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Abstract

We present a new hybrid numerical method for computing the
transport of a passive pollutant by a flow. The flow is modeled by
the Saint-Venant system of shallow water equations and the pollutant
propagation is described by a transport equation.

The idea behind the new finite-volume-particle method is to use
different schemes for the flow and the pollution computations: the
shallow water equations are numerically integrated using a finite-
volume scheme, while the transport equation is solved by a particle
method. This way the specific advantages of each scheme are utilized
at the right place. This results in a significantly enhanced resolution
of the computed solution.

Key Words: Saint-Venant system of shallow water equations, trans-
port of pollutant, finite-volume schemes, particle methods, central-upwind
schemes, balance laws.

1 Introduction

Prediction of a pollution transport in flows is an important problem in many
industrial and environmental projects. Different mathematical models are
used to describe the propagation of the pollutant and to obtain its accurate
location and concentration.

In this paper, we consider the transport of a passive pollutant by a flow
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modeled by the one-dimensional (1-D) Saint-Venant system
h + (hu)z =35,
A h?
(hu); + (huz + 97) = —ghB,. (L.1)

Here h and u are the depth and the velocity of the water, respectively, g is
the gravity constant, and S is a source term. The function B(z) represents
the bottom topography. The system (1.1) is a simple model, introduced
in [15], and is commonly used to describe flows in rivers and coastal areas.
For a detailed description of a more realistic shallow water model, derived
from the Navier-Stokes equations, we refer the reader to [6].

The propagation of the pollutant is modeled by the transport equation,

which describes the motion of the pollutant concentration T', where T is
a given concentration of the pollutant at the source. Equations (1.2) and
(1.1) are coupled through the source terms.

Designing an accurate, efficient and reliable numerical method for this
model is a challenging task. Solutions of the system (1.1)—(1.2) are typi-
cally nonsmooth: they may contain both nonlinear shock and rarefaction
waves, and linear discontinuities in the pollution concentration. Moreover,
the interaction with a nonflat bottom may result in very complicated wave
structures and nontrivial equilibria, which are hard to preserve numeri-
cally. In addition, dry states (arising, for example, in dam break problems)
need special attention, since (even small) numerical oscillations may lead
to nonphysical negative values of the water depth there.

In order to overcome these difficulties, a high-resolution shock-capturing
numerical method is required. Such methods for hyperbolic systems of
balance laws, and in particular for (1.1), are readily available (to cite a
few of them, see e.g. [2, 5, 8, 12, 14]). One of the simplest and the most
efficient approaches is to use the central-upwind schemes [8, 9]. They can
be relatively easily extended to solve (1.1)—(1.2), but the resolution of the
computed contact waves in the pollution concentration is not sufficiently
sharp. There are some other alternatives (see e.g. [1]), but we are not
aware of any method which completely resolves this issue.

Here, we propose such a method. It is a hybrid finite-volume-particle
method, whose core idea is to use central-upwind schemes to solve the sys-
tem of balance laws (1.1) and a particle method [13] to solve the transport
equation (1.2). The new method takes an advantage of the nondissipative-
ness of the particle method, and thus guarantees almost perfect resolution
of the contact waves. In [3], the finite-volume-particle method has been
generalized for the two-dimensional extension of the system (1.1)—(1.2).



The paper is organized as follows. In §2.1 and §2.2, we give a brief
overview of central-upwind schemes and particle methods. Our new method
is described in §2.3, and the numerical computations are carried out in §3.

2 Hybrid Finite-Volume-Particle Method

2.1 Central-Upwind Schemes — an Overview

In this section, we briefly describe the central-upwind schemes for 1-D
hyperbolic systems of conservation and balance laws. For a complete de-
scription of the schemes and their derivation, we refer the reader to [9].

