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a b s t r a c t

We consider quadrature formulas of high degree of precision for the computation of the
Fourier coefficients in expansions of functions with respect to a system of orthogonal
polynomials. In particular, we show the uniqueness of a multiple node formula for
the Fourier–Tchebycheff coefficients given by Micchelli and Sharma and construct new
Gaussian formulas for the Fourier coefficients of a function, based on the values of the
function and its derivatives.
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1. Introduction

The approximation of f by partial sums Sn(f ) of its series expansion

f (t) =
∞∑
k=0

ak(f )Pk(t)

with respect to a given system of orthonormal polynomials {Pk}∞k=0 is a classical way of recovery of functions. The numerical
calculation of the coefficients ak(f ), present in Sn(f ), is a main task in such a procedure (see [21]). Recall that if {Pk}∞k=0 is
a system of orthonormal polynomials on [a, b] with a weight function µ (integrable, non-negative function on [a, b] that
vanishes only at isolated points), then

ak(f ) =
∫ b

a
µ(t)Pk(t)f (t)dt, (1.1)

and the computation of ak(f ) requires the use of a quadrature formula. An application of the Gauss quadrature formula based
on n values of the integrand Pkf (with k < 2n− 1) will give the exact result for all polynomials f of degree 2n− 1− k. Is it
possible to construct a formula based on n evaluations of f or its derivatives which gives the exact value of the coefficients
ak(f ) for polynomials f of higher degree?What is the highest degree of precision that can be attained by a formula based on
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n evaluations? Studying this question for the coefficients ak(f ) of f with respect to the system of Tchebycheff polynomials
of first kind {Tk}∞k=0, orthogonal on [−1, 1]with weight µ(t) =

1√
1−t2
,

Tk(t) = cos(k arccos t) =
1
2k−1

(t − ξ1) · · · (t − ξk), t ∈ (−1, 1),

Micchelli and Rivlin discovered in [1] the remarkable fact that the quadrature∫ 1

−1

1
√
1− t2

Tn(t)f (t)dt ≈
π

n2n
f ′[ξ1, . . . , ξn] (1.2)

is exact for all algebraic polynomials of degree≤ 3n−1. Here, g[x1, . . . , xm] denotes the divided difference of g at the points
x1, . . . , xm, and thus formula (1.2) uses n function values of the derivative f ′, that is f ′(ξ1), . . . , f ′(ξn). It is clear that there
is no formula of the form∫ 1

−1

1
√
1− t2

Tn(t)f (t)dt ≈
n∑
k=1

akf (xk)+
n∑
k=1

bkf ′(xk) (1.3)

which is exact for all polynomials of degree 3n. The polynomial

f (t) = Tn(t)(t − x1)2 · · · (t − xn)2

is a standard counterexample. Thus the Micchelli–Rivlin formula has the highest degree of precision among all formulas of
the type (1.3). Is this extremal formula unique? The question of uniqueness is reduced to the following problem which is
also of independent interest: Prove that if Q is a polynomial of degree nwith n zeros in [−1, 1] and such that |Q (ηj)| = 1 at
the extremal points ηj = cos

jπ
n , j = 0, . . . , n, of the Tchebycheff polynomial Tn, then Q ≡ ±Tn. This property was proved

in [2] and thus the uniqueness of Micchelli–Rivlin quadrature was settled (see [3]).
In this paper, we consider formulas of the type∫ b

a
µ(t)Pk(t)f (t)dt ≈

n∑
j=1

νj−1∑
i=0

cjif (i)(xj), a < x1 < · · · < xn < b, (1.4)

where νj are given natural numbers (multiplicities) and Pk = xk + · · · is a polynomial of degree k. We say that a number `
is the algebraic degree of precision (ADP) of (1.4) if (1.4) is exact for all polynomials of degree ` and there is a polynomial of
degree `+ 1 for which this formula is not exact. Let us denote by e(ν) the smallest non-negative even integer≥ ν (clearly
e(ν) = 0 for all ν ≤ 0), and by σ(Pk) the number of zeros of Pk in (a, b)with odd multiplicities. It is easy to see that the ADP
(1.4) does not exceed

e(ν1 − τ1)+ · · · + e(νn − τn)+ σ(Pk)− 1,

since the formula is not exact for the polynomial

(t − x1)e(ν1−τ1) . . . (t − xn)e(νn−τn)(t − t1) . . . (t − tm),

where m = σ(Pk), t1, . . . , tm ∈ (a, b), are the zeros of Pk with odd multiplicities, τi := 1 if xi ∈ {t1, . . . , tm} and τi := 0
otherwise. Notice that in our applications the polynomial Pk in formula (1.1) for ak(f ) is the kth orthogonal polynomial on
[a, b]with weight µ, thus all its zeros are with multiplicity one and we have that σ(Pk) = k.
Here, for the sake of convenience, we define the formula (1.4) to be Gaussian, if it has maximal ADP, that is, if

ADP (1.4) = e(ν1 − τ1)+ · · · + e(νn − τn)+ σ(Pk)− 1.

For example, formula (1.2) is Gaussian since ADP (1.2) = 3n − 1. In this case, ν1 = · · · = νn = 2, τ1 = · · · = τn = 1,
σ(Tn) = n, and therefore e(ν1 − τ1) + · · · + e(νn − τn) + σ(Tn) − 1 = 2n + n − 1 = 3n − 1. Note, that according to the
above definition any interpolatory type quadrature of the form∫ b

a
µ(t)f (t)dt ≈

n∑
k=1

akf (xk)+
n∑
k=1

bkf ′(xk)

would be also ‘‘Gaussian’’, which is somehow violating our classical understanding about the Gaussian property.
In this paper, we give a complete characterization of the Gaussian formulas of form (1.4) and construct explicitly such

formulas in several particular cases. The natural setting iswhen Pk is the corresponding orthogonal polynomial and one looks
for nodes and coefficients that define a Gaussian formula. Another setting is when the nodes {xj}nj=1 and their multiplicities
{νj}

n
j=1 are preassigned, and we seek a polynomial Pk for which the corresponding formula is Gaussian. If Gaussian formulas

do not exist, we investigate the formulas of type (1.4) with maximal possible ADP. We also show that there is a one-to-one
correspondence between formulas of type (1.4) with simple nodes (νj = 1, j = 1, . . . , n) and fixed orthogonal polynomial
Pk and the Gauss–Kronrod formulas [4]. As an application of our main observation (Theorem 2.1) we prove the uniqueness
of a formula derived in [5]. This study is a continuation of the approach outlined in [6].
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2. General observations

Let us denote by

πn(R) :=

{
P(t) : P(t) =

n∑
k=0

dktk, dk ∈ R

}
the space of all polynomials in one variable of degree at most n. In this section, we discuss general remarks concerning
Gaussian quadrature formulas with multiple nodes since, as we shall see below, the study of formulas of type (1.4) for the
Fourier coefficients can be reduced to the study of standard multiple node quadratures. The extension of the classical Gauss
quadrature to the multiple nodes case took a long time and the effort of many mathematicians. First, Tschakaloff [7] proved
the existence of Gaussian quadratures with multiple nodes and then Ghizzetti and Ossicini [8] established the following
theorem.

