Data Assimilation in Banach spaces

Ronald DeVore, Guergana Petrova, and Przemyslaw Wojtaszczyk *

February 19, 2016

Abstract

The study of how to fuse measurement data with parametric models for PDEs has led to a new spectrum of problems in optimal recovery. A classical setting of optimal recovery is that one has a bounded set K in a Banach space X and a finite collection of linear functionals $l_j, j = 1, \ldots, m$, from X^*. Given a function which is known to be in K and to have known measurements $l_j(f) = w_j, j = 1, \ldots, m$, the optimal recovery problem is to construct the best approximation to f from this information. Since there are generally infinitely many functions in K which share these same measurements, the best approximation is the center of the smallest ball B, called the Chebyshev ball, which contains the set \bar{K} of all f in K with these measurements.

Most results in optimal recovery study this problem for classical Banach spaces X such as the L_p spaces, $1 \leq p \leq \infty$, and for K the unit ball of a smoothness space in X. The aforementioned parametric PDE model assumes instead, that K is the solution manifold of a parametric PDE or, as it will be the case in this paper, the assumption that K is the solution manifold is replaced by an assumption that all elements in K can be approximated by a known linear space $V = V_n$ of dimension n to a known accuracy $\varepsilon = \varepsilon_n$. This model arises because the solution manifold is complicated and usually only understood through how well it can be approximated by some known finite dimensional spaces with known a priori error estimates. Optimal recovery in this new setting was formulated and analyzed in [19] when X is a Hilbert space, and further studied in [6]. In particular, it was shown in the latter paper that a certain numerical algorithm proposed in [19], based on least squares approximation, is optimal.

The purpose of the present paper is to study this new setting for optimal recovery in a general Banach space X in place of a Hilbert space. While the optimal recovery has a simple theoretical description as the center of the Chebyshev ball and the optimal performance, i.e., the best error, is given by the radius of the Chebyshev ball, this is far from a satisfactory solution to the problem since it is not clear how to find the center and the radius of the Chebyshev ball. This leads to the two fundamental problems studied in the paper. The first centers on building numerically executable algorithms which are optimal or perhaps only near optimal. The second problem is to give sharp a priori bounds for the best error in terms of easily computed quantities. We show how these two problems are connected with well studied concepts in Banach space theory. Firstly, a priori bounds that are within twice the best error are given using the angle between the space V and the null space $N \subset X$, consisting of all $f \in X$ whose measurements $l_j(f) = 0, j = 1, \ldots, m$. Secondly, it is shown that the problem of constructing optimal or near optimal algorithms is connected to the construction of Banach space liftings. Examples are given of how these theoretical results can be implemented in concrete algorithms when X is an $L_p(D)$ space, with $1 \leq p < \infty$, or the space $C(D)$, corresponding to $p = \infty$.

*This research was supported by the ONR Contracts N00014-11-1-0712, N00014-12-1-0561, N00014-15-1-2181; the NSF Grant DMS 1521067; DARPA through Oak Ridge National Laboratory; and the Polish NCN grant DEC2011/03/B/ST1/04902.
1 Introduction

Let \mathcal{X} be a Banach space with norm $\|\cdot\| = \|\cdot\|_{\mathcal{X}}$ and let $S \subset \mathcal{X}$ be any subset of \mathcal{X}. We assume we are given measurement functionals $l_1, \ldots, l_m \in \mathcal{X}^*$ that are linearly independent. We study the general question of how best to recover a function f from the information that $f \in S$ and f has the known measurements $M(f) := (l_1(f), \ldots, l_m(f)) = (w_1, \ldots, w_m) \in \mathbb{R}^m$. This is a classical problem of optimal recovery and has been studied in many settings (see, for example, [7, 20, 21]).

An algorithm A for this optimal recovery problem is a mapping which when given the measurement data $w = (w_1, \ldots, w_m)$ assigns an element $A(w) \in \mathcal{X}$ as the approximation to f. Thus, an algorithm is a possibly nonlinear mapping $A : \mathbb{R}^m \mapsto \mathcal{X}$.

Note that there are generally many functions $f \in S$ which share the same data. We denote this collection by $S_w := \{f \in S : l_j(f) = w_j, \ j = 1, \ldots, m\}$.

An optimal algorithm A^* (if it exists) is one which minimizes the worst error for each w:

$$A^*(w) := \arg\min_{g \in \mathcal{X}} \sup_{f \in S_w} \|f - g\|.$$

This optimal algorithm has a simple geometrical description that is well known (see e.g. [20]). For a given w, we consider all balls $B(a, r) \subset \mathcal{X}$ which contain S_w, and the ball $B(a(w), r(w))$ with smallest radius $r(w)$ which contains S_w. This smallest ball, if it exists, is called the Chebyshev ball and its radius is called the Chebyshev radius of S_w. We postpone the discussion of existence, uniqueness, and properties of the smallest ball to the next section. For now, we remark that when the Chebyshev ball $B(a(w), r(w))$ exists for each measurement vector $w \in \mathbb{R}^m$, then the optimal pointwise algorithm is the mapping $A^* : w \to a(w)$ and the optimal pointwise error for this recovery problem is given by

$$\text{rad}(S_w) := \sup_{f \in S_w} \|f - a(w)\| = \inf_{a \in \mathcal{X}} \sup_{f \in S_w} \|f - a\| = \inf_{a \in \mathcal{X}} \inf_r \{S_w \subset B(a, r)\}. \quad (1.1)$$

In summary, the smallest error that any algorithm for the recovery of S_w can attain is $\text{rad}(S_w)$, and it is attained by taking the center of the Chebyshev ball of S_w.

Near Optimal Algorithm: We say that an algorithm A is pointwise near optimal with constant C for the set S if

$$\sup_{f \in S_w} \|f - A(w)\| \leq C \text{rad}(S_w), \quad \forall w \in \mathbb{R}^m.$$

In application domains, one knows the linear functionals l_j, $j = 1, \ldots, m$, (the measurement devices) but has no a priori knowledge of the measurement values w_j, $j = 1, \ldots, m$, that will arise. Therefore, a second meaningful measure of performance is

$$R(S) := \sup_{w \in \mathbb{R}^m} \text{rad}(S_w). \quad (1.2)$$

Note that an algorithm which achieves the bound $R(S)$ will generally not be optimal for each $w \in \mathbb{R}^m$. In going further, we refer to the first type of estimates as pointwise and the optimal
algorithm, which achieves (1.1), as the optimal pointwise algorithm. We refer to the second type of estimates as global and an optimal global algorithm would be one that achieved the bound $R(S)$.

Near Optimal Global Algorithm: We say that an algorithm A is a near optimal global algorithm with constant C for the set S, if

$$\sup_{w \in \mathbb{R}^m} \sup_{f \in S_w} \|f - A(w)\| \leq CR(S).$$

Note that if an algorithm is near optimal for each of the sets S_w with a constant C, independent of w, then it is a near optimal global algorithm with the same constant C.

The above description in terms of $\text{rad}(S_w)$ provides a nice simple geometrical description of the optimal recovery problem. However, it is not a practical solution for a given set S, since the problem of finding the Chebyshev center and radius of S_w is essentially the same as the original optimal recovery problem, and moreover, is known, in general, to be NP hard (see [14]). Nevertheless, it provides some guide to the construction of optimal or near optimal algorithms.

In the first part of this paper, namely §2 and §3, we use classical ideas and techniques of Banach space theory (see, for example, [18, 4, 25, 28]), to provide results on the optimal recovery of the sets S_w for any set $S \subset X$, $w \in \mathbb{R}^m$. Not surprisingly, the form of these results depends very much on the structure of the Banach space. Let us recall that the unit ball U of the Banach space X is always convex. The Banach space X is said to be strictly convex if

$$\|f + g\| < 2, \quad \forall f, g \in U, \quad f \neq g.$$

A stronger property of X is the uniform convexity. To describe this property, we introduce the modulus of convexity of X defined by

$$\delta(\varepsilon) := \delta_X(\varepsilon) := \inf \left\{ 1 - \frac{\|f + g\|}{2} : f, g \in U, \|f - g\| \geq \varepsilon \right\}, \quad \varepsilon > 0.$$ \hspace{1cm} (1.3)

The space X is called uniformly convex if $\delta(\varepsilon) > 0$ for all $\varepsilon > 0$. For uniformly convex spaces X, it is known that δ is a strictly increasing function taking values in $[0, 1]$ as ε varies in $[0, 2]$ (see, for example, [1, Th. 2.3.7.]). Uniform convexity implies strict convexity and it also implies that X is reflexive (see [Prop. 1.e.3] in [18]), i.e. $X^{**} = X$, where X^* denotes the dual space of X. If X is uniformly convex, then there is quite a similarity between the results we obtain and those in the Hilbert space case. This covers, for example, the case when X is an L_p or ℓ_p space for $1 < p < \infty$, or one of the Sobolev spaces for these L_p. The cases $p = 1, \infty$, as well as the case of a general Banach space X, add some new wrinkles and the theory is not as complete.

The last part of this paper turns to sets of the following specific type.

Approximation Set: We call the set $K = K(\varepsilon, V)$ an approximation set if

$$K = \{ f \in X : \text{dist}(f, V) \leq \varepsilon \},$$

where $V \subset X$ is a known n-dimensional space. We denote the dependence of K on ε and V only when this is not clear from the context.

The motivation for studying this particular setting comes from problems of data assimilation for parametric PDEs. The recovery problem for approximation sets was formulated and analyzed in
[19] in the case when \mathcal{X} is a Hilbert space. That paper gives a numerical algorithm based on least squares approximation and proves error bounds for its performance. The algorithm of [19] is shown to be optimal in [6] and error bounds for its performance were precisely determined. Thus, the optimal recovery problem for approximation sets in a Hilbert space is completely settled. Let us mention that a more general setting is also studied in [5], where again \mathcal{X} is a Hilbert space, but \mathcal{K} is described by approximation from a nested sequence of spaces. This multi-space setting is not studied here.

The main contribution of the present paper is to describe near optimal algorithms for the recovery of approximation sets in a general Banach space \mathcal{X}. We show that for an approximation set \mathcal{K} the determination of optimal or near optimal algorithms and their performance is connected with two concepts from Banach space theory: liftings, see §3, and the angle between the space \mathcal{V} and the null space \mathcal{N} of the measurements (see §4). This allows us to describe a general procedure for constructing recovery algorithms A which are near optimal (with constant 2) for each of the approximation sets \mathcal{K}_w and also are globally near optimal (see §5). In §7, we give examples of how to implement our near optimal algorithm in specific settings when $\mathcal{X} = L_p$, or \mathcal{X} is the space of continuous functions on a domain $D \subset \mathbb{R}^d$, $\mathcal{X} = C(D)$.