We first consider a 1-D system of conservation laws, u; + f(u), = 0,
which can be rewritten in the equivalent integral form:

t+At

/ {f (u(z + %,T))—f (u(z — H,T)) }dr],

T=t

1

where 4(z,t) := == [ u({,t)d, and I(z) := {5 E—=z| < Ax/Q}.
I(z)
For simplicity, we consider a uniform grid, t" := nAt,z; = jAz. If at
time level t" the cell averages, u} := a(z;,t™), are available, we use them
to reconstruct a non-oscillatory piecewise polynomial,

u(z,t") = pj(z), ;1 <z<zip1, Vj (2.2)

and evolve it according to (2.1). The non-oscillatory behavior of the central-
upwind schemes depends on an appropriate choice of a piecewise polynomial
reconstruction — various such reconstructions are available. Note that
u(-,t") is, in general, discontinuous at the interface points {z, %}. The
discontinuities propagate with right- and left-sided local speeds, which, for
example, can be estimated by

at,s —ma,x{)\N(gf(uH_ )) ,\N(gf( J++%)) 0},

2.3)
[ af of , 4 (
Gips _mm{)‘l(a (ujys )) )‘1(6 (u J+%)) 0

Here Ay < ... < Ay are the N eigenvalues of the Jacobian %, and
u;% = p?+1(;vj+%) and uj_+% = p;-”(xH%) are the corresponding right

and left values of the reconstruction. New cell averages are obtained from
(2.1) by integrating over non-uniform rectangular domains, which after an
intermediate reconstruction are projected back onto the original grid. This



results in a fully-discrete central-upwind scheme, which can be found in [9].
Passing to the limit as At — 0, we obtain the semi-discrete central-upwind

scheme:
da-(t) - Hj-{-%(t) _Hj—%(t)
dat 77 Az ’
where the numerical fluxes H; 41 are given by
+ e + + -
=Gl ) T Ty Gy
H; 1(t):= — + 2 |uT , —u .
Itz at , —a7 , at , —a; , L 7ts it
J+s3 J+3 Jj+3 Jjt+3

(2.4)
In [8], the scheme (2.1)—(2.4) has been generalized for the 1-D system
of balance laws, u; + f(u), = R(u(z,t),z,t). The generalization is
d Hj 1(t) - H;_1(t)

Suslt) = - 4 Ry, (25)

_ 1 i+l
where R;(t) is an appropriate quadrature for Az / B R(u(z,t),z,t) dz,
z T, 1
i-3

and the numerical fluxes, H;, 1, are still given by (2.4). However, it should
be pointed out that the local speeds, aﬁ%, which correspond to the largest
and the smallest speeds of the nonlinear waves that appear in the solution
of the local generalized Riemann problem, centered at z = z; +1, can be
affected by the presence of the source term, and thus formula (2.3) may
require an adjustment.

Remarks.

1. The semi-discretization (2.4)—(2.5) is a system of time dependent ODEs,
which should be solved by a sufficiently accurate and stable ODE solver.
2. The (formal) order of the resulting method is determined by the order
of the piecewise polynomial reconstruction (2.2) and by the order of the
ODE solver.

2.2 Particle Methods — an Overview

Here, we briefly describe the second main ingredient of our new method —
the particle method. We consider the initial value problem for the linear
transport equation with variable coefficients:

o+ (&), =Ff, »(,0) = @o(x). (2.6)

First, the initial condition is approximated by a sum of Dirac distributions,

po(z) = on(z,0) = Z w;(0)d(z — 7 (0)), (2.7)



with z?(0) being the initial location and w;(0) being the initial weight of
the i-th particle (w;(0) is an integral of po(z) over a neighborhood of the
point z¥(0)). Then, an approximate solution ¢ to (2.6) is sought in the
form

N
on(@,t) =Y wi(t)d(z — 2f(2)), (2.8)

i=1
where the evolution of the weights w; and the locations z¥ is described by

the system of ODEs:

s (1)
dt

dw;(t)
dt

with initial values (2% (0),w;(0)). Here, f; reflects the contribution of the
source term f (see e.g. [13]). In general, (2.9) is to be solved numerically,
and at final time tg,, the solution ¢ (z,t4s) is recovered from the computed

approximation ¢y (z,ts,) (the details are discussed in §2.3).

2.3 A New Finite-Volume-Particle Method

The new numerical method for (1.1)—(1.2) is a hybrid of the methods in
§2.1 and §2.2: we apply the semi-discrete central-upwind scheme to (1.1),
while (1.2) is solved by the particle method. We now present a detailed
description of the method.