Theorem A. For any given set of odd multiplicities ν1, . . . , νn, there exists a unique quadrature formula of the form∫ b

a
µ(t)f (t)dt ≈

n∑
j=1

νj−1∑
i=0

ajif (i)(xj), a ≤ x1 < · · · < xn ≤ b, (2.1)

of ADP = ν1 + · · · + νn + n− 1. The nodes x1, . . . , xn of this quadrature are determined uniquely by the orthogonal property∫ b

a
µ(t)

n∏
k=1

(t − xk)νkQ (t)dt = 0, ∀ Q ∈ πn−1(R).

Quadratures of type (2.1) with equal multiplicities have been studied in [9], where Turàn proved Theorem A in the
particular case when ν1 = · · · = νn = ν, with ν being an odd number. The optimal nodes {xj}nj=1 are characterized by
the orthogonal property∫ b

a
µ(t)

n∏
k=1

(t − xk)νQ (t)dt = 0, ∀ Q ∈ πn−1(R).

In this case, the Gaussian quadrature is called Turàn quadrature of type ν. Further extension of Theorem A to the case of
generalized Gaussian formulas with a sign changing weight was given in [10].
Next, we describe the connection between quadratures with multiple nodes and formulas of type (1.4). For the system

of nodes x := (x1, . . . , xn)with corresponding multiplicities ν̄ := (ν1, . . . , νn), we define the polynomials

Λ(t; x) :=
n∏
m=1

(t − xm), Λj(t; x) :=
Λ(t; x)
(t − xj)

, Λν̄(t; x) :=
n∏
m=1

(t − xm)νm

and set

x
νj
j := (xj, . . . , xj︸ ︷︷ ︸

νj times

), j = 1, . . . , n.

The following theorem reveals the relation between the standard quadratures and the quadratures for Fourier coefficients
we are going to study.

Theorem 2.1. For any given sets of multiplicities µ̄ = (µ1, . . . , µk) and ν̄ = (ν1, . . . , νn), and nodes y1 < · · · < yk,
x1 < · · · < xn, there exists a quadrature formula of the form∫ b

a
µ(t)Λµ̄(t; y)f (t)dt ≈

n∑
j=1

νj−1∑
i=0

cjif (i)(xj), (2.2)

with ADP = N if and only if there exists a quadrature formula of the form∫ b

a
µ(t)f (t)dt ≈

k∑
m=1

µm−1∑
λ=0

bmλf (λ)(ym)+
n∑
j=1

νj−1∑
i=0

ajif (i)(xj), (2.3)

which has degree of precision N + µ1 + · · · + µk. In the case ym = xj for some m and j, the corresponding terms in both sums
combine in one term of the form

µm+νj−1∑
λ=0

dmλf (λ)(ym).
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Proof. Assume that ADP (2.3) = N + µ1 + · · · + µk. Now apply (2.3) to the polynomial Λµ̄(·; y)f , where f ∈ πN(R). The
value of the first sum in (2.3) is 0 and we obtain∫ b

a
µ(t)Λµ̄(t; y)f (t)dt =

n∑
j=1

νj−1∑
i=0

aji
[
Λµ̄(t; y)f (t)

](i)∣∣∣
t=xj

. (2.4)

Since [
Λµ̄(t; y)f (t)

](i)
=

i∑
s=0

(
i
s

) [
Λµ̄(t; y)

](s)
f (i−s)(t),

equality (2.4) is a quadrature of form (2.2) which is exact for f ∈ πN(R).
Conversely, let us assume that ADP (2.2)= N . Observe that any sufficiently smooth function f has the representation

f (t) = H(t)+ f [yµ11 , . . . , y
µk
k , t]Λ

µ̄(t; y),

where H is the polynomial that interpolates f at the nodes y := (y1, . . . , yk) with multiplicities µ̄ := (µ1, . . . , µk). We
multiply both sides by the weight µ, integrate over [a, b] and arrive at the formula∫ b

a
µ(t)f (t)dt =

∫ b

a
µ(t)H(t)dt +

∫ b

a
µ(t)f [yµ11 , . . . , y

µk
k , t]Λ

µ̄(t; y)dt.

The term
∫ b
a µ(t)H(t)dt is a sum like the first sum on the right side of (2.3). Notice that if f is a polynomial of degree

N + µ1 + · · · + µk, then the divided difference f [y
µ1
1 , . . . , y

µk
k , ·] is a polynomial of degree at most N and we can compute

the last integral exactly by (2.2). In conclusion, we obtain a formula of the form (2.3) that is exact for all polynomials of
degree N + µ1 + · · · + µk. The proof is completed. �

It follows from the above proof that any formula of the form (2.2) generates a formula of the form (2.3), and vice versa.
Surprisingly, the relation between (2.2) and (2.3) was used before only in one direction — to obtain from (2.3) a formula of
type (2.2).
Note that we did not use in the proof of Theorem 2.1 thatµ is a non-negative function. Thus the assertion holds for every

integrable function µ.
A direct application of Theorem 2.1 for particular choices of the multiplicities µ̄ and ν̄ gives a characterization of the

Gaussian quadratures for the Fourier coefficients.

Corollary 2.2. Let Pk(t) = (t − y1) · · · (t − yk) and yi 6= xj for all i and j. Formula (1.4), with νj, j = 1, . . . , n, odd multiplicities
is Gaussian if and only if the polynomial PkΛ(·; x) is orthogonal in [a, b] with weight

µ(t)
n∏
j=1

(t − xj)νj−1

to every polynomial of degree n+ k− 1.

