ∈ πn(IR2)
is a function of the form

√
1 − t2ϕ(t) whereϕ(t) is an algebraic polynomial

of degreen. This fact was used already in the proof of Theorem 1. Moreover,
(6) can be used to find the coefficients of this polynomial in terms of the
directions{θm}.

Using Corollary 2, one may construct an orthonormal basis of ridge
polynomials inπn(IR2), as shown in the next lemma.

Lemma 6. Setθmj := jπ
m+1 for j = 0, . . . ,m, m = 0, . . . , n. The ridge

polynomials

(7)
1√
π
Um(θmj ;x, y), m = 0, . . . , n, j = 0, . . . ,m ,

form an orthonormal basis inπn(IR2).

Proof. The relation∫ ∫
D
Um(θmj ;x, y)Uk(θki;x, y) dx dy = 0, for m 6= k,

follows immediately from Corollary 1. In the casem = k, by Corollary 2,∫ ∫
D
Um(θmj ;x, y)Um(θmi;x, y) dx dy

=
∫ 1

−1
Um(t)

∫
I(t,θmj)

Um(θmi;x, y)ds

=
2

m+ 1

∫ 1

−1

√
1 − t2 U2

m(t) dy
sin(m+ 1)(θmi − θmj)

sin(θmi − θmj)
= πδij ,
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since

sin(m+ 1)(θmi − θmj)
sin(θmi − θmj)

=
sin(i− j)π

sin(i− j)π/(m+ 1)
= (m+ 1)δij ,

where

δij =
{

0 if i 6= j
1 if i=j

.

The proof is completed. 2

Lemma 1 shows that the orthogonal polynomials, as in the univariate
case, are closely related with the construction of Gaussian quadratures.

We next discuss another orthonormal basis forD in πn(IR2) (see [5]).
These are the polynomialsFmj(x, y), m = 0, . . . , n, j = 0, . . . ,m,
defined via
(8)
Fmj(x, y) := Qn−k(x, k)(1−x2)

k
2Pk(

y√
1 − x2

) = Qn−k(x, k)Wk(x, y),

wherePk(t) is thek− th Legendre polynomial andQn−k(t, k) is the poly-
nomial of degree(n − k), orthogonal in(−1, 1) with weight ξk(t) =
(1 − t2)k+ 1

2 . SinceQn−k(t, k) is a Jacobi polynomial with parameters

α = β = k + 1
2 and for the Jaccobi polynomialsJ (α,β)

n (t) the equality

d

dt
{J (α,β)

n (t)} =
1
2
(n+ α+ β + 1)J (α+1,β+1)

n−1 (t)

holds, then

Qn−k(t, k) = ck
dk

dtk
Un(t), k = 0, . . . , n, ck ∈ IR.

Note that

Wk(x, y) =




(y2 + x2p2
2s,1 − p2

2s,1)...(y
2 + x2p2

2s,s − p2
2s,s)

if k = 2s

y(y2 + x2p2
2s+1,1 − p2

2s+1,1)...(y
2 + x2p2

2s+1,s − p2
2s+1,s)

if k = 2s+ 1

,

wherepk,l, l = 1, . . . , [k
2 ] are the positive zeroes ofPk(t). Therefore the

polynomialsFmj(x, y) vanish on elipses. This fact leads to the conclusion,
that the two orthogonal systems (7) and (8) are different.

The next result due to Marr [4] gives the projection of any orthogonal
polynomial along any lineI(t, θ).
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Lemma 7. Assume thatω(x, y) is a polynomial fromπn(IR2) which is
orthogonal to each polynomialQ ∈ πn−1(IR2) on the unit discD. Then,

∫
I(t,θ)

ω(x, y) ds =
2

n+ 1

√
1 − t2Un(t)ω(cos θ, sin θ).

The proof of this nice observation can be found in [4]. In particular, when
θ = 0

∫ √
1−t2

−√
1−t2

ω(t, y) dy = A
√

1 − t2Un(t) t ∈ (−1, 1), A ∈ IR.

We can derive it here easily from our auxiliary results in the previous section.
To do this, note that

ω(x, y) =
n∑

j=0

bjUn(θj ;x, y)

with some coefficients{bj}. Then, according to (6),

∫
I(t,θ)

ω(x, y) ds =
2

n+ 1

√
1 − t2Un(t)

n∑
j=0

bj
sin(n+ 1)(θ − θnj)

sin(θ − θnj)

=
2

n+ 1

√
1 − t2Un(t)ω(cos θ, sin θ).