Following [8, 14], we first rewrite the Saint-Venant system (1.1) in terms
of the water surface, w := h + B,

wy + (hu), = g;
(hu)¢ + [;h_L)B + g(w - B)2] = —g(w — B)B,. (2.10)

The central-upwind scheme (2.4)—(2.5) is then applied to this system. To
_ _ o T

this end, the quadratures R; := (Rg-l),Rf)) that appear on the right-

hand side of (2.5) should be specified. The quadrature in R;l) depends

on the type of the source S. An example of a spatially localized source is

considered in §3, Example 2. To compute R§-2), one should use the special
quadrature,

Blayyy) = Blayy) (w5y = Blaiy)) + (v} - Bl y)
Az 2 ’

where, as before, w;.il denotes the right /left value of the piecewise polyno-
2
mial reconstruction of w at z; 1 Using the above quadrature guarantees



the preservation of the stationary steady-state solution (w = Const,u =
0,S = 0), which corresponds to the ”lake at rest” state. This property is
especially important when quasi-stationary solutions are concerned (see [8]
for details).

Next, we consider the transport equation (1.2) and solve it using the
aforementioned particle method with ¢ := hT, £ := u, and f := TsS. Note
that the method, described in §2.2 for linear transport equations, can be
applied directly to (1.2), since it is, in fact, decoupled from system (2.10).
To do that, we need to know the values of the velocity u(z¥(t),t) and the
functions f; in (2.9). The velocity u can be calculated from the piecewise
polynomial approximation of w = h + B and hu, obtained when solving
(2.10). The functions §; depend on the type of the source term in (1.2). A
particular example is considered in §3, Example 2.

Remark. We use two different grids in our hybrid method. The grid
for the central-upwind scheme, {z;}, is fixed, while the particle locations,
{2¥(t)}, change in time according to the flow.

Recall that after applying the particle method to equation (1.2), only
the locations {z¥ (ta,)} of the particles and their weights {w;(tan)} will be
available. Then, the solution h7T'(-, tsn) at the final time should be recovered
by regularizing the particle solution. Such a regularization is performed
by a convolution with a “cut-off function”, which is taken as a smooth
approximation of the d-function, see [13]. Usually, this procedure works
perfectly to recover smooth solutions. However, here we mostly deal with
discontinuous solutions, whose discontinuities will be overly smeared by the
use of smooth cut-off functions, especially in practice, when a relatively
small number of particles is used.

To recover nonsmooth solutions, we implement a different technique.
We interpret the weights of the particles, w;(tsn), as an integral of the so-

lution hT (-, tg,) over the interval I; := [gc"‘l(tﬁ“)Jrz" (brn) 23 (tﬁn)+zi+1(tﬁn)],

2 ) 2
and thus the cell averages hT; over I; are

h_T' — wz’(tﬁn) — 2wz(tﬁn)
’ |Z;] mf—i—l (ten) — 271 (ten)

(2.11)

This will not smear the discontinuities, but may lead to an oscillatory
approximation of the solution. When such oscillations appear, we apply
the nonlinear filter, proposed in [4], to {hT;}. To this end, we first recon-
struct a piecewise linear interpolant from the cell-averages (2.11), and use
it for computing the point values of hT at the original uniform grid points
{24 1}. We then utilize a filter algorithm similar to Algorithm 2.3 in [4].
Notice, that the nonlinear filter is applied only once, as a post-processing,
not after every time step as in [4], and only if oscillations are observed. For



instance, in Examples 1 and 2 in §3, we do not apply the filter since the
solutions, recovered by formula (2.11), are non-oscillatory.

3 Numerical Examples

In this section, we illustrate the performance of the new finite-volume-
particle (FVP) method by a number of numerical examples. We also
compare these results with the corresponding solutions computed by the
central-upwind scheme, applied to both (2.10) and (1.2). This is a finite-
volume method, which will be referred to as FV method.

In our examples, we use the second-order central-upwind scheme that
employs the generalized minmod piecewise linear reconstruction [10, 11, 16]
and the third-order strong stability-preserving (SSP) Runge-Kutta method
for the time evolution (see [7] and the references therein).