Proof. Notice that σ(Pk) = k and τi = 0 for all i, since yi 6= xj for all i and j. Thus, formula (1.4) is Gaussian if and only if it
has ADP = ν1 + · · · + νn + n+ k− 1. According to Theorem 2.1, ADP (1.4)= e(ν1)+ · · · + e(νn)+ k− 1 if and only if the
formula∫ b

a
µ(t)f (t)dt ≈

k∑
m=1

bm0f (ym)+
n∑
j=1

νj−1∑
i=0

ajif (i)(xj)

has ADP = 2k+ ν1+ · · · + νn+ n− 1, i.e., if it is Gaussian. But, by Theorem A, the latter is true if and only if the polynomial
Pk(t)(t − x1) · · · (t − xn) is orthogonal in [a, b]with weight µ(t)

∏n
j=1(t − xj)

νj−1 to every polynomial of degree n+ k− 1.
The proof is completed. �

Similar statement holds in the casewhen someof the nodes y1 < · · · < yk coincidewith some of the nodes x1 < · · · < xn.
As illustration, we will only state the case when y1 = x1:
Let Pk(t) = (t− x1)(t− y2) · · · (t− yk) and yi 6= xj for i = 2, . . . , k, and j = 2, . . . , n. Formula (1.4)with odd multiplicities

νj, j = 1, . . . , n, is Gaussian if and only if the polynomial PkΛ(·; x) is orthogonal in [a, b] with weight

µ(t)
n∏
j=1

(t − xj)νj−1

to every polynomial of degree n+ k− 3.
Note that Corollary 2.2 does not assert the existence of Gaussian quadratures for any weight and any fixed system of

points y1 < · · · < yk. It gives only a characterization. Later we shall return to the question of existence.
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Next we fix the nodes and look for a polynomial Pk so that the resulting quadrature is Gaussian. The following is true.

Corollary 2.3. For any given set of fixed nodes x1 < · · · < xn in [a, b] and even multiplicities ν̄ = (ν1, . . . , νn), there exists a
unique Gaussian quadrature formula of the form (1.4)with a certain polynomial Pk(t) = (t− y1) · · · (t− yk). Pk is characterized
by the property that it is the polynomial of degree k, orthogonal in [a, b]with weight µ(t)Λν̄(t; x) to every polynomial of degree
k− 1.

Proof. It is a classical result that for the weightµΛν̄(·; x) ≥ 0 (all νi’s are even) and the interval [a, b], there exists a unique
quadrature of the form∫ b

a
µ(t)Λν̄(t; x)f (t)dt ≈

k∑
m=1

dmf (ym),

exact for all polynomials of degree 2k−1. This is the Gauss formula, whose nodes {ym}km=1 are the zeros of the kth orthogonal
polynomial on [a, b] with weight µΛν̄(·; x). Let us first assume that ym 6= xi for all m and i. Then, by Theorem 2.1, there
exists a unique quadrature of the form∫ b

a
µ(t)f (t)dt ≈

k∑
m=1

bm0f (ym)+
n∑
j=1

νj−1∑
i=0

ajif (i)(xj)

of ADP = ν1 + · · · + νn + 2k− 1. Again, by Theorem 2.1 the latter formula exists if and only if there is a quadrature of the
form (1.4) of ADP = ν1+· · ·+ νn+ k− 1. This completes the proof, since σ(Pk) = k, τi = 0, i = 1, . . . , n (here we consider
the case when ym 6= xi for all m and i) and for even νi, e(νi) = νi. The case when some of the nodes y1 < · · · < yk coincide
with some of the x1 < · · · < xn can be treated similarly. �

We formulate below the important particular case when k = n and yj = xj for j = 1, . . . , n.

Corollary 2.4. For any given set of evenmultiplicities ν̄ = (ν1, . . . , νn), and weight µ, there exists a unique Gaussian quadrature
(with ADP = ν1 + · · · + νn + n− 1) of the form∫ b

a
µ(t)Λ(t; x)f (t)dt ≈

n∑
j=1

νj−1∑
i=0

cjif (i)(xj). (2.5)

Its nodes {xj}nj=1 are determined by the orthogonality property∫ b

a
µ(t)

n∏
j=1

(t − xj)νj+1Q (t)dt = 0, ∀ Q ∈ πn−1(R).

Proof. Here σ(Λ(t; x)) = n, τi = 1, i = 1, . . . , n, and since the multiplicities νi are even,

M :=
n∑
i=1

e(νi − 1)+ n− 1 =
n∑
i=1

νi + n− 1.

Thus, by Theorem 2.1, formula (2.5) is Gaussian, i.e., it has ADP = M , if and only if there is a quadrature of the form∫ b

a
µ(t)f (t)dt ≈

n∑
j=1

νj∑
i=0

ajif (i)(xj)

of ADP = M + n. Now, by Theorem A, the last quadrature exists and is uniquely determined by the weight µ and the
multiplicities (ν1 + 1, . . . , νn + 1). The characterization of its nodes {xj}nj=1 is given by Theorem A as well. �

Corollary 2.4 can be applied in the case when all multiplicities are even and equal to ν. Then the associated quadrature
of type (2.1) is the Turàn quadrature of type ν + 1, and the following particular case of the previous corollary holds.

Corollary 2.5. For any even ν and weight µ, there exists a unique Gaussian quadrature (with ADP = nν + n− 1) of the form∫ b

a
µ(t)Λ(t; x)f (t)dt ≈

n∑
j=1

ν−1∑
i=0

cjif (i)(xj). (2.6)

Its nodes {xj}nj=1 are the nodes of the Turàn quadrature of type (ν + 1) and sign{cj,ν−1} = (−1)
n−j.



Author's personal copy

B. Bojanov, G. Petrova / Journal of Computational and Applied Mathematics 231 (2009) 378–391 383

Proof. Since Corollary 2.5 follows directly from Corollary 2.4, it only remains to show that sign{cj,ν−1} = (−1)n−j. We
consider the Turàn quadrature (2.1) of type ν + 1 with νj = ν + 1 and apply it to Λ(·; x)Q , where Q is a polynomial of
degree nν + n− 1. We have that

[Λ(t; x)Q (t)](i) (xj) = iΛj(xj; x)Q (i−1)(xj)+
i−2∑
`=0

d`jQ (`)(xj), i = 2, . . . , ν,

and therefore we obtain (2.6), where cj,ν−1 = νajνΛj(xj; x). Since the coefficients {aij} of Turàn’s quadrature have the
property (see [9]) aji > 0 for all j and even i, and

sign{Λj(xj; x)} = (−1)n−j,

we derive that sign{cj,ν−1} = (−1)n−j. �

It is known that for every ν even, the nodes of the Turàn quadrature of type (ν + 1) with weight µ(t) = (1 − t2)−1/2
on [−1, 1] are the zeros {ξj}nj=1 of the Tchebycheff polynomials of first kind Tn. This fact and an application of Corollary 2.5
with [a, b] ≡ [−1, 1] and µ(t) = (1− t2)−1/2 gives the Gaussian formula∫ 1