It turns out that our construction of near optimal algorithms A for the recovery of approximation sets $\mathcal{K} = \mathcal{K}(\varepsilon, \mathcal{V})$, where \mathcal{V} is a finite dimensional space of dimension n, do not depend on the error ε in the definition of \mathcal{K}, and therefore are universal in the sense that they can be applied to the general setting of data fitting. Namely, any $f \in \mathcal{X}$ belongs to $\mathcal{K}(\varepsilon, \mathcal{V})$, where $\varepsilon := \text{dist}(f, \mathcal{V})$. Given the measurements $M(f) = (l_1(f), \ldots, l_m(f))$ of f, the element $A(M(f))$ provides an approximation to f that uses only the data and the space \mathcal{V}. Since data fitting algorithms are a heavily studied subject, our suggested algorithms do not differ much from what is used in practice. Perhaps, the most interesting part of our work, from the data fitting point of view, are the a priori performance bounds given in §7. We show that the algorithms A, constructed in this paper, satisfy the general performance bound

$$\|f - A(M(f))\| \leq 4\mu(\mathcal{N}, \mathcal{V}) \text{dist}(f, \mathcal{V}), \quad f \in \mathcal{X},$$

where $\mu(\mathcal{N}, \mathcal{V}) = \theta^{-1}(\mathcal{N}, \mathcal{V})$, with θ being the angle between \mathcal{V} and the null space \mathcal{N} of M. In concrete settings, this angle is computable. Consider, for example, the case $\mathcal{X} = C(D)$ with D a domain in \mathbb{R}^d, and suppose that the measurements functionals are $l_j(f) = f(P_j)$, $j = 1, \ldots, m$, where the P_j are points in D. Then, we prove that

$$\frac{1}{2} \mu(\mathcal{N}, \mathcal{V}) \leq \sup_{v \in \mathcal{V}} \frac{\|v\|_{C(D)}}{\max_{1 \leq j \leq m} |v(P_j)|} \leq 2\mu(\mathcal{N}, \mathcal{V}).$$

Hence, the performance of the min-max data fitting problem is controlled by the ratio of the continuous and discrete norms on \mathcal{V}. Results of this type are known, via Lebesgue constants, in the case of interpolation (when $m = n$). Our results show they hold in quite large generality in that \mathcal{X} can be any Banach space and the measurements can be performed by any linear functionals defined on \mathcal{X}.

2 Preliminary remarks

In this section, we recall some standard concepts in Banach spaces and relate them to the optimal recovery problem of interest to us. We work in the setting that S is any set (not necessarily an
approximation set). The results of this section are essentially known and are given only to orient the reader.

2.1 The Chebyshev ball

Note that, in general, the center of the Chebyshev ball may not come from S. This can even occur in finite dimensional setting (see Example 2.8 given below). However, it may be desired, or even required in certain applications, that the recovery for S be a point from S. The description of optimal algorithms with this requirement is connected with what we call the restricted Chebyshev ball of S. To explain this, we introduce some further geometrical concepts.

For a subset S in a Banach space X, we define the following quantities:

- The **diameter** of S is defined by $\text{diam}(S) := \sup_{f,g \in S} \|f - g\|$.
- The **restricted Chebyshev radius** of S is defined by
 $$\text{rad}_C(S) := \inf_{a \in S} \inf_r \{S \subset B(a,r)\} = \inf_{a \in S} \sup_{f \in S} \|f - a\|.$$
- The **Chebyshev radius** of S was already defined as
 $$\text{rad}(S) := \inf_{a \in X} \inf_r \{S \subset B(a,r)\} = \inf_{a \in X} \sup_{f \in S} \|f - a\|.$$

Remark 2.1. It is clear that for every $S \subset X$, we have

$$\text{diam}(S) \geq \text{rad}_C(S) \geq \text{rad}(S) \geq \frac{1}{2} \text{diam}(S). \quad (2.1)$$

Let us start with the following theorem, that tells us that we can construct near optimal algorithms for the recovery of the set S if we can simply find a point $a \in S$.

Theorem 2.2. Let S be any subset of X. If $a \in S$, then

$$\text{rad}(S) \leq \text{rad}_C(S) \leq \sup_{f \in S} \|f - a\| \leq 2 \text{rad}(S), \quad (2.2)$$

and therefore a is, up to the constant 2, an optimal recovery of S.

Proof: Let $B(a',r)$, $a' \in X$, be any ball that contains S. Then, for any $f \in S$,

$$\|f - a\| \leq \|f - a'\| + \|a - a'\| \leq 2r.$$

Taking an infimum over all such balls we obtain the theorem. \qed

We say that an $a \in X$ which recovers S with the accuracy of (2.2) provides a *near optimal* recovery with constant 2. We shall use this theorem in our construction of algorithms for the recovery of the sets K_w, when K is an approximation set. The relevance of the above theorem and remark viz a viz for our recovery problem is that if we determine the diameter or restricted Chebyshev radius of K_w, we will determine the optimal error $\text{rad}(K_w)$ in the recovery problem, but only up to the factor two.
2.2 Is \(\text{rad}(S) \) assumed?

In view of the discussion preceding (1.1), the best pointwise error we can achieve by any recovery algorithm for \(S \) is given by \(\text{rad}(S) \). Unfortunately, in general, for arbitrary bounded sets \(S \) in a general infinite dimensional Banach space \(\mathcal{X} \), the radius \(\text{rad}(S) \) may not be assumed. The first such example was given in [12], where \(\mathcal{X} = \{ f \in C[-1, 1] : \int_{-1}^{1} f(t) \, dt = 0 \} \) with the uniform norm and \(S \subset \mathcal{X} \) is a set consisting of three functions. Another, simpler example of a set \(S \) in this same space was given in [26]. In [16], it is shown that each nonreflexive space admits an equivalent norm for which such examples also exist. If we place more structure on the Banach space \(\mathcal{X} \), then we can show that the radius of any bounded subset \(S \subset \mathcal{X} \) is assumed. We present the following special case of an old result of Garkavi (see [12, Th. II]).

Lemma 2.3. If the Banach space \(\mathcal{X} \) is reflexive (in particular, if it is finite dimensional), then for any bounded set \(S \subset \mathcal{X} \), \(\text{rad}(S) \) is assumed in the sense that there is a ball \(B(a, r) \) with \(r = \text{rad}(S) \) which contains \(S \). If, in addition, \(\mathcal{X} \) is uniformly convex, then this ball is unique.

Proof: Let \(B(a_n, r_n) \) be balls which contain \(S \) and for which \(r_n \to \text{rad}(S) =: r \). Since \(S \) is bounded, the \(a_n \) are bounded and hence, without loss of generality, we can assume that \(a_n \) converges weakly to \(a \in \mathcal{X} \) (since every bounded sequence in a reflexive Banach space has a weakly converging subsequence). Now let \(f \) be any element in \(S \). Then, there is a norming functional \(l \in \mathcal{X}^* \) of norm one for which \(l(f - a) = \|f - a\| \). Therefore

\[
\|f - a\| = l(f - a) = \lim_{n \to \infty} l(f - a_n) \leq \lim_{n \to \infty} \|f - a_n\| \leq \lim_{n \to \infty} r_n = r.
\]

This shows that \(B(a, r) \) contains \(S \) and so the radius is attained. If \(\mathcal{X} \) is uniformly convex and we assume that there are two balls, centered at \(a \) and \(a' \), respectively, \(a \neq a' \), each of radius \(r \) which contain \(S \). If \(\varepsilon := \|a - a'\| > 0 \), since \(\mathcal{X} \) is uniformly convex, for every \(f \in S \) and for \(\bar{a} := \frac{1}{2}(a + a') \), we have

\[
\|f - \bar{a}\| = \left\| \frac{f - a}{2} + \frac{f - a'}{2} \right\| \leq r - r\delta(\varepsilon/r) < r,
\]

which contradicts the fact that \(\text{rad}(S) = r \). \(\blacksquare \)

2.3 Some examples

In this section, we will show that for centrally symmetric, convex sets \(S \), we have a very explicit relationship between the \(\text{diam}(S) \), \(\text{rad}(S) \), and \(\text{rad}_C(S) \). We also give some examples showing that for general sets \(S \) the situation is more involved and the only relationship between the latter quantities is the one given by Remark 2.1.

Proposition 2.4. Let \(S \subset \mathcal{X} \) be a centrally symmetric, convex set in a Banach space \(\mathcal{X} \). Then, we have

(i) the smallest ball containing \(S \) is centered at 0 and

\[
\text{diam}(S) = 2 \sup_{f \in S} \|f\| = 2 \text{rad}(S) = 2 \text{rad}_C(S).
\]

(ii) for any \(w \in \mathbb{R}^m \), we have \(\text{diam}(S_w) \leq \text{diam}(S_0) \).
and consider the set

Since

Indeed, for any

We start with the following example which can be found in [3].

Example 2.5. Let \(X = \ell_2(\mathbb{N}) \) with a new norm defined as

and consider the set

\[
S = \{ x : \| x \|_{\ell_2(\mathbb{N})} \leq 1 \text{ and } x_j \geq 0 \text{ for all } j \}.
\]

Then, for this set

\[
\text{diam}(S) = \text{rad}(S) = \text{rad}_C(S) = 1.
\]

Indeed, for any \(x, y \in S \), we have \(\| x - y \| \leq \max \{ 1, \| x - y \|_{\ell_2(\mathbb{N})} \} \leq 1 \), so \(\text{diam}(S) \leq 1 \). The vectors

\((1, 0, \ldots) \) and \((0, 1, 0, \ldots) \) are in \(S \) and their distance from one another equals 1, so \(\text{diam}(S) = 1 \). Now fix \(y \in X \). If \(\| y \| \geq 1 \), we have \(\sup_{x \in S} \| y - x \| \geq \| y - 0 \| \geq 1 \). On the other hand, if \(\| y \| \leq 1 \), then for any \(\varepsilon > 0 \) there exists a coordinate \(y_{j_0} \), such that \(|y_{j_0}| \leq \varepsilon \). Let \(z \in S \) have \(j_0 \)-th coordinate equal to 1 and the rest of coordinates equal to 0. Then, \(\| y - z \| \geq 1 - \varepsilon \), so we get \(\text{rad}(S) = 1 \). Then, from (2.1) we also have \(\text{rad}_C(S) = 1 \).

The following examples show that the same behavior can happen in classical spaces without modifying norms.

Example 2.6. Let \(X = c_0 \) and

\[
S = \{ x : x_j \geq 0 \text{ and } \sum_{j=1}^\infty x_j = 1 \}.
\]

Then, we have that

\[
\text{rad}(S) = \text{rad}_C(S) = \text{diam}(S) = 1.
\]

We can modify this example by taking \(X = \ell_p(\mathbb{N}), 1 < p < \infty \), and \(S \) as above. In this case, \(\text{diam}(S) = 2^{1/p} \) and \(\text{rad}_C(S) = \text{rad}(S) = 1 \).
Example 2.7. Let \(\mathcal{X} = L_1([0,1]) \) and \(S := \{ f \in L_1([0,1]) : \int_0^1 f = \int_0^1 |f| = 1 \} \). Then \(\text{diam}(S) = 2 = \text{rad}_C(S) \). However, by taking the ball centered at zero, we see that \(\text{rad}(S) = 1 \).