We briefly recall that if one has a set of cell averages, {’J,Zj}, then the
generalized minmod reconstruction is given by L?(z) = Vi + si(z — xj),
with the slopes

6@' - :L._jfl , '&j+1 - zijl 0'&]‘+1 - zZ]) .

s; = minmod ( A Az , Az

Here, 6 € [1,2], and the multivariate minmod function is defined by

minj{:vj}, if z; >0 vy,
minmod(z1, %2, ...) := ¢ max;{z;}, if z; <0 Vj,
0, otherwise.

Notice that larger €’s correspond to less dissipative but, in general, more
oscillatory limiters. In the presented examples, we took 6 = 2.

Example 1 — Advection of Pollutant. In this example, we assume
that the initial water level is constant, w(z,0) = 1, the initial discharge is
h(z,0)u(z,0) = 0.1, the gravitational constant g = 1, the pollution source
has been already turned off, S = 0, the bottom topography is given by

B(z) = 0.25(cos(10m(z — 0.5)) + 1), if 0.4 <z <0.6,
a 0, otherwise,

and the only initially polluted area is [0.4,0.5], where T'(z,0) = 1.

In time, the initial pollution moves to the right, and we numerically
track its propagation. The pollutant concentration at times ¢ = 0,2, and
4, computed by the FVP method with 20 ”polluted” particles and the FV
method, is shown in Figure 3.1 (in both methods we take Az = 0.005
for the central-upwind scheme). One can clearly see the superiority of the
results obtained by the FVP method.
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Figure 3.1: Pollutant concentration computed by the FVP and FV methods.

Example 2 — Emission of Pollutant. This example is taken from [1].
Here, w(z,0) = 2, h(z,0)u(z,0) = 0.5,g = 1, and

[ 02-005(z—10)2, if 8<z< 12,
B(z) = { 0, otherwise.

We assume that the water is initially clean, but at time ¢ = 100 a source
of polluted water S = 0.01 with a concentration of pollutant Ts = 10 is
turned on at the point x = 45. Later on, at time ¢ = 300, the pollution
source is turned off. The source is, in fact, given by S(z,t) = 0.01:6(z — 45)
for 100 < t < 300, and therefore its discretization, required by the central-
upwind scheme (2.4)—(2.5), is straightforward. Let the point z = 45 be
located inside the jo-th cell. Then we have Rg-i) =0.01/Az and Rg-l) =0
for all j # jo.

As for the particle method for (1.2), the presence of the source will
result in the dynamical generation of particles at x = 45 according to
the following algorithm. A total number of particles N is prescribed in
advance, they appear every A7 := (min{tan, 300} — 100)/(N — 1), starting
at t = 100, and their weights are w; = 0.1A7. Since the source is localized
at one point, the weights of the particles in (2.8) will not change after they
are flown away from the source.

In Figure 3.2, we present the pollutant concentration computed by the
FVP method with 20 ”polluted” particles and the FV method at times
t = 300 and ¢ = 800. In both methods, Az = 10/3 for the central-upwind
scheme. Again, one can clearly see that the FVP method outperforms the
FV method by far.
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Figure 3.2: Pollutant concentration computed by the FVP and FV methods.
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Figure 3.3: hT and T at t = 240 computed by the “unfiltered” FVP method.

Example 3 — Dam Break. This is an example (also taken from [1]) of
a dam break on a flat bottom, where the pollutant has different concentra-
tions on each side of the dam. The initial data correspond to the Riemann
problem with (h,u,T) = (1.0,0,0.7) if x < 0 and (h,u,T) = (0.5,0,0.5) if
z > 0, the gravitational constant g = 9.8, and S = 0.

We apply the FVP method with initially uniformly distributed ”pol-
luted” particles, and the FV method. We use Az = 10 for both the
central-upwind scheme and the initial distribution of the particles. We
first show (Figure 3.3) an oscillatory approximation of hT and T at time
t = 240, computed by the “unfiltered” FVP method. The oscillations,
caused by the recovering procedure (2.11), can be successfully removed by
the nonlinear filter, as shown in Figure 3.4, where we also compare the
solutions, obtained by the FVP and the FV methods. Once again, the
advantage of the FVP method can be clearly seen.
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