−1

Tn(t)
√
1− t2

f (t)dx ≈
n∑
j=1

ν−1∑
i=0

cjif (i)(ξj)

with ADP = nν + n− 1. The coefficients cji can be found from the coefficients of the corresponding Turàn quadrature.
In the case ν = 2, we arrive at a formula based on the values of the integrand f and its derivative at the zeros of Tn. A

calculation of the coefficients of f (ξk), k = 1, . . . , n, in the resulting quadrature formula shows that they are equal to zero
and thus one obtains the Micchelli–Rivlin quadrature (1.2) from [1] which is exact for π3n−1(R).
Corollary 2.3 gives a positive answer to the question of existence and uniqueness of Gaussian formulas of type (1.4) if we

fix the nodes {xj}nj=1 and their even multiplicities (ν1, . . . , νn). An affirmative answer has also the problem of existence and
uniqueness of Gaussian quadratures of type (1.4) (see Corollary 2.4) where k = n and the polynomial Pn has exactly n real
zeros which are the nodes {xj}nj=1.
Now let us return to the question of existence and uniqueness of a Gaussian quadrature of type (1.4) for any fixed

polynomial Pk(t) = (t − y1) · · · (t − yk) and prescribed multiplicities (ν1, . . . , νn). This question does not have a definitive
answer, as it can be seen from the following examples.
First, we show that if [a, b] ≡ [−1, 1], µ(t) ≡ 1, n = 1, ν1 = 2, k = 1, and P1(t) = t − 2/3, there is no Gaussian

quadrature of type (1.4). Namely, there is no x1 ∈ [−1, 1] such that the formula∫ 1

−1

(
t −
2
3

)
f (t)dt ≈ a10f (x1)+ a11f ′(x1),

is exact for all polynomials of degree 2. Indeed, this requirement leads to solving for x1 the equation 12x21 + 12x1 + 4 = 0
which does not have real roots. Next, one can easily show that if [a, b] ≡ [−1, 1], µ(t) ≡ 1, n = 1, ν1 = 2, k = 1, and
P1(t) = t − 11/20, both formulas∫ 1

−1

(
t −
11
20

)
f (t)dt ≈ −

11
10
f

(√
37− 20
33

)
+

√
37
30
f ′
(√
37− 20
33

)
and ∫ 1

−1

(
t −
11
20

)
f (t)dt ≈ −

11
10
f

(
−
√
37− 20
33

)
−

√
37
30
f ′
(
−
√
37− 20
33

)
are Gaussian, i.e., they are exact for polynomials of degree 2.
As shown by the examples above, the existence (and uniqueness) of Gaussian quadratures (1.4) is not secured for any

fixed set of a polynomial Pk and multiplicities ν̄ := (ν1, . . . , νn). Actually, Corollary 2.2 describes all triplets (µ, Pk, ν̄), with
ν̄ being a set of odd multiplicities, for which such extremal quadratures exist. Indeed, the point x := (x1, . . . , xn) ∈ [a, b]n,
xj 6= yi for all j and i, is Gaussian for the triplet (µ, Pk, ν̄), that is, there is a Gaussian formula of type (1.4), if the polynomial

Pk(t)(t − x1) · · · (t − xn)

is orthogonal in [a, b]with weight

µ(t)
n∏
j=1

(t − xj)νj−1

to every polynomial of degree n+k−1. But thismeans that the zeros y1, . . . , yk of Pk, together with the points x1, . . . , xn are
the nodes of the Gaussian quadrature formula associated with the weight µ and the multiplicities µi = 1 for i = 1, . . . , k,
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and odd ν1, . . . , νn. Such a formula always exists (and is unique for any preassigned order of the multiplicities {µi} and
{νj}, see Theorem A). Therefore, for any chosen positions i1 < · · · < ik among (1, 2, . . . , n + k) there is a unique Gaussian
quadrature formula of the type∫ b

a
µ(t)f (t)dt ≈

n+k∑
j=1

sj−1∑
i=0

ajif (i)(tj),

where sim = 1 for m = 1, . . . , k, and the rest of the multiplicities sj coincide with ν1, . . . , νn, given in a preassigned order.
Clearly, if we choose the polynomial Pk, such that its zeros ym,m = 1, . . . , k, are

ym = tim , m = 1, . . . , k,

then there exists a Gaussian quadrature of type (1.4). Only such choices of Pk admit a Gaussian formula. Similar argument
holds if we have that xj = yi for some i and j.
In [5], for every s > 0, Micchelli and Sharma constructed a formula of the form∫ 1

−1

1
√
1− t2

Tn(t)f (t)dt ≈
s∑
j=0

[
Ajf (j)(−1)+ Bjf (j)(1)

]
+

n−1∑
j=1

2s∑
i=0

ajif (i)(xj), (2.7)

with ADP (2.7)= (2s+ 3)n− 1, which has the highest possible precision. Since the nodes of their formula are located at the
extremal points−1, η̃1, . . . , η̃n−1, 1, of the Tchebycheff polynomial Tn (note that {η̃j}n−1j=1 are also the zeros of the Tchebycheff
polynomial of second kind Un−1), it can be considered as an extension of the simple node formula

2
π

∫ 1

−1

1
√
1− t2

Tn(t)f (t)dt ≈ 21−nf [−1, η̃1, . . . , η̃n−1, 1]

of ADP = 3n − 1, established earlier in [1]. It was not known whether the Micchelli–Sharma multiple node quadrature is
unique, although it has the highest degree of precision.We can derive here the uniqueness from our characterization results.

Theorem 2.6. Let

Mj[f ] := f [(−1)σ , η̃
j
1, . . . , η̃

j
n−1, 1

σ
], σ :=

[
j+ 1
2

]
.

The Micchelli–Sharma quadrature formula

2
π

∫ 1

−1

1
√
1− t2

Tn(t)f (t)dt ≈ 21−n
{

M1[f ] + 2
s∑
j=1

(−1)jjaj
j+ 1

M2j+1[f ]

}
,

where aj are defined by their generating function
∞∑
j=0

jajt j =
1
2
[(1− 4−n+1t)−1/2 − 1],

is the unique formula of the form (2.7) of highest ADP.