Example 2.8. Let \(\mathcal{X} := \mathbb{R}^3 \) with the \(\| \cdot \|_{\ell_\infty(\mathbb{R}^3)} \) norm. Let us consider the simplex

\[
T := \{ x = (x_1, x_2, x_3) : \| x \|_\infty \leq 1 \text{ and } x_1 + x_2 + x_3 = 2 \}
\]

with vertices \((1,1,0), (1,0,1), \) and \((0,1,1)\). We have

\[
\text{diam}(T) = 1, \quad \text{rad}(T) = \frac{1}{2}, \quad \text{rad}_C(T) = \frac{2}{3}.
\]

Indeed, since \(T \) is the convex hull of its vertices, any point in \(T \) has coordinates in \([0,1]\), and hence the distance between any two such points is at most one. Since the vertices are at distance one from each other, we have that \(\text{diam}(T) = 1 \). It follows from (2.1) that \(\text{rad}(T) \geq 1/2 \). Note that the ball with center \((\frac{1}{2}, \frac{1}{2}, \frac{1}{2})\) and radius \(1/2\) contains \(T \), and so \(\text{rad}(T) = 1/2 \). Given any point \(z \in T \) which is a potential center of the restricted Chebyshev ball for \(T \), at least one of the coordinates of \(z \) is at least \(2/3 \) (because \(z_1 + z_2 + z_3 = 2 \)), and thus has distance at least \(2/3 \) from one of the vertices of \(T \). On the other hand, the ball with center \((\frac{2}{3}, \frac{2}{3}, \frac{2}{3})\) \(\in T \) and radius \(\frac{2}{3} \) contains \(T \).

2.4 Connection to approximation sets and measurements

The examples in this section are directed at showing that the behavior, observed in §2.3, can occur even when the sets \(S \) are described through measurements. The next example is a modification of Example 2.8, and the set under consideration is of the form \(\mathcal{K}_w \), where \(\mathcal{K} \) is an approximation set.

Example 2.9. We take \(\mathcal{X} := \mathbb{R}^4 \) with the \(\| \cdot \|_{\ell_\infty(\mathbb{R}^4)} \) norm and define \(V \) as the one dimensional subspace spanned by \(e_1 := (1,0,0,0) \). We consider the approximation set

\[
\mathcal{K} = \mathcal{K}(1,V) := \{ x \in \mathbb{R}^4 : \text{dist}(x,V) \leq 1 \},
\]

and the measurement operator \(M(x_1, x_2, x_3, x_4) = (x_1, x_2 + x_3 + x_4) \). Let us now take the measurement \(w = (0,2) \in \mathbb{R}^2 \) and look at \(\mathcal{K}_w \). Since

\[
\mathcal{K} = \{ (t, x_2, x_3, x_4) : t \in \mathbb{R}, \max_{2 \leq j \leq 4} |x_j| \leq 1 \}, \quad \mathcal{X}_w = \{ (0, x_2, x_3, x_4) : x_2 + x_3 + x_4 = 2 \},
\]

we infer that \(\mathcal{K}_w = \mathcal{X}_w \cap \mathcal{K} = \{ (0, x) : x \in T \}, \) where \(T \) is the set from Example 2.8. Thus, we have

\[
\text{diam}(\mathcal{K}_w) = 1, \quad \text{rad}(\mathcal{K}_w) = \frac{1}{2}, \quad \text{rad}_C(\mathcal{K}_w) = \frac{2}{3}.
\]

The following theorem shows that any example for general sets \(S \) can be transferred to the setting of interest to us, where the sets are of the form \(\mathcal{K}_w \) with \(\mathcal{K} \) being an approximation set.

Theorem 2.10. Suppose \(X \) is a Banach space and \(K \subset X \) is a non-empty, closed and convex subset of the closed unit ball \(U \) of \(X \). Then, there exists a Banach space \(\mathcal{X} \), a finite dimensional subspace \(V \), a measurement operator \(M \), and a measurement \(w \), such that for the approximation set \(\mathcal{K} := \mathcal{K}(1,V) \), we have

\[
\text{diam}(\mathcal{K}_w) = \text{diam}(K), \quad \text{rad}(\mathcal{K}_w) = \text{rad}(K), \quad \text{rad}_C(\mathcal{K}_w) = \text{rad}_C(K).
\]
\textbf{Proof:} Given X, we first define $Z := X \oplus \mathbb{R} := \{(x, \alpha) : x \in X, \; \alpha \in \mathbb{R}\}$. Any norm on Z is determined by describing its unit ball, which can be taken as any closed, bounded, centrally symmetric convex set. We take the set Ω to be the convex hull of the set $(U, 0) \cup (K, 1) \cup (-K, -1)$. Since $K \subset U$, it follows that a point of the form $(x, 0)$ is in Ω if and only if $\|x\|_X \leq 1$. Therefore, for any $x \in X$,

$$\|(x, 0)\|_Z = \|x\|_X. \quad (2.3)$$

Note also that for any point $(x, \alpha) \in \Omega$, we have $\max\{\|x\|_X, |\alpha|\} \leq 1$, and thus

$$\max\{\|x\|_X, |\alpha|\} \leq \|(x, \alpha)\|_Z. \quad (2.4)$$

It follows from (2.3) that for any $x_1, x_2 \in X$, we have $\|(x_1, 1) - (x_2, 1)\|_Z = \|x_1 - x_2\|_X$. Now we define $\tilde{K} := (K, 1) \subset Z$. Then, we have

$$\text{diam}(\tilde{K})_Z = \text{diam}(K)_X, \quad \text{rad}_C(\tilde{K})_Z = \text{rad}_C(K)_X.$$

Clearly, $\text{rad}(\tilde{K})_Z \leq \text{rad}(K)_X$. On the other hand, for each $(x', \alpha) \in Z$, we have

$$\sup_{(x, 1) \in \tilde{K}} \|(x, 1) - (x', \alpha)\|_Z = \sup_{x' \in K} \|(x - x', 1 - \alpha)\|_Z \geq \sup_{x' \in K} \|x - x'\|_X \geq \text{rad}(K)_X,$$

where the next to last inequality uses (2.4). Therefore, we have $\text{rad}(K)_X = \text{rad}(\tilde{K})_Z$. Next, we consider the functional $\Phi \in Z^*$, defined by

$$\Phi(x, \alpha) = \alpha.$$

It follows from (2.4) that it has norm one and

$$\{z \in Z : \Phi(z) = 1, \; \|z\|_Z \leq 1\} = \{(x, 1) \in \Omega\} = \{(x, 1) : x \in K\} = \tilde{K}, \quad (2.5)$$

where the next to the last equality uses the fact that a point of the form $(x, 1)$ is in Ω if and only if $x \in K$. We next define the space $\mathcal{X} = Z \oplus \mathbb{R} := \{(z, \beta) : z \in Z, \beta \in \mathbb{R}\}$, with the norm

$$\|(z, \beta)\|_\mathcal{X} := \max\{\|z\|_Z, |\beta|\}.$$

Consider the subspace $V = \{(0, t) : t \in \mathbb{R}\} \subset \mathcal{X}$. If we take $\varepsilon = 1$, then the approximation set $\mathcal{K} = \mathcal{K}(1, V) \subset \mathcal{X}$ is $\mathcal{K} = \{(z, t) : t \in \mathbb{R}, \; \|z\|_Z \leq 1\}$. We now take the measurement operator $M(z, \beta) = (\beta, \Phi(z)) \in \mathbb{R}^2$ and the measurement $w = (0, 1)$ which gives $\mathcal{X}_w = \{(z, 0) : \Phi(z) = 1\}$. Then, because of (2.5), we have

$$\mathcal{K}_w = \{(z, 0) : \Phi(z) = 1, \; \|z\|_Z \leq 1\} = (\tilde{K}, 0).$$

As above, we prove that

$$\text{diam}(\tilde{K}, 0)_{\mathcal{X}} = \text{diam}(\tilde{K})_Z, \quad \text{rad}_C((\tilde{K}, 0))_{\mathcal{X}} = \text{rad}_C(\tilde{K})_Z, \quad \text{rad}((\tilde{K}, 0))_{\mathcal{X}} = \text{rad}(\tilde{K})_Z,$$

which completes the proof of the theorem. \hfill \blacksquare
3 A description of algorithms via liftings

In this section, we show that algorithms for the optimal recovery problem can be described by what are called liftings in the theory of Banach spaces. We place ourselves in the setting that S is any subset of \mathcal{X}, and we wish to recover the elements in S_w for each measurement $w \in \mathbb{R}^m$. That is, at this stage, we do not require that S is an approximation set. Recall that given the measurement functionals l_1, \ldots, l_m in \mathcal{X}^*, the linear operator $M : \mathcal{X} \to \mathbb{R}^m$ is defined as

$$M(f) := (l_1(f), \ldots, l_m(f)), \quad f \in \mathcal{X}.$$

Associated to M we have the null space

$$N := \ker M = \{ f \in \mathcal{X} : M(f) = 0 \} \subset \mathcal{X},$$

and

$$\mathcal{X}_w := M^{-1}(w) := \{ f \in \mathcal{X} : M(f) = w \}.$$

Therefore $\mathcal{X}_0 = N$. Our goal is to recover the elements in $S_w = \mathcal{X}_w \cap S$.

Remark 3.1. Let us note that if in place of l_1, \ldots, l_m, we use functionals l'_1, \ldots, l'_m which span the same space L in \mathcal{X}^*, then the information about f contained in $M(f)$ and $M'(f)$ is exactly the same, and so the recovery problem is identical. For this reason, we can choose any spanning set of linearly independent functionals in defining M and obtain exactly the same recovery problem. Note that, since these functionals are linearly independent, M is a linear mapping from \mathcal{X} onto \mathbb{R}^m.

We begin by analyzing the measurement operator M. We introduce the following norm on \mathbb{R}^m induced by M

$$\|w\|_M = \inf_{x \in \mathcal{X}_w} \|x\|, \quad (3.1)$$

and consider the quotient space \mathcal{X}/N. Each element in \mathcal{X}/N is a coset \mathcal{X}_w, $w \in \mathbb{R}^m$. The quotient norm on this space is given by

$$\|\mathcal{X}_w\|_{\mathcal{X}/N} = \|w\|_M. \quad (3.2)$$

The mapping M can be interpreted as mapping $\mathcal{X}_w \to w$ and, in view of (3.2), is an isometry from \mathcal{X}/N onto \mathbb{R}^m under the norm $\|\cdot\|_M$.

Lifting Operator: A lifting operator Δ is a mapping from \mathbb{R}^m to \mathcal{X} which assigns to each $w \in \mathbb{R}^m$ an element from the coset \mathcal{X}_w, i.e., a representor of the coset.

Recall that any algorithm A is a mapping from \mathbb{R}^m into \mathcal{X}. We would like the mapping A for our recovery problem to send w into an element of S_w, provided $S_w \neq \emptyset$, since then we would know that A is nearly optimal (see Theorem 2.2) up to the constant 2. So, in going further, we consider only algorithms A which take w into \mathcal{X}_w. At this stage we are not yet invoking our desire that A actually maps into S_w, only that it maps into \mathcal{X}_w.

Admissible Algorithm: We say that an algorithm $A : \mathbb{R}^m \to \mathcal{X}$ is admissible if, for each $w \in \mathbb{R}^m$, $A(w) \in \mathcal{X}_w$.