Theorem 2.If the polynomialω(x, y) := LI1(x, y) · · ·LIn(x, y) is orthog-
onal toπn−1(IR2) then

tk ∈ {η1, . . . , ηn} (ηk = cos
kπ

n+ 1
, k = 1, . . . , n)

or cos(θk − θi) = ti for somei.

Proof. From Marr’s Lemma and the fact, thatω(x, y) vanishes onIk, it
follows that

0 =
∫

Ik

ω(x, y) ds =
2

n+ 1

√
1 − t2kUn(tk)ω(cos θk, sin θk)

=
2

n+ 1

√
1 − t2kUn(tk)

n∏
i=1

(cos(θk − θi) − ti).

Sincetk ∈ (−1, 1), Theorem 2 is proved. 2
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5. Characterization of the Gaussian quadratures

It seems that the quadrature formula given in Theorem 1 with ADP= 2n−1
is unique (up to rotation). In this section we give a certain characterization of
the Gaussian quadratures which supports our suggestion. We derive a simple
observation, that gives a necessary condition for the quadrature (1) for the
unit diskD to have ADP= 2n− 1. LetA1, . . . , As be the common points
of the unit circle{(x, y) : x2 + y2 = 1} and the linesI := {I1, . . . , In},
induced by (1), enumerated with respect to their natural position on the
circle. LetAs+1 ≡ A1. Then the folowing criterion is true.

Criterion. If there are two consecutive pointsAj andAj+1, j ∈ {1, . . . , s},
such that the length of the arc, determined by them is greater than2π

n+1 , then
(1) is not Gaussian.

Proof. Assume the opposite and consider the setΨ of line segmentslθ,j , θ ∈
[0, 2π), 1 ≤ j < n+1

2 , j - integer, with endpoints(cos θ, sin θ) and(cos(θ+
2jπ
n+1), sin(θ + 2jπ

n+1)) and the setI. Then, there is a line segmentlθ,j with
the property

lθ,j ∩ Ik ≡ ∅ for eachk = 1, . . . , n.

Without loss of generalityθ = 0 and therefore,

l0,j ≡ I(ηj , 0).

But by Lemma 3, applied to the Gaussian formulas (1) and (*),

l0,j ∩ ((
n⋃

k=1,k 6=j

I(ηk, 0)) ∪ (
n⋃

k=1

Ik)) ∩D 6≡ ∅.

The proof is completed. 2

The following necessary condition is also true.

Lemma 8. If (1) is a Gaussian quadrature formula forD, then the polyno-
mial ω(x, y) := LI1(x, y)...LIn(x, y) has the property

(9) ω(−x,−y) = (−1)nω(x, y)

and whenn ≥ 2 there are indexesj, k ∈ {1, . . . , n}, such that

| tj |≥ 1
2
, and | tk |≤ 1

2
.

Proof. Lemma 1 shows thatω(x, y) is orthogonal to anyQ ∈ πn−1(IR2) in
Dwith weightp(x, y) ≡ 1. The domainD andp(x, y) are central symmetric
and therefore (see [6])ω(x, y) has the property (9).
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Whenn ≥ 2 ADP = 2n − 1 ≥ 3 and because (1) is exact for the
polynomialsf1(x, y) ≡ 1, f2(x, y) = x2, f3(x, y) = y2, after a simple
computation one can obtain

n∑
k=1

Ak

√
1 − t2k =

π

2
,

2
3

n∑
k=1

Ak

√
1 − t2k(3t

2
k cos2 θk + (1 − t2k) sin2 θk) =

π

4
,

2
3

n∑
k=1

Ak

√
1 − t2k(3t

2
k sin2 θk + (1 − t2k) cos2 θk) =

π

4

and therefore,
n∑

k=1

Ak

√
1 − t2k(4t

2
k − 1) = 0.