Proof. Assume that a quadrature of form (2.7) has ADP = (2s+ 3)n− 1 and xj 6= ξi for all j and i. Then, by Theorem 2.1, the
quadrature∫ 1

−1

1
√
1− t2

f (t)dt ≈
s∑
j=0

[
Ajf (j)(−1)+ Bjf (j)(1)

]
+

n−1∑
j=1

2s∑
i=0

ajif (i)(xj)+
n∑
j=1

αjf (ξj)

will be exact for all polynomials of degree (2s+ 4)n− 1 and consequently, again by Theorem 2.1, a quadrature of the form∫ 1

−1
(1− t2)s+1

1
√
1− t2

f (t)dt ≈
n−1∑
j=1

2s∑
i=0

ajif (i)(xj)+
n∑
j=1

αjf (ξj)

will integrate exactly all polynomials of degree (2s+4)n−1− (2s+2) = (2s+2)(n−1)+2n−1. This formula is based on
n interior simple nodes ξ1, . . . , ξn, and (n− 1) nodes x1, . . . , xn−1, each of odd multiplicity 2s+ 1. Such formula can attain
the highest possible ADP, equal to

ADP = 2n+ (2s+ 2)(n− 1)− 1,

only in the case when all nodes are Gaussian. But by Theorem A, there exists only one such quadrature. Thus, it should
coincide with the formula corresponding (via Theorem 2.1) to the Micchelli–Sharma quadrature. Similar argument holds
when some of the points in {xj}n−1j=1 coincide with some of the points {ξi}

n
i=1. The proof is complete. �
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Note that applying Theorem 2.1 once more to the last quadrature formula, we arrive at the following conclusion.

Corollary 2.7. There exists a unique Gaussian quadrature formula (for the Fourier–Tchebycheff coefficients) of the form∫ 1

−1
(1− t2)s+1/2Tn(t)f (t)dt ≈

n−1∑
j=1

2s∑
i=0

ajif (i)(xj)

of ADP = (2s+2)(n−1)−1. The nodes of this extremal formula are located at the zeros η̃1, . . . , η̃n−1 of Un−1 and the coefficients
can be given explicitly via the coefficients of the Micchelli–Sharma quadrature.

3. Quadratures with simple nodes

In this section, we discuss quadratures with simple nodes, i.e., the information used to recover the integral consists of
function values only. In this case, we give explicit expressions for the extremal nodes and the coefficients for some widely
used weight functions.

3.1. Quadratures with free simple nodes

Here, we consider formulas of the type∫ b

a
µ(t)Pk(t)f (t)dt ≈

n∑
j=1

ajf (xj), Pk(t) = (t − y1) . . . (t − yk), (3.1)

where y := (y1, . . . , yk), is a given set of points and yi 6= xj for all i and j. We study the problem of characterization of those
y for which the quadrature has maximal algebraic degree of precision. Clearly, for any choice of the parameters {aj}nj=1 and
{xj}nj=1,

ADP (3.1) < 2n+ k,
since it is not exact for the polynomial PkΛ2(·; x) ∈ π2n+k(R). The following version of Corollary 2.2 gives a complete
characterization of the nodes y for which there exists a quadrature formula (3.1) of maximal ADP, equal to 2n+ k− 1.

Theorem 3.1. The quadrature formula (3.1) has ADP = 2n+k−1 if and only if the nodes y1, . . . , yk, x1, . . . , xn, are the zeros of
the polynomial Sn+k which is orthogonal in [a, b]with weight µ to every polynomial of degree k+n−1. Moreover, the coefficients
{aj}nj=1 of the extremal quadrature are given by aj = αjPk(xj), j = 1, . . . , n, where {αj}

n
j=1 are the coefficients corresponding to

the nodes x1, . . . , xn in the Gauss quadrature formula with n+ k nodes.
Proof. Let us consider the Gaussian quadrature∫ b

a
µ(t)g(t)dt ≈

n∑
j=1

αjg(xj)+
k∑
j=1

βjg(yj), (3.2)

on [a, b] with weight µ. Its nodes x1, . . . , xn, y1, . . . , yk, are the zeros of the polynomial of degree n + k that is orthogonal
to πk+n−1(R) on [a, b] with weight µ. Since ADP (3.2) = 2(n + k) − 1, it should be exact for every polynomial of the form
g = Pkf , where f ∈ π2n+k−1(R) and Pk(t) = (t − y1) . . . (t − yk). This yields∫ b

a
µ(t)Pk(t)f (t)dt =

n∑
j=1

αjPk(xj)f (xj), for every f ∈ π2n+k−1(R).

Thus, we derive a formula of type (3.1) with nodes {xj}nj=1 and coefficients aj = αjPk(xj) of highest ADP.
Now assume that the quadrature (3.1) has ADP = 2n+ k−1. Consider the polynomial Sk+n(t) := Pk(t)Λ(t; x). For every

polynomial Q ∈ πk+n−1(R)we have∫ b

a
µ(t)Sk+n(t)Q (t)dt =

∫ b

a
µ(t)Pk(t)Λ(t; x)Q (t)dt =

n∑
j=1

ajΛ(xj; x)Q (xj) = 0.

In other words, the polynomial Sk+n is orthogonal to every polynomial from πk+n−1(R) on [a, b] with weight µ. It remains
to show that the coefficients aj are related to the Gaussian coefficients αj by aj = αjPk(xj). To show this we apply quadrature
(3.1) and the Gaussian quadrature (3.2) to the polynomialsΛj(t; x) and Pk(t)Λj(t; x), respectively, and derive∫ b

a
µ(t)Pk(t)Λj(t; x)dt = ajΛj(xj; x);∫ b

a
µ(t)Pk(t)Λj(t; x)dt = αjPk(xj)Λj(xj; x).

Comparing the above expressions, we obtain the wanted relation and the proof is completed. �
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Theorem 3.1 characterizes completely the Gaussian quadrature of type (3.1) in the case of simple nodes. It shows, that
given a polynomial Pk, it is not always possible to construct a Gaussian quadrature of type (3.1). Necessary and sufficient
condition for such a formula to exist is the fact that the zeros of Pk, {yj}kj=1, have to be among the zeros of the (n + k)th
polynomial (call it Sn+k), orthogonal on [a, b]with weight µ. Therefore:
If Pk divides Sn+k, then there exists a unique quadrature of the form (3.1) of highest ADP, equal to 2n+ k− 1.
We emphasize this remark, since it is related to the question of uniqueness of the Gaussian quadrature for Fourier

coefficients.
Next, we will give some examples of Gaussian quadratures. Let us first recall that

Tn(t) = cos nθ, Un(t) =
sin(n+ 1)θ
sin θ

, where t = cos θ,

are the Tchebycheff polynomials of first and second kind, respectively. It is a well-known fact that the nodes of the Gaussian
quadrature formula of the form∫ 1

−1

√
1− t2f (t)dt ≈

n∑
j=1

βjf (ηj)+
n+1∑
j=1

αjf (ξj), (3.3)

are the zeros of U2n+1. Using the identity

U2n+1(t) = 2Tn+1(t)Un(t),

we conclude that the nodes of (3.3) coincide with the zeros η1, . . . , ηn of Un and the zeros ξ1, . . . , ξn+1 of Tn+1. The explicit
form of (3.3) is well known:∫ 1

−1

√
1− t2f (t)dt ≈

π

2n+ 2

n∑
j=1

(
sin

jπ
n+ 1

)2
f
(
cos

jπ
n+ 1

)

+
π

2n+ 2

n+1∑
k=1

(
sin

(2k− 1)π
2n+ 2

)2
f
(
cos

(2k− 1)π
2n+ 2

)
.