Our interest in lifting operators is because any admissible algorithm A is a lifting Δ, and the performance of such an A is related to the norm of Δ. A natural lifting, and the one with minimal norm 1, would be one which maps w into an element of minimal norm in \mathcal{X}_w. Unfortunately, in general, no such minimal norm element exists, as the following illustrative example shows.
Example 3.2. We consider the space $X = \ell_1(\mathbb{N})$ with the $\| \cdot \|_{\ell_1(\mathbb{N})}$ norm, and a collection of vectors $h_j \in \mathbb{R}^2$, $j = 1, 2, \ldots$, with $\|h_j\|_{\ell_2(\mathbb{R}^2)} = \langle h_j, h_j \rangle = 1$, which are dense on the unit circle. We define the measurement operator M as

$$M(x) := \sum_{j=1}^{\infty} x_j h_j \in \mathbb{R}^2.$$

If follows from the definition of M that for every x such that $M(x) = w$, we have $\|w\|_{\ell_2(\mathbb{R}^2)} \leq \|x\|_{\ell_1(\mathbb{N})}$, and thus $\|w\|_{\ell_2(\mathbb{R}^2)} \leq \|w\|_M$. In particular, for every $i = 1, 2, \ldots,$

$$1 = \|h_i\|_{\ell_2(\mathbb{R}^2)} \leq \|h_i\|_M \leq \|e_i\|_{\ell_1(\mathbb{N})} = 1,$$

since $M(e_i) = h_i$, where e_i is the i-th coordinate vector in $\ell_1(\mathbb{N})$. So, we have that $\|h_i\|_{\ell_2(\mathbb{R}^2)} = \|h_i\|_M = 1$. Since the h_i’s are dense on the unit circle, every w with Euclidean norm one satisfies $\|w\|_M = 1$. Next, we consider any $w \in \mathbb{R}^2$, such that $\|w\|_{\ell_2(\mathbb{R}^2)} = 1$, $w \neq h_j$, $j = 1, 2, \ldots$. If $w = M(x) = \sum_{j=1}^{\infty} x_j h_j$, then

$$1 = \langle w, w \rangle = \sum_{j=1}^{\infty} x_j \langle w, h_j \rangle.$$

Since the $|\langle w, h_j \rangle| < 1$, we must have $\|x\|_{\ell_1(\mathbb{N})} > 1$. Hence, $\|w\|_M$ is not assumed by any element x in the coset X_w. This also shows there is no lifting Δ from \mathbb{R}^2 to X/N with norm one.

While the above example shows that norm one liftings may not exist for a general Banach space X, there is a classical theorem of Bartle-Graves which states that there are continuous liftings Δ with norm $\|\Delta\|$ as close to one as we wish (see [2, 4, 24]). In our setting, this theorem can be stated as follows.

Theorem 3.3 (Bartle-Graves). Let $M : X \to \mathbb{R}^m$ be a measurement operator. For every $\eta > 0$, there exists a map $\Delta : \mathbb{R}^m \to X$, such that

- Δ is continuous.
- $\Delta(w) \in X_w$, $w \in \mathbb{R}^m$.
- for every $\lambda > 0$, we have $\Delta(\lambda w) = \lambda \Delta(w)$.
- $\|\Delta(w)\|_X \leq (1 + \eta)\|w\|_M$, $w \in \mathbb{R}^m$.

Liftings are closely related to projections. If Δ is a linear lifting, then its range Y is a subspace of X of dimension m, for which we have the following.

Remark 3.4. For any fixed constant C, there is a linear lifting $\Delta : \mathbb{R}^m \to X$ with norm $\leq C$ if and only if there exists a linear projector P from X onto a subspace $Y \subset X$ with $\ker(P) = N$ and $\|P\| \leq C$.

Proof: Indeed, if Δ is such a lifting then its range Y is a finite dimensional subspace and $P(x) := \Delta(M(x))$ defines a projection from X onto Y with the mentioned properties. On the other hand, given such a P and Y, notice that any two elements in $M^{-1}(w)$ have the same image under P, since the kernel of P is N. Therefore, we can define the lifting $\Delta(w) := P(M^{-1}(w))$, $w \in \mathbb{R}^m$, which has norm at most C.

The above results are for an arbitrary Banach space. If we put more structure on X, then we can guarantee the existence of a continuous lifting with norm one (see [4, Lemma 2.2.5]).
Proof: Fix \(w \in \mathbb{R}^m\) and let \(x_j \in \mathcal{X}_w\), \(j \geq 1\), be such that \(\|x_j\| \to \|w\|_M\). Since \(\mathcal{X}\) is uniformly convex, by weak compactness, there is a subsequence of \(\{x_j\}\) which, without loss of generality, we can take as \(\{x_j\}\) such that \(x_j \to x \in \mathcal{X}\) weakly. It follows that \(\lim_{j \to \infty} l(x_j) = l(x)\) for all \(l \in \mathcal{X}^*\). Hence \(M(x) = w\), and therefore \(x \in \mathcal{X}_w\). Also, if \(l\) is a norming functional for \(x\), i.e. \(\|l\|_{\mathcal{X}^*} = 1\) and \(l(x) = \|x\|\), then

\[
\|x\| = l(x) = \lim_{j \to \infty} l(x_j) \leq \lim_{j \to \infty} \|x_j\| = \|w\|_M,
\]

which shows the existence in (3.3). To see that \(x = x(w)\) is unique, we assume \(x' \in \mathcal{X}_w\) is another element with \(\|x'\| = \|w\|_M\). Then \(z := \frac{1}{2}(x + x') \in \mathcal{X}_w\), and by uniform convexity \(\|z\| < \|w\|_M\), which is an obvious contradiction. This shows that there is an \(x = x(w)\) satisfying (3.3), and it is unique.

To see that \(\Delta\) is continuous, let \(w_j \to w\) in \(\mathbb{R}^m\) and let \(x_j := \Delta(w_j)\) and \(x := \Delta(w)\). Since we also have that \(\|w_j\|_M \to \|w\|_M\), it follows from the minimality of \(\Delta(w_j)\) that \(\|x_j\| \to \|x\|\). If \(w = 0\), we have \(x = 0\), and thus we have convergence in norm. In what follows, we assume that \(w \neq 0\). Using weak compactness (passing to a subsequence), we can assume that \(x_j\) converges weakly to some \(\tilde{x}\). So, we have \(w_j = M(x_j) \to M(\tilde{x})\), which gives \(M(\tilde{x}) = w\). Let \(l \in \mathcal{X}^*\) be a norming functional for \(\tilde{x}\). Then, we have that

\[
\|\tilde{x}\| = l(\tilde{x}) = \lim_{j \to \infty} l(x_j) \leq \lim_{j \to \infty} \|x_j\| = \|x\|
\]

and therefore \(\tilde{x} = x\) because of the definition of \(\Delta\). We want to show that \(x_j \to x\) in norm. If this is not the case, we can find a subsequence, which we again denote by \(\{x_j\}\), such that \(\|x_j - x\| \geq \varepsilon > 0\), \(j = 1, 2, \ldots\), for some \(\varepsilon > 0\). It follows from the uniform convexity that

\[
\|\frac{1}{2}(x_j + x)\| \leq \max\{\|x_j\|, \|x\|\}\alpha\text{ for all } j, \text{ with } \alpha < 1 \text{ a fixed constant. Now, let } l \in \mathcal{X}^* \text{ be a norm one functional, such that } l(x) = \|x\|.
\]

Then, we have

\[
2\|x\| = 2l(x) = \lim_{j \to \infty} l(x_j + x) \leq \lim_{j \to \infty} \|x_j + x\| \leq 2\|x\|,\]

which gives \(\alpha \geq 1\) and is the desired contradiction. \(\blacksquare\)

Remark 3.6. The paper [8] gives an example of a strictly convex, reflexive Banach space \(\mathcal{X}\) and a measurement map \(M : \mathcal{X} \to \mathbb{R}^2\), for which there is no continuous norm one lifting \(\Delta\). Therefore, the above theorem would not hold under the slightly milder assumptions on \(\mathcal{X}\) being strictly convex and reflexive (in place of uniform convexity).

4 A priori estimates for the radius of \(K_w\)

In this section, we discuss estimates for the radius of \(K_w\) when \(K = K(\varepsilon, V)\) is an approximation set. The main result we shall obtain is that the global optimal recovery error \(R(K)\) is determined a priori (up to a constant factor 2) by the angle between the null space \(N\) of the measurement map \(M\) and the approximating space \(V\) (see (iii) of Theorem 4.5 below).
Remark 4.1. Note the following simple observation.

(i) If $\mathcal{N} \cap V \neq \{0\}$, then for any $0 \neq \eta \in \mathcal{N} \cap V$, and any $x \in \mathcal{K}_w$, the line $x + t\eta$, $t \in \mathbb{R}$, is contained in \mathcal{K}_w, and therefore there is no finite ball $B(a,r)$ which contains \mathcal{K}_w. Hence $\text{rad}(\mathcal{K}_w) = \infty$.

(ii) If $\mathcal{N} \cap V = \{0\}$, then $n = \dim V \leq \text{codim}(\mathcal{N}) = \text{rank} M = m$ and therefore $n \leq m$. In this case $\text{rad}(\mathcal{K}_w)$ is finite for all $w \in \mathbb{R}^m$.

Standing Assumption: In view of this remark, the only interesting case is (ii), and therefore we assume that $\mathcal{N} \cap V = \{0\}$ for the remainder of this paper.

For (arbitrary) subspaces X and Y of a given Banach space \mathcal{X}, we recall the angle Θ between X and Y, defined as

$$
\Theta(X,Y) := \inf_{x \in X} \frac{\text{dist}(x,Y)}{\|x\|}.
$$

We are more interested in $\Theta(X,Y)^{-1}$, and so accordingly, we define

$$
\mu(X,Y) := \Theta(X,Y)^{-1} = \sup_{x \in X} \frac{\|x\|}{\text{dist}(x,Y)} = \sup_{x \in X, y \in Y} \frac{\|x\|}{\|x - y\|}. \tag{4.1}
$$

Notice that $\mu(X,Y) \geq 1$.

Remark 4.2. Since V is a finite dimensional space and $\mathcal{N} \cap V = \{0\}$, we have $\Theta(\mathcal{N},V) > 0$. Indeed, otherwise there exists a sequence $\{\eta_k\}_{k \geq 1}$ from \mathcal{N} with $\|\eta_k\| = 1$ and a sequence $\{v_k\}_{k \geq 1}$ from V, such that $\|\eta_k - v_k\| \to 0$, $k \to \infty$. We can assume v_k converges to v_∞, but then also η_k converges to v_∞, so $v_\infty \in \mathcal{N} \cap V$ and $\|v_\infty\| = 1$, which is the desired contradiction to $\mathcal{N} \cap V = \{0\}$.

Note that, in general, μ is not symmetric, i.e., $\mu(Y,X) \neq \mu(X,Y)$. However, we do have the following comparison.

Lemma 4.3. For arbitrary subspaces X and Y of a given Banach space \mathcal{X}, such that $X \cap Y = \{0\}$, we have

$$
\mu(X,Y) \leq 1 + \mu(Y,X) \leq 2\mu(Y,X). \tag{4.2}
$$

Proof: For each $x \in X$ and $y \in Y$ with $x \neq 0$, $x \neq y$, we have

$$
\frac{\|x\|}{\|x - y\|} \leq \frac{\|x - y\| + \|y\|}{\|x - y\|} = 1 + \frac{\|y\|}{\|x - y\|} \leq 1 + \mu(Y,X).
$$

Taking a supremum over $x \in X, y \in Y$, we arrive at the first inequality in (4.2). The second inequality follows because $\mu(Y,X) \geq 1$.

The following lemma records some properties of μ for our setting in which $Y = V$ and $X = \mathcal{N}$ is the null space of M.

