Extended Cubature Formula of Turán Type
\((0, 2)\) for the Ball

DIMITAR K. DIMITROV* AND GUERGANA PETROVA†

Dedicated with much admiration to Academician Borislav Bojanov on the occasion of his 60th birthday

We construct explicitly an extended cubature of Turán type \((0, 2)\) for the unit ball in \(\mathbb{R}^n\). It is a formula for approximation of the integral over the ball by a linear combination of surface integrals over \(m\) concentric spheres, centered at the origin, of the integrand itself and its Laplacian. This extended cubature integrates exactly all \((2m+1)\)-harmonic functions and hence all polynomials in \(n\) variables of degree \(4m + 1\).

1. Introduction

Let \(\mathbb{R}^n\) be the real \(n\)-dimensional Euclidean space. The points in \(\mathbb{R}^n\) are denoted by \(x = (x_1, x_2, \ldots, x_n)\) and \(|x|\) is the Euclidean norm of \(x\). Given \(r > 0\), let \(B(r) = \{x : |x| < r\}\) and \(S(r) = \{x : |x| = r\}\) be the ball and the hypersphere with center 0 and radius \(r\) in \(\mathbb{R}^n\), respectively. If \(r = 1\), we omit the \(r\) in the notation and simply write \(B\) and \(S\). We denote by \(dx\) the Lebesgue measure in \(\mathbb{R}^n\) and by \(ds\) the \((n-1)\)-dimensional surface measure on \(S(r)\). Recall that the area of the unit sphere \(S\) in \(\mathbb{R}^n\) is

\[
\gamma_n = \frac{n\pi^{n/2}}{\Gamma(n/2 + 1)}
\]

If \(\mathcal{D}\) is a simply connected domain in \(\mathbb{R}^n\), the function \(u\), defined on \(\mathcal{D}\), is called a polyharmonic function of order \(p\) (or \(p\)-harmonic function) if \(u \in\)
$C^{2p-1}(\bar{D}) \cap C^2(D)$ and it satisfies the equation

$$\Delta^p u(x) = 0, \quad x \in D,$$

where $\Delta := \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2}$, $\Delta^p := \Delta \Delta^{p-1}$.

In the case of $p = 1$ ($p = 2$), u is called harmonic (biharmonic). The set of all p-harmonic functions on D is denoted by $H^p(D)$. We refer the reader to [1, 10] for detailed information about polyharmonic functions. In what follows, $\pi_m(\mathbb{R}^n)$ denotes the linear space of all real algebraic polynomials of n variables whose total degree does not exceed m. In particular, π_m is the set of the univariate algebraic polynomials of degree at most m. It is clear that

$$\pi_{2p-1}(\mathbb{R}^n) \subset H^p(B). \quad (1.1)$$

It can be easily seen that the Gaussian mean value property

$$\int_B u(x) \, dx = \frac{\pi^{n/2}}{\Gamma(n/2 + 1)} u(0),$$

the corollary of the first Green formula

$$\int_B u(x) \, dx = \frac{1}{n} \int_S u(x) \, d\sigma,$$

(both valid for harmonic functions), and the Pizzetti’s mean value formula

$$\int_B u(x) \, dx = \sum_{j=0}^{m-1} \frac{\pi^{n/2}}{2^{2j} j! \Gamma(n/2 + j + 1)} \Delta^j u(0),$$

(which holds for all m-harmonic functions u), are natural extensions of the rectangular quadrature

$$\int_{-1}^{1} f(x) \, dx \approx 2f(0),$$

the trapezoid quadrature rule

$$\int_{-1}^{1} f(x) \, dx \approx f(-1) + f(1),$$

(both precise for univariate polynomials of first degree), and the Taylor quadrature formula

$$\int_{-1}^{1} f(x) \, dx \approx \sum_{j=0}^{m-1} \frac{2}{(2j + 1)!} f^{(2j)}(0),$$

(exact for all algebraic polynomials of degree $2m - 1$), respectively. The idea of extending other univariate quadrature formulae for the interval $(-1, 1)$ to cubature for approximating the integral over the unit ball, $I(u) = \int_B u(x) \, dx$,
by linear combinations of surface integrals of the integrand and its differential
operators, was proposed in [7], where each hypersphere in \(\mathbb{R}^n \) was considered as
an extension of a pair of symmetric nodes in \(\mathbb{R} \). Such cubature rules are called
extended cubature formulae and are denoted by \(Q(u) \). Recently, a substantial
progress in constructing extended cubature formulae has been achieved. We
refer the reader to Bojanov’s nice survey [4] for an overview of the latest results
in this area. An extended formula is said to have polyharmonic order of pre-
cision \(m \), \(\text{PHOP}(Q) = m \), if \(I(u) = Q(u) \) for all \(u \in H^m(B) \) and there exists
a function \(u \in H^{m+1}(B) \), for which \(I(u) \neq Q(u) \). Note that, by (1.1), \(Q(u) \) is
precise for \(2^{p-1}(\mathbb{R}^n) \) if its \(\text{PHOP} \) is at least \(p \).