The following corollaries are a simple consequence of Theorem 3.1.

Corollary 3.2. The quadrature formula∫ 1

−1

√
1− t2Un(t)f (t)dt ≈

n+1∑
k=1

akf (ξk),

with

ak =
π

2n+ 2

(
sin

(2k− 1)π
2n+ 2

)2
Un(ξk) = (−1)k−1

π

2n+ 2
sin

(2k− 1)π
2n+ 2

is the unique formula of highest ADP (equal to 3n+ 1) among all formulas of this type with n+ 1 nodes. Here ξk = cos (2k−1)π2n+2 ,
k = 1, . . . , n+ 1, are the zeros of the Tchebycheff polynomial of first kind Tn+1.

Corollary 3.3. The quadrature formula∫ 1

−1

√
1− t2Tn+1(t)f (t)dt ≈

n∑
j=1

bjf (ηj),

with

bj = (−1)j
π

2n+ 2

(
sin

jπ
n+ 1

)2
and ηj = cos

jπ
n+ 1

is the unique formula of highest ADP (equal to 3n) among all formulas of this type with n nodes.

3.2. Connection to Gauss–Kronrod quadratures

In this section we discuss the relation between the Gauss–Kronrod quadratures and quadratures of type (3.1) when the
polynomial Pk is fixed.
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To improve the numerical results obtained by the application of a certain quadrature formula, Kronrod [4] suggested the
following procedure. Assume that we start with a quadrature∫ b

a
µ(t)f (t)dt ≈

k∑
j=1

ajf (yj). (3.4)

Keeping {yj}kj=1 fixed, can we choose another set of n nodes x1 < · · · < xn so that the quadrature based on the nodes {yj}
k
j=1

and {xj}nj=1 has a maximal ADP. In other words, we are looking for a quadrature of the form∫ b

a
µ(t)f (t)dt ≈

k∑
j=1

αjf (yj)+
n∑
j=1

βjf (xj) (3.5)

with fixed {yj}kj=1 which has maximal ADP. Note that here yj 6= xi for all i and j.
The following lemma gives the correspondence between quadratures (3.5) and quadratures of type (3.1) with fixed

polynomial Pk.

Lemma 3.4. Quadrature formula (3.5) with fixed nodes {yj}kj=1 has ADP = N + k if and only if the quadrature∫ b

a
µ(t)Pk(t)f (t)dt ≈

n∑
j=1

bjf (xj), Pk(t) = (t − y1) · · · (t − yk), (3.6)

has ADP = N. Moreover the relationship between {αj}kj=1, {βj}
n
j=1, and {bj}

n
j=1 is given by

k∑
j=1

αjf (yj)+
n∑
j=1

βjf (xj) =
k∑
j=1

γjf (yj)+
n∑
j=1

bjf [y1, . . . , yk, xj],

where

γj =
1

P ′k(yj)

∫ b

a
µ(t)

Pk(t)
t − yj

dt.

Proof. The equivalence of the two quadratures is a direct consequence of Theorem2.1. The relation between the coefficients
of these quadratures follows from the proof of Theorem 2.1 which gives that formula (3.5) can be written in the form∫ b

a
µ(t)f (t)dt ≈

k∑
j=1

γjf (yj)+
n∑
j=1

bjf [y1, . . . , yk, xj],

γj =
1

Λj(yj; y)

∫ b

a
µ(t)Λj(t; y)dt,

where {bj}nj=1 are the coefficients from (3.6). �

The question is whether one can choose the nodes {xj}nj=1 so that N is as high as possible. Clearly, the maximal N satisfies
N ≥ n− 1, since we can always choose an interpolation quadrature (3.6) based on the set of nodes {xj}nj=1.
Let us introduce the polynomial

En(t) := (t − x1) . . . (t − xn).

According to Theorem 2.1, quadrature (3.5) is exact for all polynomials of degree n+ k+m if and only if quadrature (3.6) is
exact for all polynomials of degree n+m. It can be easily seen that the latter is true if and only if∫ b

a
µ(t)(t − y1) . . . (t − yk)En(t)Q (t)dt = 0, for all Q ∈ πm(R).

In the case when n = k+ 1, and quadrature (3.4) is the Gauss quadrature formula on [a, b], associated with the weight
µ, the quadrature (3.5) of ADP ≥ 2k is known as Gauss–Kronrod quadrature.
Our observation above, applied in the case when (3.4) is the Gaussian quadrature on [a, b]with weightµ, n = k+1, and

m = k gives the following classical result on Gauss–Kronrod quadratures (see [11,12]).

Corollary 3.5. Let (3.4) be the Gauss quadrature on [a, b] with weight µ. Then quadrature (3.5) with n = k+ 1 is exact for all
polynomials of degree 3k+ 1 if and only if∫ b

a
µ(t)(t − y1) . . . (t − yk)Ek+1(t)Q (t)dt = 0, for all Q ∈ πk(R).
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For a given weight µ, the polynomial Ek+1 that satisfies these orthogonality relations is called the Stieltjes polynomial. The
problem of existence of such a polynomial for a particular weight goes back to Stieltjes. Szegö proved its existence in the
case of constant weight and raised some still open questions concerning existence for other classical weights.
Lemma 3.4 shows that the question of constructing formulas of type (3.1) of highest ADP with k+ 1 nodes in the special

case when Pk is fixed to be the kth orthogonal polynomial on [a, b] with weight µ becomes a question of constructing
Gauss–Kronrod formulas on [a, b]with weight µ. More precisely, the formula∫ b

a
µ(t)f (t)dt ≈

k∑
j=1

αjf (yj)+
k+1∑
j=1

βjf (xj)

is a Gauss–Kronrod formula with ADP = N if and only if the quadrature∫ b

a
µ(t)(t − y1) · · · (t − yk)f (t)dt ≈

k+1∑
j=1

bjf (xj)

has ADP = N − k. The coefficients are given by the relation bj = βjPk(xj), j = 1, . . . , k+ 1.
For results on existence, nonexistence, and construction of Kronrod type extensions of the Gaussian rule for the integral∫ b

a µ(t)f (t)dt for particular weight functions µ, we refer the reader to [13–15,12,16–19] and the references therein.
As discussed at the beginning of this paper, we have that N ≤ 2n + k − 1, and the quadrature is called Gaussian, if