Lemma 4.4. Let \mathcal{X} be any Banach space, V be any finite dimensional subspace of \mathcal{X} with $\dim V \leq m$, and $M : \mathcal{X} \to \mathbb{R}^m$ be any measurement operator. Then, for the null space \mathcal{N} of M, we have the following.

(i) $\mu(V,\mathcal{N}) = \|M^{-1}_V\|$,
(ii) $\mu(\mathcal{N},V) \leq 1 + \mu(V,\mathcal{N}) = 1 + \|M^{-1}_V\| \leq 2\|M^{-1}_V\|$,
where M_V is the restriction of the measurement operator M on V and M^{-1}_V is its inverse.
Proof: The statement (ii) follows from (i) and Lemma 4.3. To prove (i), we see from the definition of \(\| \cdot \|_M \) given in (3.1), we have

\[
\| M^{-1} \| = \sup_{v \in V} \frac{\| v \|}{\| M(v) \|_M} = \sup_{v \in V} \frac{\| v \|}{\text{dist}(v, N)} = \mu(V, N),
\]

as desired.

We have the following simple, but important theorem.

Theorem 4.5. Let \(X \) be any Banach space, \(V \) be any finite dimensional subspace of \(X \), \(\varepsilon > 0 \), and \(M : X \rightarrow \mathbb{R}^m \) be any measurement operator. Then, for the set \(K = K(\varepsilon, V) \), we have the following

(i) For any \(w \in \mathbb{R}^m \), such that \(w = M(v) \) with \(v \in V \), we have

\[
\text{rad}(K_w) = \varepsilon \mu(N, V).
\]

(ii) For any \(w \in \mathbb{R}^m \), we have

\[
\text{rad}(K_w) \leq 2\varepsilon \mu(N, V).
\]

(iii) We have

\[
\varepsilon \mu(N, V) \leq R(K) \leq 2\varepsilon \mu(N, V).
\]

Proof: First, note that \(K_0 = K \cap N \) is centrally symmetric and convex and likewise \(K_0(\varepsilon, V) \) is also centrally symmetric and convex. Hence, from Proposition 2.4, we have that the smallest ball containing this set is centered at 0 and has radius

\[
\text{rad}(K_0(\varepsilon, V)) = \sup \{ \| z \| : z \in N, \text{dist}(z, V) \leq \varepsilon \} = \varepsilon \mu(N, V). \quad (4.3)
\]

Suppose now that \(w = M(v) \) with \(v \in V \). Any \(x \in K_w \) can be written as \(x = v + \eta \) with \(\eta \in N \) if and only if \(\text{dist}(\eta, V) \leq \varepsilon \). Hence \(K_w = v + K_0 \) and (i) follows.

For the proof of (ii), let \(x_0 \) be any point in \(K_w \). Then, any other \(x \in K_w \) can be written as \(x = x_0 + \eta \). Since \(\text{dist}(x, V) \leq \varepsilon \), we have \(\text{dist}(\eta, V) \leq 2\varepsilon \). Hence

\[
K_w \subset x_0 + K_0(2\varepsilon, V),
\]

which from (4.3) has radius \(2\varepsilon \mu(N, V) \). Therefore, we have proven (ii). Statement (iii) follows from the definition of \(R(K) \) given in (1.2).

Let us make a few comments about Theorem 4.5 viz a viz the results in [6] (see Theorem 2.8 and Remark 2.15 of that paper) for the case when \(X \) is a Hilbert space. In the latter case, it was shown in [6] that the same result as (i) holds, but in the case of (ii), an exact computation of \(\text{rad}(K_w) \) was given with the constant 2 replaced by a number (depending on \(w \)) which is less than one. It is probably impossible to have an exact formula for \(\text{rad}(K_w) \) in the case of a general Banach space. However, we show in the appendix that when \(X \) is uniformly convex and uniformly smooth, we can improve on the constant appearing in (ii) of Theorem 4.5.

5 Near optimal algorithms

In this section, we discuss the form of admissible algorithms for optimal recovery, and expose what properties these algorithms need in order to be optimal or near optimal on the classes \(K_w \) when \(K = K(\varepsilon, V) \). Recall that any algorithm \(A \) is a mapping \(A : \mathbb{R}^m \rightarrow X \). Our goal is to have
A(w) ∈ K_w for each w ∈ R^m, for which K_w ≠ ∅, since, by Theorem 2.2, this would guarantee that the algorithmic error

$$\sup_{x ∈ K_w} ||x - A(M(x))|| ≤ 2 \text{rad}(K_w), \quad (5.1)$$

and hence up to the factor 2 is optimal. In this section, we shall not be concerned about computational issues that arise in the numerical implementation of the algorithms we put forward. Numerical implementation issues will be discussed in the section that follows.

Recall that by M_V we denoted the restriction of M to the space V. By our Standing Assumption, M_V is invertible, and hence Z := M(V) = M_V(V) is an n-dimensional subspace of R^m. Given w ∈ R^m, we consider its error of best approximation from Z in || · ||_M, defined by

$$E(w) := \inf_{z ∈ Z} ||w - z||_M.$$

Notice that whenever w = M(x), from the definition of the norm || · ||_M, we have

$$E(w) = \text{dist}(w, Z)_M = \text{dist}(x, V ⊕ N)_X ≤ \text{dist}(x, V)_X. \quad (5.2)$$

While there is always a best approximation z* = z*(w) ∈ Z to w, and it is unique when the norm is strictly convex, for a possible ease of numerical implementation, we consider other non-best approximation maps. We say a mapping Λ : R^m → Z is near best with constant λ ≥ 1, if

$$||w - Λ(w)||_M ≤ \lambda E(w), \quad w ∈ R^m. \quad (5.3)$$

Of course, if λ = 1, then Λ maps w into a best approximation of w from Z.

Now, given any lifting ∆ and any near best approximation map Λ, we consider the mapping

$$A(w) := M_V^{-1}(Λ(w)) + ∆(w - Λ(w)), \quad w ∈ R^m. \quad (5.4)$$

Clearly, A maps R^m into X, so that it is an algorithm. It also has the property that A(w) ∈ X_w, which means that it is an admissible algorithm. Finally, by our construction, whenever w = M(v) for some v ∈ V, then Λ(w) = w, and so A(w) = v. Let us note some important properties of such an algorithm A.

Theorem 5.1. Let X be a Banach space, V be any finite dimensional subspace of X, ε > 0, M : X → R^m be any measurement operator with a null space N, and K = K(ε, V) be an approximation set. Then, for any lifting ∆ and any near best approximation map Λ with constant λ ≥ 1, the algorithm A, defined in (5.4), has the following properties

(i) A(w) ∈ X_w, \quad w ∈ R^m.

(ii) dist(A(M(x)), V) ≤ λ ||∆|| dist(x, V)_X, \quad x ∈ X.

(iii) if ||∆|| = 1 and λ = 1, then A(M(x)) ∈ K_w, whenever x ∈ K_w.

(iv) if ||∆|| = 1 and λ = 1, then the algorithm A is near optimal with constant 2, i.e. for any w ∈ R^m,

$$\sup_{x ∈ K_w} ||x - A(M(x))|| ≤ 2 \text{rad}(K_w). \quad (5.5)$$

(v) if ||∆|| = 1 and λ = 1, then the algorithm A is also near optimal in the sense of minimizing R(K), and

$$\sup_{w ∈ R^m} \sup_{x ∈ K_w} ||x - A(M(x))|| ≤ 2R(K).$$
(vi) if \(\|\Delta\| = 1 \) and \(\lambda = 1 \), then the algorithm \(A \) has the a priori performance bound

\[
\sup_{w \in \mathbb{R}^m} \sup_{x \in K_w} \|x - A(M(x))\| \leq 4\varepsilon \mu(N, V).
\]

(5.6)

Proof: We have already noted that (i) holds. To prove (ii), let \(x \) be any element in \(X \). Then

\[
\text{dist}(A(M(x)), V)_X \leq \|\Delta\| \|M(x) - \Lambda(M(x))\|_M \leq \|\Delta\| \lambda E(M(x)) \leq \|\Delta\| \lambda \text{dist}(x, V),
\]

where the first inequality uses (5.4), the second inequality uses (5.3), and the last equality uses (5.2). The statement (iii) follows from (i) and (ii), since whenever \(x \in K_w \), then \(\text{dist}(x, V)_X \leq \varepsilon \). The statement (iv) follows from (iii) because of Theorem 2.2. The estimate (v) follows from (iv) and the definition (1.2) of \(R(K) \). Finally, (vi) follows from (v) and the a priori estimates of Theorem 4.5. ■

5.1 Near best algorithms

In view of the last theorem, from a theoretical point of view, the best choice for \(A \) is to choose \(\Delta \) with \(\|\Delta\| = 1 \) and \(\Lambda \) with constant \(\lambda = 1 \). When \(X \) is uniformly convex, we can always accomplish this theoretically, but there may be issues in the numerical implementation. If \(X \) is a general Banach space, we can choose \(\lambda = 1 \) and \(\|\Delta\| \) arbitrarily close to one, but as in the latter case, problems in the numerical implementation may also arise. In the next section, we discuss some of the numerical considerations in implementing an algorithm \(A \) of the form (5.4). In the case that \(\lambda \|\Delta\| > 1 \), we only know that

\[
\text{dist}(A(M(x))), V \leq \lambda \|\Delta\| \varepsilon, \quad x \in K.
\]

It follows that \(A(w) \in K_w(\lambda \|\Delta\| \varepsilon, V) \). Hence, from (5.1) and Theorem 4.5, we know that

\[
\sup_{x \in K_w} \|x - A(M(x))\| \leq 4\lambda \|\Delta\| \varepsilon \mu(N, V).
\]

This is only slightly worse than the a priori bound \(4\varepsilon \mu(N, V) \) which we obtain when we know that \(A(w) \) is in \(K_w(\varepsilon, V) \). In this case, the algorithm \(A \) is near best for \(R(K) \) with the constant \(4\lambda \|\Delta\| \).

6 Numerical issues in implementing the algorithms \(A \)

In this section, we address the main numerical issues in implementing algorithms of the form (5.4). These are

- How to compute \(\|\cdot\|_M \) on \(\mathbb{R}^m \)?
- How to numerically construct near best approximation maps \(\Lambda \) for approximating the elements in \(\mathbb{R}^m \) by the elements of \(Z = M(V) \) in the norm \(\|\cdot\|_M \)?
- How to numerically construct lifting operators \(\Delta \) with a controllable norm \(\|\Delta\| \)?
Of course, the resolution of each of these issues depends very much on the Banach space \(\mathcal{X} \), the subspace \(V \), and the measurement functionals \(l_j, j = 1, \ldots, m \). In this section, we will consider general principles and see how these principles are implemented in three examples.

Example 1: \(\mathcal{X} = C(D) \), where \(D \) is a domain in \(\mathbb{R}^d \), \(V \) is any \(n \) dimensional subspace of \(\mathcal{X} \), and \(M = (l_1, \ldots, l_m) \) consists of \(m \) point evaluation functionals at distinct points \(P_1, \ldots, P_m \in D \), i.e., \(M(f) = (f(P_1), \ldots, f(P_m)) \).