An interesting question concerning quadrature formulae of high algebraic
degree of precision was considered by Paul Turan in [13, Problem XXXIII],
where he posed the problem of finding a \((0, 2)\) quadrature formula, namely a
quadrature of the form

\[
\int_1^1 f(x) \, dx \approx \sum_{k=1}^m (a_k f(x_k) + c_k f''(x_k)),
\]

whose algebraic degree of precision is at least \(2m \). Recall that there is no
quadrature of the form

\[
\int_1^1 f(x) \, dx \approx \sum_{k=1}^m (a_k f(x_k) + b_k f'(x_k)),
\]

that is exact for all the univariate polynomials of degree \(2m \). Turán’s problem
was solved in [6], where it was proved that the formula

\[
\int_1^1 f(x) \, dx \approx \sum_{i=1}^m \frac{2}{m(m+3)} \left(\frac{f(x_i)}{P_{m+1}^2(x_i)} + \frac{(1-x_i^2) f''(x_i)}{(m+1)(m+2)P_{m+1}^2(x_i)} \right) \quad (1.2)
\]

has algebraic degree of precision \(2m + 1 \). Here \(P_{m+1}(x) \) is the Legendre poly-
nomial, normalized by \(P_{m+1}(1) = 1 \), and the nodes \(x_i, i = 1, \ldots, m \), coincide
with the zeros of \(P_{m+1}'(x) \).

A natural question is then whether one can extend this result and construct
an extended cubature formula of Turan type \((0, 2)\) for the ball, i.e. a cubature
of the form

\[
\int_B u(x) \, dx \approx \sum_{j=1}^m \left(A_j \int_{S(r_j)} u(\xi) \, d\sigma(\xi) + C_j \int_{S(r_j)} \Delta u(\xi) \, d\sigma(\xi) \right),
\]

that is exact for all polyharmonic functions of order \(2m + 1 \). In this paper,
we provide an affirmative answer to this question and derive the ana-
log of quadrature (1.2). Before going further, let us introduce some notation:
let \(P^{(1,n/2-1)}_m(x) \) be the Jacobi polynomials that are orthogonal on \((-1, 1)\)
with respect to the weight function \((1-x)(1+x)^{n/2-1} \) and normalized by
\(P^{(1,n/2-1)}_m(1) = m + 1 \). In what follows the zeros of \(P^{(1,n/2-1)}_m(x) \) will be
denoted by \(x_1, \ldots, x_m \). Our main result is the following theorem.
Theorem 1. For every positive integer \(m \), the extended cubature formula

\[
\int_B u(x) \, dx \approx \sum_{k=1}^{m} \frac{2^{(n-3)/2} (4m+n+4)^2}{m(2m+n+2)^3} \frac{(1+x_k)^{(3-n)/2}}{[p_{m+1}^{(1,n/2-1)}(x_k)]^2} \times \left(\int_{S(t_k)} u(\xi) \, d\sigma(\xi) + \frac{1-x_k}{4(m+1)(2m+n)} \int_{S(t_k)} \Delta u(\xi) \, d\sigma(\xi) \right), \tag{1.3}
\]

where the radii \(t_1, \ldots, t_m \) are given by \(t_k = \sqrt{(1+x_k)/2} \), \(k = 1, \ldots, m \), is precise for every \(u \in H^{2m+1}(B) \).

2. Lobatto Extended Cubature for the Ball in \(\mathbb{R}^n \)

In this section, we investigate extended formulae of the form

\[
\int_B u(x) \, dx \approx \sum_{k=1}^{m} a_k \int_{S(t_k)} u(\xi) \, d\sigma(\xi), \tag{2.1}
\]

that have maximal possible polyharmonic order of precision. We call such a formula a Lobatto extended cubature formula.