N = 2n+ k− 1. Theorem 3.1 shows that the cases of Gaussian quadratures (3.6) happen only if the fixed {yj}kj=1 are among
the zeros of Sn+k, the (n + k)th polynomial, orthogonal on [a, b] with weight µ. In the case of Gauss–Kronrod formulas,
the nodes {yj}kj=1 are the nodes of the Gauss quadrature on [a, b] with weight µ, i.e. they are the zeros of Sk. Therefore, the
ADP (3.5) = 2n + 2k − 1 if and only if Sn+k = SkRn for some Rn ∈ πn(R). Example of Gauss–Kronrod formula (3.5) with
ADP = 4k+ 1 is (3.3).
In the light of this discussion, the question of uniqueness of the Micchelli–Rivlin quadrature formula (1.2) amid all

formulas of type (1.3) reduces to the question: Do there exist points x1 < · · · < xn, other than {ξj}nj=1, such that the n
nodes Gauss quadrature with Tchebycheff weight 1/

√
1− t2 can be extended to the form∫ 1

−1

f (t)
√
1− t2

dt ≈
n∑
j=1

αjf (ξj)+
n∑
j=1

[βjf (xj)+ γjf ′(xj)]

of ADP = 4n− 1? Or, equivalently: Does there exists a weight of the form

µ(t) =
(t − x1)2 · · · (t − xn)2

√
1− t2

,

with {xj}nj=1 6= {ξj}
n
j=1, so that Tn is orthogonalwith respect to thisweight to all polynomials of degree n−1?Aswementioned

already, the answer is ‘‘no’’. But a similar multiple node version of this question is still open. Namely: Given any natural
number ν, does there exists a weight of the form

µ(t) =
(t − x1)2ν · · · (t − xn)2ν

√
1− t2

,

with {xj}nj=1 6= {ξj}
n
j=1, so that Tn is orthogonal with respect to this weight to all polynomials of degree n − 1? The answer

of this question will settle a long time open problem about the uniqueness of a multiple node Gaussian formula for the
Fourier–Tchebycheff coefficients (see [5]).
It would be also interesting to study the existence of Gauss–Kronrod extensions of the form∫ 1

−1
µ(t)f (t)dt ≈

n∑
j=1

αjf (τj)+
n∑
j=1

[βjf (xj)+ γjf ′(xj)]

of ADP = 4n− 1 for other weights, say for the constant weight.

3.3. Quadratures with fixed simple nodes

Here, we shall discuss quadratures of the form∫ b

a
µ(t)Pk(t)f (t)dt ≈

k∑
j=1

bjf (yj)+
n∑
j=1

ajf (xj), Pk(t) = (t − y1) . . . (t − yk). (3.7)

The nodes y1, . . . , yk are fixed and we look for n other points x1, . . . , xn, to obtain highest possible ADP. Clearly, if n = 0
the maximal ADP of such a formula will be k − 1, since the formula will not be exact for Pk. In this case any interpolatory
formula based on the nodes {yj}kj=1 is Gaussian. The following theorem is true.
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Theorem 3.6. For any given set of distinct points y := (y1, . . . , yk) there exists a unique quadrature formula of the form (3.7)
of highest ADP (which is 2n + k − 1). The nodes {xj}nj=1 and the numbers ajPk(xj), j = 1, . . . , n, coincide with the nodes and
the coefficients of the Gauss quadrature formula with n nodes on the interval [a, b] with the weight µP2k , and therefore ajPk(xj),
j = 1, . . . , n, are positive.

Proof. Let Lk−1 be the Lagrange interpolating polynomial of degree k− 1 for the function f and nodes y. Then, by Newton’s
formula,

f (t) = Lk−1(t)+ f [y1, . . . , yk, t]Pk(t).

Wemultiply this identity by µPk and integrate over [a, b] to obtain∫ b

a
µ(t)Pk(t)f (t)dt =

∫ b

a
µ(t)Pk(t)Lk−1(t)dt +

∫ b

a
µ(t)P2k (t)f [y1, . . . , yk, t]dt. (3.8)

Using the Gauss quadrature formula associated with the weight µ and the interval [a, b] (with certain nodes z1, . . . , zk and
coefficients γ1, . . . , γk), we compute∫ b

a
µ(t)Pk(t)Lk−1(t)dt =

k∑
j=1

γjPk(zj)Lk−1(zj) =
k∑
j=1

cjf (yj). (3.9)

The last equality holds with some {cj}kj=1 since the values Lk−1(zj) can be expressed in terms of f (y1), . . . , f (yk). Note that
the above evaluation of the integral holds for every function f , and hence for every polynomial of degree 2n + k − 1.
Next, we compute the second integral in (3.8) by the Gauss quadrature formula associated with the weightµP2k (with some
nodes x1, . . . , xn and coefficients α1, . . . , αn). Note that for every polynomial f of degree 2n+ k− 1 the divided difference
f [y1, . . . , yk, t] is a polynomial of degree 2n− 1. Thus the next evaluation is exact for every f ∈ π2n+k−1(R) and we have∫ b

a
µ(t)P2k (t)f [y1, . . . , yk, t]dt =

n∑
j=1

αjf [y1, . . . , yk, xj] =
n∑
j=1

αj

Pk(xj)
f (xj)+

k∑
j=1

α̃jf (yj)

with some coefficients α̃j. Now substituting this equality and (3.9) into (3.8), we obtain a formula of the form (3.7) with
ADP = 2n+ k− 1.
The uniqueness follows easily. Indeed, assume that (3.7) has ADP = 2n + k − 1. Then, applying the formula to PkQ , we

get the equality∫ b

a
µ(t)P2k (t)Q (t)dt =

n∑
j=1

ajPk(xj)Q (xj)

for every Q ∈ π2n−1(R), and hence the coefficients {ajPk(xj)}nj=1 and the nodes {xj}
n
j=1 are uniquely characterized as

parameters of a Gaussian quadrature. The coefficients {bj}kj=1 are uniquely determined by the condition that the formula
is of interpolatory type and has nodes at {yj}kj=1 and {xj}

n
j=1. The proof is completed. �

Theorem 3.6 shows that one can improve the precision of the quadrature∫ b

a
µ(t)Pk(t)f (t)dt ≈

k∑
j=1

βjf (yj), Pk(t) = (t − y1) . . . (t − yk),

following the strategy of Kronrod, namely by adding additional nodes {xj}nj=1. One can achieve the highest possible precision
2n+ k− 1 only by adding specific nodes, the nodes of the Gauss quadrature on [a, b]with weight µP2k .
The nodes {yj}kj=1 of the starting formula do not have any impact on the accuracy of the resulting formula (3.7). However,

we can select {yj}kj=1 to be the zeros of the kth orthogonal polynomial on [a, b]with weight µ. Then the following corollary
is a particular application of Theorem 3.6.