Example 2: \(\mathcal{X} = L_p(D), 1 \leq p \leq \infty \), where \(D \) is a domain in \(\mathbb{R}^d \), \(V \) is any \(n \) dimensional subspace of \(\mathcal{X} \) and \(M \) consists of the \(m \) functionals

\[
l_j(f) := \int_D f(x)g_j(x) \, dx, \quad j = 1, \ldots, m,
\]

where the functions \(g_j \) have disjoint supports, \(g_j \in L_{p'}, p' = \frac{p}{p-1} \), and \(\|g_j\|_{L_{p'}} = 1 \).

Example 3: \(\mathcal{X} = L_1([0,1]) \), \(V \) is any \(n \) dimensional subspace of \(\mathcal{X} \), and \(M \) consists of the \(m \) functionals

\[
l_j(f) := \int_0^1 f(t)r_j(t) \, dt, \quad j = 1, \ldots, m,
\]

where the functions \(r_j \) are the Rademacher functions

\[
r_j(t) := \text{sgn}(\sin(2^{j+1}\pi t)), \quad t \in [0,1], \quad j \geq 0. \tag{6.1}
\]

The functions \(r_j \) oscillate and have full support. This example is not so important in typical data fitting scenarios, but it is important theoretically since, as we shall see, it has interesting features with regard to liftings.

6.1 Computing \(\| \cdot \|_M \).

We assume that the measurement functionals \(l_j, j = 1, \ldots, m \), are given explicitly and are linearly independent. Let \(L := \text{span}(l_j)_{j=1}^m \subset \mathcal{X}^* \). Our strategy is to first compute the dual norm \(\| \cdot \|_M^* \) on \(\mathbb{R}^m \) by using the fact that the functionals \(l_j \) are available to us. Let \(\alpha = (\alpha_1, \ldots, \alpha_m) \in \mathbb{R}^m \) and consider its action as a linear functional. We have that

\[
\|\alpha\|_M^* = \sup_{\|w\|_M=1} \left| \sum_{j=1}^m \alpha_j w_j \right| = \sup_{\|x\|_\mathcal{X}=1} \left| \sum_{j=1}^m \alpha_j l_j(x) \right| = \left\| \sum_{j=1}^m \alpha_j l_j \right\|_{\mathcal{X}^*}, \tag{6.2}
\]

where we have used that if \(\|w\|_M = 1 \), there exists \(x \in \mathcal{X} \), such that \(M(x) = w \) and its norm is arbitrarily close to one. Therefore, we can express \(\| \cdot \|_M \) as

\[
\|w\|_M = \sup\{ \sum_{j=1}^m w_j \alpha_j : \|\alpha\|_M^* \leq 1 \}. \tag{6.3}
\]

We consider these norms to be computable since the space \(\mathcal{X} \) and the functionals \(l_j \) are known to us. Let us illustrate this in our three examples. In Example 1, for any \(\alpha \in \mathbb{R}^m \), we have

\[
\|\alpha\|_M^* = \sum_{j=1}^m |\alpha_j| = \|\alpha\|_{\ell_1(\mathbb{R}^m)} \quad \text{and} \quad \|w\|_M = \max_{1 \leq j \leq m} |w_j| = \|w\|_{\ell_\infty(\mathbb{R}^m)}.
\]
In Example 2, we have $\mathcal{X} = L_p$, and

$$\|\alpha\|_M = \|\alpha\|_{L_p(\mathbb{R}^m)}, \quad \|w\|_M = \|w\|_{L_p(\mathbb{R}^m)}.$$

In Example 3, we have $\mathcal{X}^* = L_{\infty}([0,1])$, and from (6.2) we infer that $\|\alpha\|_{L_{\infty}([0,1])} = \|\sum_{j=1}^{m} \alpha_j r_j\|_{L_{\infty}([0,1])}$.

From the definition (6.1), we see that the sum $\sum_{j=1}^{m} \alpha_j r_j$ is constant on each interval of the form $(s2^{-k}, (s+1)2^{-k})$ when s is an integer. On the other hand, on such an interval, r_{k+1} takes on both of the values 1 and -1. Therefore, by induction on k, we get $\|\alpha\|_{L_{\infty}([0,1])} = \sum_{j=1}^{m} |\alpha_j|$. Hence, we have

$$\|\alpha\|_{L_{\infty}([0,1])} = \sum_{j=1}^{m} |\alpha|_1 = \|\alpha\|_{\ell_1(\mathbb{R}^m)}, \quad \|w\|_{L_{\infty}([0,1])} = \max_{1 \leq j \leq m} |w_j| = \|w\|_{\ell_\infty(\mathbb{R}^m)}.$$

6.2 Approximation maps

Once the norm $\|\cdot\|_M$ is numerically computable, the problem of finding a best or near best approximation map $\Lambda(w)$ to w in this norm becomes a standard problem in convex minimization. For instance, in the examples from the previous subsection, the minimization is done in $\|\cdot\|_{\ell_p(\mathbb{R}^m)}$.

Of course, in general, the performance of algorithms for such minimization depend on the properties of the unit ball of $\|\cdot\|_M$. This ball is always convex, but in some cases it is uniformly convex and this leads to faster convergence of the iterative minimization algorithms and guarantees a unique minimum.

6.3 Numerical liftings

Given a prescribed null space \mathcal{N}, a standard way to find linear liftings from \mathbb{R}^m to \mathcal{X} is to find a linear projection P_Y from \mathcal{X} to a subspace $Y \subset \mathcal{X}$ of dimension m which has \mathcal{N} as its kernel. We can find all Y that can be used in this fashion as follows. We take elements ψ_1, \ldots, ψ_m from \mathcal{X}, such that $l_i(\psi_j) = \delta_{i,j}$, $1 \leq i, j \leq m$, where $\delta_{i,j}$ is the usual Kronecker symbol. In other words, ψ_j, $j = 1, \ldots, m$, is a dual basis to l_1, \ldots, l_m. Then, for $Y := \text{span}\{\psi_1, \ldots, \psi_m\}$, the projection

$$P_Y(x) = \sum_{j=1}^{m} l_j(x) \psi_j, \quad x \in \mathcal{X},$$

has kernel \mathcal{N}. We get a lifting corresponding to P_Y by defining

$$\Delta(w) := \Delta_Y(w) := \sum_{j=1}^{m} w_j \psi_j. \quad (6.4)$$

This lifting is linear and hence continuous. The important issue for us is its norm. We see that

$$\|\Delta\| = \sup_{\|w\|_M = 1} \|\Delta(w)\|_{\mathcal{X}} = \sup_{\|w\|_M = 1} \|\sum_{j=1}^{m} w_j \psi_j\|_{\mathcal{X}} = \sup_{\|x\|_{\mathcal{X}} = 1} \|\sum_{j=1}^{m} l_j(x) \psi_j\|_{\mathcal{X}} = \|P_Y\|.$$

Here, we have used the fact that if $\|w\|_M = 1$, then there is an $x \in \mathcal{X}$ with norm as close to one as we wish with $M(x) = w$.

18
It follows from the Kadec-Snober theorem that we can always choose a Y such that $\|P_Y\| \leq \sqrt{m}$. In general, the \sqrt{m} cannot be replaced by a smaller power of m. However, if $X = L_p$, then \sqrt{m} can be replaced by $m^{1/2 - 1/p}$. We refer the reader to Chapter III.B of [28] for a discussion of these facts.

In many settings, the situation is more favorable. In the case of Example 1, we can take for Y the span of any norm one functions ψ_j, $j = 1, \ldots, m$, such that $l_i(\psi_j) = \delta_{i,j}$, $1 \leq i, j \leq m$. We can always take the ψ_j to have disjoint supports, and thereby get that $\|P_Y\| = 1$. Thus, we get a linear lifting Δ with $\|\Delta\| = 1$ (see (6.4)). This same discussion also applies to Example 2.

Example 3 is far more illustrative. Let us first consider linear liftings $\Delta : \mathbb{R}^m \rightarrow L_1([0, 1])$. It is well known (see e.g. [28, III.A, III.B]) that we must have $\|\Delta\| \geq c\sqrt{m}$. A well known, self-contained argument to prove this is the following. Let e_j, $j = 1, \ldots, m$, be the usual coordinate vectors in \mathbb{R}^m. Then, the function $\Delta(e_j) = f_j \in L_1([0, 1])$ and $\|f_j\|_{L_1([0, 1])} \geq \|e_j\|_{\infty} = \|e_j\|_{\ell_\infty(\mathbb{R}^m)} = 1$. Next, we fix $\eta \in [0, 1]$, and consider for each fixed η

$$\Delta((r_1(\eta), \ldots, r_m(\eta))) = \Delta \left(\sum_{j=1}^{m} r_j(\eta)e_j \right) = \sum_{j=1}^{m} r_j(\eta)f_j(t).$$

Clearly, $\|\Delta\| \geq \|\sum_{j=1}^{m} r_j(\eta)f_j\|_{L_1([0, 1])}$ for each $\eta \in [0, 1]$. Therefore, integrating this inequality over $[0, 1]$ and using Khintchine’s inequality with the best constant (see [27]), we find

$$\|\Delta\| \geq \int_{0}^{1} \left| \sum_{j=1}^{m} r_j(\eta)f_j(\eta) \right| d\eta \geq \int_{0}^{1} \left(\sum_{j=1}^{m} r_j(\eta)f_j(\eta) \right)^2 d\eta = \int_{0}^{1} \frac{1}{\sqrt{2}} \left(\sum_{j=1}^{m} f_j(t)^2 \right)^{1/2} dt \geq \sqrt{\frac{1}{2}} \frac{1}{\sqrt{m}} \sum_{j=1}^{m} |f_j(t)| dt = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{m}} \sum_{j=1}^{m} \|f_j\|_{L_1([0, 1])} \geq \frac{\sqrt{m}}{\sqrt{2}},$$

where the next to last inequality uses the Cauchy-Schwarz inequality.

Even though linear liftings in Example 3 can never have a norm smaller than $\sqrt{m}/2$, we can construct nonlinear liftings which have norm one. To see this, we define such a lifting for any $w \in \mathbb{R}^m$ with $\|w\|_M = \max_{1 \leq j \leq m} |w_j| = 1$, using the classical Riesz product construction. Namely, for such w, we define

$$\Delta(w) := \prod_{j=1}^{m} (1 + w_j r_j(t)) = \sum_{A \subseteq \{1, \ldots, m\}} \prod_{j \in A} w_j r_j(t),$$

where we use the convention that $\prod_{j \notin A} w_j r_j(t) = 1$ when $A = \emptyset$. Note that if $A \neq \emptyset$, then

$$\int_{0}^{1} \prod_{j \in A} r_j(t) dt = 0.$$
Therefore, \(\int_0^1 \Delta(w) \, dt = 1 = \|\Delta(w)\|_{L_1[0,1]} \), because \(\Delta(w) \) is a nonnegative function. To check that \(M(\Delta(w)) = w \), we first observe that

\[
\left(\prod_{j \in A} r_j(t) \right) r_k(t) = \begin{cases}
\prod_{j \in A \cup \{k\}} r_j, & \text{when } k \notin A, \\
\prod_{j \in A \setminus \{k\}} r_j, & \text{when } k \in A.
\end{cases}
\]

(6.7)

Hence, from (6.6) we see that the only \(A \) for which the integral of the left hand side of (6.7) is nonzero is when \(A = \{k\} \). This observation, together with (6.5) gives

\[
l_k(\Delta(w)) = \int_0^1 \Delta(w) r_k(t) \, dt = w_k, \quad 1 \leq k \leq m,
\]

and therefore \(M(\Delta(w)) = w \). We now define \(\Delta(w) \) when \(\|w\|_{\ell_\infty(\mathbb{R}^m)} \neq 1 \) by

\[
\Delta(w) = \|w\|_{\ell_\infty} \Delta(w/\|w\|_{\ell_\infty}), \quad \Delta(0) = 0.
\]

(6.8)

We have therefore proved that \(\Delta \) is a lifting of norm one.