Sincetk ∈ (−1, 1) and, by Lemma 2,Ak > 0, k = 1, . . . , n, one has
that there exist indexesj, k ∈ {1, . . . , n}, satisfying the above mentioned
condition. 2

Actually Lemma 8 claims, that the set of linesI := {I1, . . . , In}, induced
by a Gaussian quadrature formula (1) is central symmetric with respect to
the origin. Namely, after a suitable enumeration,

tk = −tk+s, k = 1, . . . , s, when n = 2s,

tk = −tk+s+1, k = 1, . . . , s, ts+1 = 0, when n = 2s+ 1.

Taking into account all previous results a natural question comes up. Does
the set

Γ1 := {f ∈ πn(IR2) : f =
n∏

k=1

(akx+ bky + ck),

f orthogonal toπn−1(IR2)}
coincide with the set

Γ2 := {f ∈ πn(IR2) : f =
n∏

k=1

LIk
(x, y),

I1, . . . , In are induced by a Gaussian quadrature (1)}.
Clearly, by Lemma 1,Γ2 ⊆ Γ1. There is an example (see [6]) of a

polynomialR(x, y) ∈ Γ1, such that its linear multipliers are lines, passing
through the origin and the equidistant points(cos kπ

n , sin
kπ
n ), k = 1, . . . , n,

on the unit circle{(x, y) : x2 + y2 = 1}. Since each line generated by
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this polynomial passes through the origin, by the second part of Lemma 1,
R(x, y) fails to be an element ofΓ2. This means that in order to charac-
terize the Gaussian quadrature formulas of type (1) we need more than the
orthogonality and the linear multiplier representation, used so far.

6. Uniqueness

In this section we shall examine more closely the uniqueness property of
(*) among a certain class of quadrature formulas.

Theorem 3.Among all quadrature formulas of the form

∫ ∫
D
f(x, y) dx dy ≈

n∑
k=1

Bk

∫ √
1−t2

k

−
√

1−t2
k

f(tk, y) dy,(10)

−1 < t1 < . . . < tn < 1

(*) is the only one, that is Gaussian.

Proof. Let (10) be a Gaussian quadrature formula. DenoteI0
k := I(ηk, 0)

andJ0
k := J(tk, 0). Then, by Lemma 3

J0
k ∩ ((

n⋃
l=1,l 6=k

J0
l ) ∪ (

n⋃
l=1

I0
l )) ∩D 6≡ ∅

and since all the lines are parallel one another, this is possible only when

tk = ηk, k = 1, . . . , n.

It is easy to check, that if we apply (*) and (10) to the polynomials

ψk(x, y) =
n∏

j=1,j 6=k

(x− ηj)2 ∈ π2n−2(IR2), k = 1, . . . , n,

we derive that
Ak = Bk, k = 1, . . . , n,

which proves the theorem. 2

We next discuss quadrature formulas of the form
(11)∫ ∫

D
f(x, y) dx dy ≈ B1

∫ √
1−x2

1

−
√

1−x2
1

f(x1, y) dy +
n∑

k=2

Bk

∫
Ik

f(x, y) ds,

wherex1 is fixed at the zero ofUn(t) with the greatest absolute value.
We prove the following theorem about the uniqueness of (*) as a Gaussian
quadrature formula among the formulas of the form (11).
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Theorem 4.(*) is the only Gaussian quadrature formula among the quadra-
ture formulas of type (11).

Proof. We shall make use of the orthonormal basis (8) forD in πn(IR2) .
Let ADP(11) = 2n− 1. Then, by Lemma 1,

ω(x, y) = (x− x1)LI2(x, y)...LIn(x, y)

is orthogonal to anyQ ∈ πn−1(IR2) and therefore

ω(x, y) =
n∑

k=0

ak
dk

dxk
Un(x)Wk(x, y)

for some coefficients{ak}. On the other hand,ω(x1, y) = 0 for eachy .
After comparisson of the coefficients of the univariate polynomialω(x1, y),
we arrive at the equality

ak
dk

dxk
Un(x1) = 0, k = 0, . . . , n.

According to the fact, thatx1 is the zero ofUn(t) with the greatest absolute
value, by Rolle’s theorem, we have that any zerot∗ of dk

dxkUn(t), k =
1, . . . , n− 1 satisfies the condition

| t∗ |< x1.

Therefore
dk

dxk
Un(x1) 6= 0, k = 1, . . . , n,

which combined with the previous result gives

a1 = . . . = an = 0.