Theorem 2. There is a unique cubature of the form (2.1) with polyharmonic order of precision \(2m+1 \). For \(k = 1, \ldots, m \), its nodes are given by \(t_k = \sqrt{(1+x_k)/2} \), and its coefficients by

\[
\bar{A} = \frac{1}{(m+1)(2m+n)}, \tag{2.2}
\]

\[
\bar{A}_k = \frac{2^{(n-3)/2} (4m+n+4)^2}{(m+1)(2m+n)(2m+n+2)^2} \frac{(1+x_k)^{(3-n)/2}}{[p_{m+1}^{(1,n/2-1)}(x_k)]^2}. \tag{2.3}
\]

Moreover, there is no such a cubature with \(\text{PHOP} = 2m+2 \).

The main tool in the proof of the theorem is the following relation between quadrature and extended cubature rules (see [5, Lemma 3]):

Lemma 1. Assume that \(\mu(t) \) is a fixed weight function on \([0,1]\). Let \(0 \leq t_1 < \cdots < t_N \leq 1 \). The extended cubature formula

\[
\int_B \mu(x)u(x) \, dx \approx \sum_{k=1}^{N} a_k \frac{1}{\gamma_n t_k^{n-1}} \int_{S(t_k)} u(\xi) \, d\sigma(\xi)
\]

is exact for every polyharmonic function \(u \in H^m(B) \) if and only if the quadrature formula

\[
\gamma_n \int_0^1 \mu(t)t^{n-1}P(t^2) \, dt \approx \sum_{k=1}^{N} a_k P(t_k^2)
\]

is exact for every algebraic polynomial \(P \in \pi_{m-1} \).
We shall need also the following technical result concerning a specific Radau quadrature formula.

Lemma 2. The quadrature formula

\[
\int_{-1}^{1} (1 + x)^{n/2 - 1} f(x) \, dx \approx \mu f(1) + \sum_{k=1}^{m} \mu_k f(x_k),
\]

where

\[
\mu = \frac{2^{n/2+1}}{(m+1)(2m+n)},
\]

and for \(k = 1, \ldots, m, \)

\[
\mu_k = \frac{2^{n/2}(4m + n + 4)^2}{(m+1)(2m+n)(2m + n + 2)^2} \left(\frac{1 + x_k}{\beta_{k+1/2}^{m+1/2}} \right)^2,
\]

is the only quadrature formula of this form that has algebraic degree of precision \(2m. \)

The existence and uniqueness of the quadrature rule of the above form with highest algebraic degree of precision is a classical result. It is called a Radau quadrature formula. The weights \(\mu \) and \(\mu_k \) have been calculated in the general case of Jacobi weight. We refer the reader to a recent paper of Gautschi [9] for the details. However, we obtained formulae (2.5) and (2.6) independently. It turns out that our method is different from Gautschi’s one and, in some sense, more straightforward, so we are tempted to present it briefly. Let us recall first that the generalized hypergeometric series is defined by

\[
_pF_q(a_1, \ldots, a_p; b_1, \ldots, b_q; z) = \sum_{j=0}^{\infty} \frac{(a_1)_j \cdots (a_p)_j}{(b_1)_j \cdots (b_q)_j} \frac{z^j}{j!},
\]

where \((a)_j\) is the Pochhammer symbol, defined by

\[
(a)_0 = 1, \quad (a)_j = a(a + 1) \cdots (a + j - 1) = \Gamma(a + j)/\Gamma(a), \quad j = 1, 2, \ldots.
\]

The Gaussian hypergeometric function \(_2F_1 \) will be succinctly denoted by \(F \).

In order to derive the coefficient \(\mu \), we apply (2.4) to the hypergeometric polynomial

\[
Q(x) = F(-m, m + n/2 + 1; 2; (1 - x)/2) = \sum_{j=0}^{m} \frac{(-m)_j (m + n/2 + 1)_j}{(2)_j} \frac{(1 - x)^j}{2^j j!}.
\]

Since the Jacobi polynomials are hypergeometric polynomials,

\[
P_m^{(\alpha, \beta)}(x) = \frac{(\alpha + 1)_m}{m!} F(-m, m + \alpha + \beta + 1; \alpha + 1; (1 - x)/2),
\]
then $Q(x)$ is a constant multiple of $P_m^{(1,n/2-1)}(x)$. Since obviously $Q(1) = 1$, then the application of (2.4) to $Q(x)$ immediately yields

$$
\mu = \int_{-1}^{1} (1 + x)^{n/2-1} Q(x) dx.
$$

Performing the change of variables $x + 1 = 2t$ in this integral and using the explicit representation of the Beta function in terms of Gamma functions, we obtain

$$
\mu = 2^{n/2} \int_{0}^{1} t^{n/2-1} F(-m, m + n/2 + 1; 1; 1 - t) dt
$$

$$
= 2^{n/2} \sum_{j=0}^{m} \frac{(-m)_j (m + n/2 + 1)_j}{(2)_j j!} \int_{0}^{1} t^{n/2-1}(1 - t)^j dt
$$