7 Performance estimates for the examples

In this section, we consider the examples from §6. In particular, we determine \(\mu(\mathcal{N}, V) \), which allows us to give the global performance error for near optimal algorithms for these examples. We begin with the optimal algorithms in a Hilbert space, which is not one of our three examples, but is easy to describe.

7.1 The case when \(\mathcal{X} \) is a Hilbert space \(\mathcal{H} \)

This case was completely analyzed in [6]. We summarize the results of that paper here in order to point out that our algorithm is a direct extension of the Hilbert space case to the Banach space situation, and to compare this case with our examples in which \(\mathcal{X} \) is not a Hilbert space. In the case \(\mathcal{X} \) is a Hilbert space, the measurement functionals \(l_j \) have the representation \(l_j(f) = \langle f, \phi_j \rangle \), where \(\phi_1, \ldots, \phi_m \in \mathcal{H} \). Therefore, \(M(f) = (\langle f, \phi_1 \rangle, \ldots, \langle f, \phi_m \rangle) \in \mathbb{R}^m \). We let \(W := \text{span}\{\phi_j\}_{j=1}^m \), which is an \(m \) dimensional subspace of \(\mathcal{H} \). We can always perform a Gram-Schmidt orthogonalization and assume therefore that \(\phi_1, \ldots, \phi_m \in \mathcal{H} \) is an orthonormal basis for \(W \) (see Remark 3.1). We have \(\mathcal{N} = W^\perp \). From (6.2) and (6.3) we infer that \(\|\cdot\|_M \) on \(\mathbb{R}^m \) is the \(\ell_2(\mathbb{R}^m) \) norm. Therefore, the approximation map is simple least squares fitting. Namely, to our data \(w \), we find the element \(z^*(w) \in Z \), where \(Z := M(V) \), such that

\[
z^*(w) := \arg\min_{z \in Z} \sum_{j=1}^m |w_j - z_j|^2.
\]

The element \(v^*(w) = M^{-1}_v(z^*(w)) \) is the standard least squares fit to the data \((f(P_1), \ldots, f(P_m)) \) by vectors \((v(P_1), \ldots, v(P_m)) \) with \(v \in V \), and is found by the usual matrix inversion in least
squares. This gives the best approximation to \(w \) in \(\| : \|_M \) by the elements of \(Z \), and hence \(\lambda = 1 \).
The lifting \(\Delta(w_1, \ldots, w_m) := \sum_{j=1}^{m} w_j \phi_j \) is linear and \(\|\Delta\| = 1 \). Hence, we have the algorithm

\[
A(w) = M^{-1}_V(z^*(w)) + \Delta(w - z^*(w)) = v^*(w) + \sum_{j=1}^{m} [w_j - z^*_j(w)] \phi_j,
\]

which is the algorithm presented in [19] and further studied in [6]. The sum in (7.1) is a correction so that \(A(w) \in K_w \), i.e., \(M(A(w)) = w \).

Remark 7.1. Our general theory says that the above algorithm is near optimal with constant 2 for recovering \(K_w \). It is shown in [5] that, in this case, it is actually an optimal algorithm. The reason for this is that the sets \(K_w \) in this Hilbert case setting have a center of symmetry, so Proposition 2.4 can be applied.

Remark 7.2. It was shown in [6] that the calculation can be streamlined by choosing at the beginning certain favorable bases for \(V \) and \(W \). In particular, the quantity \(\mu(N, V) \) can be immediately computed from the cross-Grammian of the favorable bases.

7.2 Example 1

In this section, we summarize how the algorithm works for Example 1. Given \(P_j \in D, j = 1, \ldots, m, P_i \neq P_j \), and the data \(w = M(f) = (f(P_1), \ldots, f(P_m)) \), the first step is to find the min-max approximation to \(w \) from the space \(Z := M(V) \subset \mathbb{R}^m \). In other words, we find

\[
z^*(w) := \arg\min_{z \in Z} \max_{1 \leq j \leq m} |f(P_i) - z_i| = \arg\min_{v \in V} \max_{1 \leq j \leq m} |f(P_i) - v(P_j)|.
\]

Note that for general \(M(V) \) the point \(z^*(w) \) is not necessarily unique. For certain \(V \), however, we have uniqueness.

Let us consider the case when \(D = [0, 1] \) and \(V \) is a Chebyshev space on \(D \), i.e., for any \(n \) points \(Q_1, \ldots, Q_n \in D \), and any data \(y_1, \ldots, y_n \), there is a unique function \(v \in V \) which satisfies \(v(Q_i) = y_i \), \(1 \leq i \leq n \). In this case, when \(m = n \), problem (7.2) has a unique solution

\[
z^*(w) = w = M(v^*(w)) = (v^*(P_1), \ldots, v^*(P_m)),
\]

where \(v^* \in V \) is the unique interpolant to the data \((f(P_1), \ldots, f(P_m)) \) at the points \(P_1, \ldots, P_m \).

For \(m \geq n + 1 \), let us denote by \(V_m \) the restriction of \(V \) to the point set \(\Omega := \{P_1, \ldots, P_m\} \).

Clearly, \(V_m \) is a Chebyshev space on \(C(\Omega) \) as well, and therefore there is a unique point \(z^*(w) := \langle \hat{v}(P_1), \ldots, \hat{v}(P_m) \rangle \in V_m \), coming from the evaluation of a unique \(\hat{v} \in V \), which is the best approximant from \(V_m \) to \(f \) on \(\Omega \). The point \(z^*(w) \) is characterized by an oscillation property. Various algorithms for finding \(\hat{v} \) are known and go under the name Remez algorithms.

In the general case where \(V \) is not necessarily a Chebyshev space, a minimizer \(z^*(w) \) can still be found by convex minimization, and the approximation mapping \(\Lambda \) maps \(w \) to a \(z^*(w) \). Moreover, \(z^*(w) = M(v^*(w)) \) for some \(v^*(w) \in V \), where \(v^*(w) \) is characterized by solving the minimization

\[
v^*(w) = \arg\min_{v \in V} \|w - M(v)\|_M = \arg\min_{v \in V} \inf_{g : M(g) = w} \|g - v\|_X = \arg\min_{v \in V} \text{dist}(v, X_w).
\]

We have seen that the lifting in this case is simple. We may take functions \(\psi_j \in C(D) \), with disjoint supports and of norm one, such that \(\psi_j(P_j) = \delta_{i,j} \). Then, we can take our lifting to be the
operator that maps \(w \in \mathbb{R}^m \) into the function \(\sum_{j=1}^{m} w_j \psi_j \). This is a linear lifting with norm one. Then, the algorithm \(A \) is given by

\[
A(w) := M_V^{-1}(z^*(w)) + \sum_{j=1}^{m} (w_j - z_j^*(w)) \psi_j = v^*(w) + \sum_{j=1}^{m} (w_j - z_j^*(w)) \psi_j, \quad w \in \mathbb{R}^m. \tag{7.3}
\]

The sum in (7.3) is a correction to \(v^*(w) \) to satisfy the data. From (5.5), we know that for each \(w \in \mathbb{R}^m \), we have

\[
\sup_{f \in K_w} \| f - A(w) \| \leq 2 \text{rad}(K_w),
\]

and so the algorithm is near optimal with constant 2 for each of the classes \(K_w \).

To give an a priori bound for the performance of this algorithm, we need to compute \(\mu(N, V) \).

Lemma 7.3. Let \(X = C(D) \), \(V \) be a subspace of \(C(D) \), and \(M(f) = (f(P_1), \ldots, f(P_m)) \), where \(P_j \in D, j = 1, \ldots, m \) are \(m \) distinct points in \(D \subset \mathbb{R}^d \). Then, for \(N \) the null space of \(M \), we have

\[
\frac{1}{2} \sup_{v \in V} \| v \|_{C(D)} \leq \mu(N, V) \leq 2 \sup_{v \in V} \| v \|_{C(D)} \max_{1 \leq j \leq m} \left| v(P_j) \right|.
\]

Proof: From Lemma 4.3 and Lemma 4.4, we have

\[
\frac{1}{2} \| M_V^{-1} \| \leq \mu(N, V) \leq 2 \| M_V^{-1} \|. \tag{7.4}
\]

Since, we know \(\| w \|_M = \max_{1 \leq j \leq m} | w_j | \), we obtain that

\[
\| M_V^{-1} \| = \sup_{v \in V} \frac{\| v \|_{C(D)}}{\max_{1 \leq j \leq m} | v(P_j) |},
\]

and the lemma follows.

From (5.6), we obtain the a priori performance bound

\[
\sup_{w \in \mathbb{R}^m} \sup_{f \in K_w} \| f - A(w) \|_{C(D)} \leq 4 \varepsilon \mu(N, V). \tag{7.5}
\]

Moreover, we know from Theorem 4.5 that (7.5) cannot be improved by any algorithm except for the possible removal of the factor 4, and hence the algorithm is globally near optimal.

Remark 7.4. It is important to note that the algorithm \(A : w \to A(w) \) does not depend on \(\varepsilon \), and so one obtains for any \(f \) with the data \(w = (f(P_1), \ldots, f(P_m)) \) the performance bound

\[
\| f - A(w) \|_{C(D)} \leq 4 \mu(N, V) \text{dist}(f, V).
\]

Approximations of this form are said to be instance optimal with constant \(4 \mu(N, V) \).

As an illustrative example, consider the space \(V \) of trigonometric polynomials of degree \(\leq n \) on \(D := [-\pi, \pi] \), which is a Chebyshev system of dimension \(2n + 1 \). We take \(X \) to be the space of continuous functions on \(D \) which are periodic, i.e., \(f(-\pi) = f(\pi) \). If the data consists of the values
of \(f \) at \(2n + 1 \) distinct points \(\{ P_i \} \), then the min-max approximation is simply the interpolation projection \(\mathcal{P}_n f \) of \(f \) at these points and \(\mathcal{A}(M(f)) = \mathcal{P}_n f \). The error estimate for this case is

\[
\| f - \mathcal{P}_n f \|_{C([-\pi,\pi])} \leq (1 + \| \mathcal{P}_n \|) \text{dist}(f, V).
\]

It is well known (see [29], Chapter 1 of Vol. 2) that for \(P_j := -\pi + j \frac{2\pi}{2n+1} \), \(j = 1, \ldots, 2n + 1 \), \(\| \mathcal{P}_n \| \approx \log n \). However, if we double the number of points, and keep them equally spaced, then it is known that \(\| M^{-1}_V \| \leq 2 \) (see [29], Theorem 7.28). Therefore from (7.4), we obtain \(\mu(N, V) \leq 4 \), and we derive the bound

\[
\| f - \mathcal{A}(M(f)) \|_{C([-\pi,\pi])} \leq 16 \text{dist}(f, V).
\] (7.6)

7.3 Example 2

This case is quite similar to Example 1. The main difference is that now

\[
z^*(w) := \arg\min_{z \in Z} \| w - z \|_{\ell_p(\mathbb{R}^m)},
\] (7.7)

and hence when \(1 < p < \infty \) it can be found by minimization in a uniformly convex norm. We can take the lifting \(\Delta \) to be \(\Delta(w) = \sum_{j=1}^m w_j \psi_j \), where now \(\psi_j \) has the same support as \(g_j \) and \(L_p(D) \) norm one, \(j = 1, \ldots, m \). The algorithm is again given by (7.3), and is near optimal with constant 2 on each class \(K_w \), \(w \in \mathbb{R}^m \), that is

\[
\| f - \mathcal{A}(M(f)) \|_{L_p(D)} \leq 2 \text{rad}(K_w) \leq 4 \mu(N, V) \varepsilon,
\]

where the last inequality follows from (5.6).