Since not allak are zeroes, the only possibility left is whena0 6= 0. Thus

ω(x, y) = a0Un(x),

which means that the quadrature formula is of the form (10). Then, by
Theorem 3, this formula is exactly (*).2

Now we introduce a new class of quadrature formulasΘ(n) that contains
all ones of the type

(12)
∫ ∫

D
f(x, y) dx dy ≈

n∑
k=1

Bk

∫
Jk

f(x, y) ds,

where the set of linesJ := {J1, . . . , Jn} satisfies the following condition:
There is an indexk ∈ {1, . . . , n} such that all the segmentsJl ∩ D, l =
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1, . . . , n, l 6= k, are in one of the halfplanes, determined byJk and there is
no one in the other halfplane. For this set we have the following uniqueness
theorem.

Theorem 5.Formula (*) is the only Gaussian quadrature formula inΘ(n).

Proof. Let (12) be a Gaussian quadrature formula. Without loss of generality,
we can assume that the line, determining (12) as an element ofΘ(n) is the
line with equation

x = t1, t1 ≥ 0.

Let ω(x, y) = LJ1(x, y) . . . LJn(x, y). Then, by Lemma 1 and Lemma 7

(13)
∫ √

1−t2

−√
1−t2

ω(t, y) dy = A
√

1 − t2Un(t), t ∈ (−1, 1), A ∈ IR.

Assume, thatA = 0. From the mean value theorem, it follows that

0 =
∫ √

1−t2

−√
1−t2

ω(t, y) dy = 2
√

1 − t2ω(M(t)), t ∈ (−1, 1),

M(t) ∈ I(t, 0) ∩D.
In particular,

ω(M(t)) = 0, | t |> t1, M(t) ∈ I(t, 0) ∩D.
This is impossible, since (12) as an element of the setΘ(n) does not vanish
on one of the halfplanes, determined byJ1. ThereforeA 6= 0 and by (13),
whent = t1

Un(t1) = 0.

Letx1 be the zero ofUn(t) with the greatest absolute value. Assumex1 6= t1
and consider (*), which by Theorem 1 is Gaussian quadrature formula.
Hence, using Lemma 3, we have

I(x1, 0) ∩ ((
n⋃

l=1

Jl) ∪ (
n⋃

l=2

I(xl, 0))) ∩D 6≡ ∅,

which can not be true, since (12) belongs toΘ(n). This implies

t1 = x1.

In other words, the formula (12) is of type (11) and then, by Theorem 4,
(12) is actually (*). The proof is completed.2

We have to mention, that (*) has a higher degree of precision than any
quadrature formula derived from the multivariate Hakopian interpolation on
the unit diskD. Let us explain this more precisely.
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It was shown in [1], that ifY1, . . . , Yn aren points on the unit circle
{(x, y) : x2 + y2 = 1} and{Yi, Yj}, i = 1, . . . , n, j = 1, . . . , n, are the
line segments, connectingYi andYj , then for eachg(x, y) ∈ C(D) there is
a unique polynomialHn(g;x, y) ∈ πn−2(IR2) such that∫

{Yi,Yj}
Hn(g;x, y) ds =

∫
{Yi,Yj}

g(x, y) ds, 1 ≤ i < j ≤ n.

This polynomial can be written as

Hn(g;x, y) =
∑

1≤k,l≤n

σk,l(x, y)
∫

{Yk,Yl}
g(x, y) ds,

whereσk,l(x, y) ∈ πn−2(IR2). After integrating overD, we obtain the
quadrature formula∫ ∫

D
g(x, y) dx dy ≈

∫ ∫
D
Hn(g;x, y) dx dy(14)

=
n∑

1≤k,l≤n

Ak,l

∫
{Yk,Yl}

g(x, y) ds,

where
Ak,l =

∫ ∫
D
σk,l(x, y) dx dy.

Each quadrature of the form (14) uses integration alongN = n(n+1)
2

lines and as an element ofΘ(N), by Theorem 5, ADP(14) < n(n+1)− 1.
On the other hand, if we are allowed to useN = n(n+1)

2 line integrals, we
would prefer (*), since it is Gaussian and thus it has a degree of precision
n(n + 1) − 1. Therefore the quadrature formula (*) is better than any one
of the form (14).