$$
= 2^{n/2} \sum_{j=0}^{m} \frac{(-m)_j (m + n/2 + 1)_j}{(2)_j j!} \frac{\Gamma(n/2)}{\Gamma(n/2 + j + 1)}
$$

$$
= \frac{2^{n/2+1}}{n} \sum_{j=0}^{m} \frac{(-m)_j (m + n/2 + 1)_j}{(2)_j (n/2 + 1)_j}
$$

$$
= \frac{2^{n/2+1}}{n} \sum_{j=0}^{m} \frac{(-m)_j (m + n/2 + 1)_j}{(2)_j (n/2 + 1)_j}.
$$

Applying Saalschütz’s formula (see [8, p. 66, Eq. (30)] or [2, p. 9, Eq. (1)])

$$
\sum_{j=0}^{m} \frac{(-m)_j (m + n/2 + 1)_j}{(2)_j (n/2 + 1)_j} = \binom{m}{n/2} \binom{m}{n/2 + 1} = \binom{m}{n/2} \binom{m}{n/2 + 1}
$$

with $a = m + n/2 + 1$, $b = 1$ and $c = 2$, we finally obtain the explicit formula (2.5) for μ.

Now, we continue with the calculation of the coefficients μ_k. Observe that since (2,4) has algebraic degree of precision $2m$, then whatever the polynomial $f \in \pi_{2m-1}$ is, it integrates exactly the polynomial $(1 - x)f(x)$, that is

$$
\int_{-1}^{1} (1 + x)^{n/2-1}(1 - x)f(x) dx \approx \sum_{k=1}^{m} \mu_k (1 - x_k)f(x_k).
$$

Therefore this is the unique Gaussian quadrature on $(-1, 1)$ with weight function $(1 - x)(1 + x)^{n/2-1}$. The nodes of this Gaussian quadrature are the zeroes of $P_m^{(1,n/2-1)}$ and the coefficients λ_k are given by (see [12, p. 352, Eq.(15.3.1)])

$$
\lambda_k = 2^{n/2+2} \frac{m + 1}{2m + n} (1 - x_k^2)^{-1} \left\{ P_m^{(1,n/2-1)}(x_k) \right\}^{-2}.
$$

Since $\lambda_k = \mu_k(1 - x_k)$, we obtain

$$
\mu_k = 2^{n/2+2} \frac{m + 1}{2m + n} (1 + x_k) \left\{ (1 - x_k^2) P_m^{(1,n/2-1)}(x_k) \right\}^{-2}.
$$
It remains to employ the second formula (4.5.7) from Szegő’s book [12],

\[(1-x_k^2)P_m^{(1,n/2-1)}(x_k) = -\frac{2(m+1)(2m+n+2)}{4m+n+4} P_{m+1}^{(1,n/2-1)}(x_k),\]

to derive (2.6).

Proof of Theorem 2. If \(|x| = t_j\) is the equation of the sphere \(S(t_j)\), then it is clear that (2.1) is not exact for

\[\omega(x) := (|x|^2 - 1) \prod_{j=1}^m (|x|^2 - t_j^2)^2 \in \pi_{4m+2}(\mathbb{R}^n) \subset H^{2m+2}(B),\]

and therefore

\[\text{PHOP}(2.1) \leq 2m + 1.\]

In order to prove the existence and the uniqueness, we employ Lemma 1 which implies that an extended cubature (2.1) with \(\text{PHOP} = 2m + 1\) exists and it is unique if and only if there exists a unique quadrature of the form

\[\int_0^1 t^{n-1} P(t^2) dt \approx BP(1) + \sum_{k=1}^m B_k P(t_k^2),\]

(2.7)

which is precise for every \(P \in \pi_{2m}\) and whose coefficients are related to those of (2.1) by \(B = A\) and \(B_k = A_k/t_k^n\). Simple change of variables \(1 + x = 2t^2\) shows that the latter fact is equivalent to the existence and uniqueness of the Radau quadrature (2.4) where the nodes and the coefficients of (2.7) and (2.4) are related by \(1 + x_k = 2t_k^2\), \(\mu = 2^{n/2+1}B\) and \(\mu_k = 2^{n/2+1}B_k\). Summarizing the relations between the formulae (2.1), (2.7) and (2.4), and having in mind Lemma 2, we conclude that there exists a unique extended Lobatto cubature formula (2.1) with \(\text{PHOP} = 2m + 1\). Moreover the radii \(t_k\) and the coefficients \(A\) and \(A_k\) are given by

\[t_k = \sqrt{(1 + x_k)/2}, \quad \text{with} \quad P_m^{(1,n/2-1)}(x_k) = 0,\]

\[\tilde{A} = \frac{1}{(m+1)(2m+n)},\]

\[\tilde{A}_k = \frac{2^{-3/2}}{(1 + x_k)^{n-1/2}} \mu_k,\]

and the latter yields the explicit representation (2.3) of \(\tilde{A}_k, k = 1, \ldots, m\). This completes the proof of Theorem 2.