Corollary 3.7. Let Pk(t) = (t − y1) . . . (t − yk) be the kth orthogonal polynomial on [a, b] with weight µ. Then there exists a
unique Gaussian quadrature (with ADP = 2n+ k− 1) of type (3.7). This formula is∫ b

a
µ(t)Pk(t)f (t)dt ≈

n∑
j=1

αjf [y1, . . . , yk, xj],

where {αj}kj=1 are the weights and {xj}
n
j=1 are the nodes of the Gauss formula on [a, b] with weight µP

2
k ,∫ b

a
µ(t)P2k (t)f (t)dt ≈

n∑
j=1

αjf (xj).
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Proof. The proof follows the argument in Theorem 3.6 and the fact that the value of the first integral in (3.8),∫ b
a µ(t)Pk(t)Lk−1(t)dt = 0, because of the orthogonality of Pk. This completes the proof. �

Next, we give some examples of Gaussian formulas of type (3.7). Before going further, we need the following lemma.

Lemma 3.8. For every integer s ≥ 0, the quadrature∫ 1

−1
(1− t2)s+

1
2U2s+2n (t)f (t)dt ≈

π

22s+2n

(
2s+ 2
s+ 1

) n∑
j=1

f (ξj), (3.10)

where Un is the Tchebycheff polynomial of second kind and {ξj}nj=1 are the zeros of the Tchebycheff polynomial of first kind Tn is
exact for all polynomials in π2n−1(R).

Proof. The proof follows the argument from Lemma 2 in [6]. First, we need to show that Tn is orthogonal to πn−1(R) on
[−1, 1] with weight (1− t2)s+

1
2U2s+2n (t). Let Q be an arbitrary polynomial from πn−1(R). We use the relation (see Lemma

3.2 in [20])

(1− t2)s+
1
2U2s+2n (t) =

1
2s+1

1
√
1− t2

(1− T2n+2(t))s+1

=
1

√
1− t2

(
As +

s+1∑
j=1

BjsT(2n+2)j(t)

)
, (3.11)

where

As =
1
22s+2

(
2s+ 2
s+ 1

)
, Bjs =

(−1)j

22s+1

(
2s+ 2
s+ 1− j

)
,

to obtain that∫ 1

−1
(1− t2)s+

1
2U2s+2n (t)Tn(t)Q (t)dt = As

∫ 1

−1

1
√
1− t2

Tn(t)Q (t)dt +
s+1∑
j=1

Bjs

∫ 1

−1

1
√
1− t2

T(2n+2)j(t)Tn(t)Q (t)dt

= 0.

The last equality is true since TnQ ∈ π2n−1(R), and T(2n+2)j, j = 1, . . . , s + 1, is orthogonal to all polynomials in π2n−1(R).
This gives that the nodes of quadrature (3.10) are the zeros {ξj}nj=1 of Tn. Let us now consider the interpolation quadrature
with these nodes. Its weights {aj}nj=1 are

aj =
∫ 1

−1

√
1− t2(1− t2)sU2s+2n (t)

Λj(t; ξ)
Λj(ξj; ξ)

dt

= As

∫ 1

−1

1
√
1− t2

Λj(t; ξ)
Λj(ξj; ξ)

dt

=
π

22s+2n

(
2s+ 2
s+ 1

)
, j = 1, . . . , n,

where we have used relation (3.11), and the fact that∫ 1

−1

1
√
1− t2

Λj(t; ξ)
Λj(ξj; ξ)

dt =
π

n
.

This interpolation formula is actually Gaussian, since every Q ∈ π2n−1(R) can be written as Q = TnS + Q̃ , with
S, Q̃ ∈ πn−1(R), and therefore∫ 1

−1
(1− t2)s+

1
2U2s+2n (t)Q (t)dt =

∫ 1

−1
(1− t2)s+

1
2U2s+2n (t)Q̃ (t)dt =

n∑
j=1

ajQ̃ (ξj) =
n∑
j=1

ajQ (ξj).

The proof is completed. �

Notice that using the samearguments as in Corollary 2.7,we arrive at the following statement for the Fourier–Tchebycheff
coefficients.
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Corollary 3.9. There exists a quadrature formula∫ 1

−1
(1− t2)s+1/2Tn(t)f (t)dt ≈

n∑
j=1

2s+1∑
i=0

ajif (i)(ηj)

with ADP = (2s+ 3)n− 1. The nodes ηj of this formula are the zeros of Un.

Corollary 3.10. The quadrature

2
π

∫ 1

−1

√
1− t2Un(t)f (t)dt ≈

1
2nn

n∑
j=1

f [η1, . . . , ηn, ξj],

with {ηj}nj=1 the zeros of Un and {ξj}
n
j=1 the zeros of Tn is the only Gaussian quadrature (exact for all polynomials of degree 3n−1),

of the form (3.7) with µ(t) =
√
1− t2 and Pn = Un.

Proof. An application of Corollary 3.7 in the case of k = n, Pn = 2−nUn, [a, b] ≡ [−1, 1], µ(t) =
√
1− t2 and Lemma 3.8

with s = 0 completes the proof. �

Finally, note that an application of Corollary 3.7 in the case k = n, Pn = 21−nTn, and using the fact that Tn is the nth
orthogonal polynomial on [−1, 1]with weight µ(t) = (1− t2)−1/2T 2n (t) produces the formula∫ 1

−1

1
√
1− t2

Tn(t)f (t)dt ≈ 2n−1
n∑
j=1

ajf [ξ1, . . . , ξn, ξj],

where {ξj}nj=1 are the zeros of Tn and {aj}
n
j=1 are the weights of the Gauss formula with n nodes on [−1, 1] with weight

µ(t) = (1 − t2)−1/2T 2n (t). The formula is exact for all polynomials in π3n−1(R). This is exactly formula (1.2) derived in [1].
Indeed, subtracting (1.2) from the above formula, we conclude that the linear functional

2n−1
n∑
j=1

ajf [ξ1, . . . , ξn, ξj] −
π

n2n
f ′[ξ1, . . . , ξn]

annihilates all polynomials of degree 3n−1. But it is based only on 2n evaluations: the values of f and f ′ at n points. Thus all
coefficients of f (ξk) and f ′(ξk), for k = 1, . . . , n, in this expression should be equal to zero. Hence, the formulas coincide. �
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