7. Some examples

The quadrature formula (*) can be written in the form∫ ∫
D
f(x, y) dx dy ≈

n∑
k=1

Ak

∫
Ik

f,

whereIk, k = 1, . . . , n, are the line segments inD, parallel toy axis,
passing through the points(cos kπ

n+1 , 0) and

Ak =
π

n+ 1
sin

kπ

n+ 1
, k = 1, . . . , n.

Next we give examples of our formula with calculated weights and nodes.
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n = 1

The formula is exact for allP (x, y) ∈ π1(IR2).
k Coefficients Line segments
1 1.57079632679415 x=0.00000000000000

n = 2

The formula is exact for allP (x, y) ∈ π3(IR2).
k Coefficients Line segments
1 0.90689968211791 x=0.50000000000000
2 0.90689968211700 x=-0.50000000000000

n = 3

The formula is exact for allP (x, y) ∈ π5(IR2).
k Coefficients Line segments
1 0.55536036726971 x=0.70710678118655
2 0.78539816339708 x=0.00000000000000
3 0.55536036726971 x=-0.70710678118655

n = 4

The formula is exact for allP (x, y) ∈ π7(IR2).
k Coefficients Line segments
1 0.36931636609870 x=0.80901699437495
2 0.59756643294895 x=0.30901699437495
3 0.59756643294804 x=-0.30901699437495
4 0.36931636609734 x=-0.80901699437495

n = 5

The formula is exact for allP (x, y) ∈ π9(IR2).
k Coefficients Line segments
1 0.26179938779933 x=0.86602540378444
2 0.45344984105895 x=0.50000000000000
3 0.52359877559866 x=0.00000000000000
4 0.45344984105850 x=-0.50000000000000
5 0.26179938779842 x=-0.86602540378444

n = 6

The formula is exact for allP (x, y) ∈ π11(IR2).
k Coefficients Line segments
1 0.19472656676044 x=0.90096886790242
2 0.35088514880954 x=0.62348980185873
3 0.43754662381298 x=0.22252093395631
4 0.43754662381298 x=-0.22252093395631
5 0.35088514880954 x=-0.62348980185873
6 1.19472656676044 x=-0.90096886790242
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n = 7

The formula is exact for allP (x, y) ∈ π13(IR2).
k Coefficients Line segments
1 0.15027943247105 x= 0.92387953251129
2 0.27768018363486 x=0.70710678118655
3 0.36280664401738 x=0.38268343236509
4 0.39269908169854 x=0.00000000000000
5 0.36280664401738 x=-0.38268343236509
6 0.27768018363486 x=-0.70710678118655
7 0.15027943247128 x=-0.92387953251129

n = 8

The formula is exact for allP (x, y) ∈ π15(IR2).
k Coefficients Line segments
1 0.11938755218353 x= 0.93969262078591
2 0.22437520360108 x= 0.76604444311898
3 0.302299894039155 x=0.50000000000000
4 0.343762755784618 x=0.17364817766693
5 0.34376275578461 x=-0.17364817766693
6 0.30229989403870 x=-0.50000000000000
7 0.22437520360086 x=-0.76604444311898
8 0.11938755218364 x=-0.93969262078591

n = 9

The formula is exact for allP (x, y) ∈ π17(IR2).
k Coefficients Line segments
1 0.09708055193641 x= 0.95105651629515
2 0.18465818304935 x=0.80901699437495
3 0.25416018461601 x=0.58778525229247
4 0.29878321647448 x=0.30901699437495
5 0.31415926535919 x=0.00000000000000
6 0.29878321647402 x=-0.30901699437495
7 0.25416018461556 x=-0.58778525229247
8 0.18465818304867 x=-0.80901699437495
9 0.09708055193573 x=-0.95105651629515

n = 10

The formula is exact for allP (x, y) ∈ π17(IR2).
k Coefficients Line segments
1 0.08046263007725 x=0.95949297361450
2 0.15440665639539 x=0.84125353283118
3 0.21584157370421 x=0.65486073394529
4 0.25979029037080 x=0.41541501300189
5 0.28269234274376 x=0.14231483827329
6 0.28269234274376 x= -0.14231483827329
7 0.25979029037035 x=-0.41541501300189
8 0.21584157370398 x=-0.65486073394528
9 0.15440665639494 x=-0.84125353283118
10 0.08046263007725 x=-0.95949297361450
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