It is clear from Almansi’s expansion (see [1] and [3, 11] for recent extensions), that if \(u \in H^{2m}(B)\), then \((1 - |x|^2)u \in H^{2m+1}(B)\) and application of (2.1) to the latter function gives

\[\int_B (1 - |x|^2)u(x) dx = \sum_{k=1}^m \tilde{A}_k(1 - t_k^2) \int_{S(t_k)} u(\xi) d\sigma(\xi),\]

(2.8)

which holds for every \(u \in H^{2m}(B)\).
3. Extended Cubature of Turan Type \((0, 2)\) for the Ball in \(\mathbb{R}^n\)

In this section, we follow the approach from \([6]\) and derive in explicit form the extended cubature of Turán type \((0, 2)\).

Proof of Theorem 1. The first Green formula \([1, \text{p.} 10]\) yields

\[
\int_B u(x) \, dx = \frac{1}{n} \int_{S(1)} u(\xi) \, d\sigma(\xi) - \frac{1}{2n} \int_B (1 - |x|^2) \Delta u(x) \, dx,
\]

which holds for every \(u \in C^2(B) \cap C(\overline{B})\). In particular, if \(u \in H^{2m+1}(B)\), then \(\Delta u \in H^{2m}(B)\) and application of the Gaussian extended cubature formula \((2.8)\) to \(\Delta u\) gives

\[
\int_B u(x) \, dx \approx \frac{1}{n} \int_{S(1)} u(\xi) \, d\sigma(\xi) - \frac{1}{2n} \sum_{k=1}^m A_k (1 - t_k^2) \int_{S(t_k)} \Delta u(\xi) \, d\sigma(\xi) \tag{3.1}
\]

that is exact for every \(u \in H^{2m+1}(B)\). Now, we multiply \((2.1)\) by \(\gamma\) and \((3.1)\) by \(\delta\), where

\[
\gamma = \frac{(m+1)(2m+n)}{m(2m+n+2)}, \quad \delta = -\frac{n}{m(2m+n+2)},
\]

and add the results to obtain \((1.3)\). Since both \((2.1)\) and \((3.1)\) integrate exactly the functions in \(H^{2m+1}(B)\), the extended Turán type \((0, 2)\) cubature \((1.3)\) is exact for all functions in \(H^{2m+1}(B)\). \(\Box\)

Remark 1. In the case \(m = 1\), the Turán type cubature \((1.3)\) is precise for the 3-harmonic functions and reduces to

\[
\int_B u(x) \, dx \approx \frac{1}{n} \left(\frac{n+4}{n} \right)^{(n-1)/2} \left(\int_{S(\rho)} u \, d\sigma + \frac{1}{(n+2)(n+4)} \int_{S(\rho)} \Delta u \, d\sigma \right), \tag{3.2}
\]

where

\[
\rho := \left(\frac{n}{n+4} \right)^{1/2}.
\]

This formula was obtained for the first time in \([4]\), using different technique.

Remark 2. For \(n = 1\) the Turán \((0, 2)\) extended cubature \((1.3)\) reduces to the quadrature \((1.2)\), where the number of nodes is \(2m\). The same is true for the Lobatto cubature \((2.1)\) and for the Gaussian extended cubature \((2.8)\). This occurs because the univariate natural analog of a surface integral is a pair of symmetric nodes. It is interesting to observe also that, if we set \(n = 1\) in \((3.2)\), we obtain exactly the Turán \((0, 2)\) quadrature \((1.2)\) with two nodes.
References

Dimitar K. Dimitrov
Departamento de Ciências de Computação e Estatística
Instituto de Biociências Letras e Ciências Exatas
Universidade Estadual Paulista
15054-000 São José do Rio Preto, SP
BRAZIL
E-mail: dimitrov@dcce.ibilce.unesp.br

Guergana Petrova
Department of Mathematics
Texas A&M University
College Station, TX 77843
USA
E-mail: gpetrova@math.tamu.edu