Similar to Lemma 7.3, we have the following bounds for \(\mu(N, V) \),

\[
\frac{1}{2} \| M^{-1}_V \| \leq \mu(N, V) \leq 2 \| M^{-1}_V \|,
\]

where now the norm of \(M^{-1}_V \) is taken as the operator norm from \(L_p(D) \) to \(\ell_p(\mathbb{R}^m) \), and hence is

\[
\| M^{-1}_V \| = \sup_{v \in V} \frac{\| v \|_{L_p(D)}}{\| (l_1(v), \ldots, l_m(v)) \|_{\ell_p(\mathbb{R}^m)}}.
\]

7.4 Example 3

As mentioned earlier, our interest in Example 3 is because it illustrates certain theoretical features. In this example, the norm \(\| \cdot \|_M \) is the \(\ell_\infty(\mathbb{R}^m) \) norm, and approximation in this norm was already discussed in Example 1. The interesting aspect of this example centers around liftings. We know that any linear lifting must have norm \(\geq \sqrt{m}/2 \). On the other hand, we have given in (6.8) an explicit formula for a (nonlinear) lifting with norm one. So, using this lifting, the algorithm \(\mathcal{A} \) given in (5.4) will be near optimal with constant 2 for each of the classes \(K_w \).
Choosing measurements

In some settings, one knows the space V, but is allowed to choose the measurement functionals l_j, $j = 1, \ldots, m$. In this section, we discuss how our results can be a guide in such a selection. The main issue is to keep $\mu(N, V)$ as small as possible for this choice, and so we concentrate on this. Let us recall that from Lemma 4.3 and Lemma 4.4, we have

$$\frac{1}{2} \|M^{-1}\| \leq \mu(N, V) \leq 2 \|M^{-1}\|.$$

Therefore, we want to choose M so as to keep $\|M^{-1}\| = \sup_{v \in V} \frac{\|v\|_X}{\|M(v)\|_M}$ small. In other words, we want to keep $\|M(V)(v)\|_M$ large whenever $\|v\|_X = 1$.

Case 1: Let us first consider the case when $m = n$. Given any linear functionals l_1, \ldots, l_n, which are linearly independent over V (our candidates for measurements), we can choose a basis for V which is dual to the l_j's, that is, we can choose $\psi_j \in V$, $j = 1, \ldots, n$, such that $l_i(\psi_j) = \delta_{i,j}$, $1 \leq i, j \leq n$.

It follows that each $v \in V$ can be represented as $v = \sum_{j=1}^{n} l_j(v)\psi_j$. The operator $P_V : \mathcal{X} \to V$, defined as

$$P_V(f) = \sum_{j=1}^{n} l_j(f)\psi_j, \quad f \in \mathcal{X}, \quad (8.1)$$

is a projector from \mathcal{X} onto V, and any projector onto V is of this form. If we take $M(v) = (l_1(v), \ldots, l_n(v))$, we have

$$\|M(v)\|_M = \inf_{M(f) = M(v)} \|f\| = \inf_{P_V(f) = v} \|f\| = \inf_{P_V(f) = v} \frac{\|f\|}{\|P_V(f)\|} \|v\|. \quad (8.2)$$

If we now take the infimum over all $v \in V$ in (8.2), we run through all $f \in \mathcal{X}$, and hence

$$\inf_{\|v\| = 1} \|M(v)\|_M = \inf_{f \in \mathcal{X}} \frac{\|f\|}{\|P_V(f)\|} = \|P_V\|^{-1}. \quad (8.3)$$

In other words,

$$\|M^{-1}\| = \|P_V\|. \quad (8.4)$$

This means the best choice of measurement functionals is to take the linear projection onto V with smallest norm, then take any basis ψ_1, \ldots, ψ_n for V and represent the projection in terms of this basis as in (8.1). The dual functionals in this representation are the measurement functionals.

Finding projections of minimal norm onto a given subspace V of a Banach space \mathcal{X} is a well-studied problem in functional analysis. A famous theorem of Kadec-Snobar [15] says that there always exists such a projection with

$$\|P_V\| \leq \sqrt{n}. \quad (8.5)$$

It is known that there exists Banach spaces \mathcal{X} and subspaces V of dimension n, where (8.3) cannot be improved in the sense that for any projection onto V we have $\|P_V\| \geq c\sqrt{n}$ with an absolute constant $c > 0$. If we translate this result to our setting of recovery, we see that given V and \mathcal{X} we can always choose measurement functionals l_1, \ldots, l_n, such that $\mu(N, V) \leq 2\sqrt{n}$, and this is the best we can say in general.
Remark 8.1. For a general Banach space X and a finite dimensional subspace $V \subset X$ of dimension n, finding a minimal norm projection or even a near minimal norm projection onto V is not constructive. There are related procedures such as Auerbach’s theorem [28, II.E.11], which give the poorer estimate Cn for the norm of $\|P_V\|$. These constructions are easier to describe but they also are not computationally feasible.

Remark 8.2. If X is an L_p space, $1 < p < \infty$, then the best bound in (8.3) can be replaced by $n^{1/[2-1/p]}$, and this is again known to be optimal, save for multiplicative constants. When $p = 1$ or $p = \infty$ (corresponding to $C(D)$), we obtain the best bound \sqrt{n} and this cannot be improved for general V. Of course, for specific V the situation may be much better. Consider $X = L_p([-1, 1])$, and $V = P_{n-1}$ the space of polynomials of degree at most $n - 1$. In this case, there are projections with norm C_p, depending only on p. For example, the projection given by the Legendre polynomial expansion has this property. For $X = C([-1, 1])$, the projection given by interpolation at the zeros of the Chebyshev polynomial of first kind has norm $C \log n$, and this is again optimal save for the constant C.

Case 2: Now, consider the case when the number of measurement functionals $m > n$. One may think that one can drastically improve on the results for $m = n$. We have already remarked that this is possible in some settings by simply doubling the number of data functionals (see (7.6)). While adding additional measurement functionals does decrease μ, generally speaking, we must have m exponential in n to guarantee that μ is independent of n. To see this, let us discuss one special case of Example 1. We fix $D =: \{x \in \mathbb{R}^n : \sum_{j=1}^n x_j^2 = 1\}$ and the subspace $V \subset C(D)$ of all linear functions restricted to D. Then V is an n dimensional subspace. Since $f \in V$, we have $\|f\|_{C(D)} = \|a\|_{\ell_2(\mathbb{R}^n)}$, the map $a \mapsto f_a(x)$ establishes a linear isometry between V with the supremum norm and \mathbb{R}^n with the Euclidean norm. Let M be the measurement map given by the linear functionals corresponding to point evaluation at any set $\{P_j\}_{j=1}^m$ of m points from D. Then M maps $C(D)$ into $\ell_\infty(\mathbb{R}^m)$ and $\|M_V\| = 1$. It follows from (7.4) that $\mu(\mathcal{N}, V) \approx \|M_V\| : \|M_V^{-1}\|$. This means that

$$\mu(\mathcal{N}, V) \leq C d(\ell_2(\mathbb{R}^n), M(V)), \quad M(V) \subset \ell_\infty(\mathbb{R}^m),$$

where $d(\ell_2(\mathbb{R}^n), M(V)) = \inf \{\|T\| : \|T^{-1}\|, T : \ell_2(\mathbb{R}^n) \rightarrow M(V), T \text{ isomorphism} \}$ is the Banach-Mazur distance between the n dimensional Euclidean space \mathbb{R}^n and the subspace $M(V) \subset \ell_\infty(\mathbb{R}^m)$. It is a well known, but nontrivial fact in the local theory of Banach spaces (see [10, Example 3.1] or [22, Section 5.7]) that to keep $d(\ell_2(\mathbb{R}^n), M(V)) \leq C$, one needs $\ln m \geq cn$.

The scenario of the last paragraph is the worst that can happen. To see why, let us recall the following notion: a set A is a δ-net for a set S ($A \subset S \subset X$ and $\delta > 0$) if for every $x \in S$ there exists $a \in A$, such that $\|x - a\| \leq \delta$. For a given n-dimensional subspace $V \subset X$ and $\delta > 0$, let us fix a δ-net $\{v_j\}_{j=1}^N$ for $\{v \in V : \|v\| = 1\}$ with $N \leq (1 + 2/\delta)^n$. It is well known that such a net exists (see [10, Lemma 2.4] or [22, Lemma 2.6]). Let $l_j \in X^*$ be norm one functionals, such that $1 = l_j(v_j)$, $j = 1, 2, \ldots, N$. We define our measurement M as $M = (l_1, \ldots, l_N)$, so $\mathcal{N} = \bigcap_{j=1}^N \ker l_j$. When $x \in \mathcal{N}$, $v \in V$ with $\|v\| = 1$, and v_j is such that $\|v - v_j\| \leq \delta$, we have

$$\|x - v\| \geq \|x - v_j\| - \delta \geq |l_j(x - v_j)| - \delta = 1 - \delta,$$
and so for this choice of M, we have

$$\mu(N, V) \leq 2\mu(V, N) = 2 \sup_{x \in N, v \in V, \|v\|=1} \frac{1}{\|x - v\|} \leq \frac{2}{1 - \delta}.$$

Remark 8.3. For specific Banach spaces X and subspaces $V \subset X$, the situation is much better. We have already discussed such example in the case of the space of trigonometric polynomials and X the space of periodic functions in $C([-\pi, \pi])$.

Remark 8.4. Let us discuss briefly the situation when again $X = C([-\pi, \pi])$, but now the measurements are given as lacunary Fourier coefficients, i.e., $M(f) = (\hat{f}(2^0), \ldots, \hat{f}(2^m))$. From (6.2), we infer that $\|\alpha\|_M^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |\sum_{j=0}^{m} \alpha_j e^{2jt}| dt$. Using a well known analog of Khintchine’s inequality valid for lacunary trigonometric polynomials (see, e.g. [29, ch 5, Th.8.20]), we derive

$$\sum_{j=0}^{m} |w_j|^2 \leq \|w\|_M^2 \leq C \sum_{j=0}^{m} |w_j|^2,$$

for some constant C. If $\Delta : \mathbb{R}^{m+1} \to C([-\pi, \pi])$ is any linear lifting, using [28, III.B.5 and III.B.16], we obtain

$$\|\Delta\| = \|\Delta\| \cdot \|M\| \geq \frac{\sqrt{\pi}}{2C} \sqrt{m+1}.$$

On the other hand, there exists a constructive, nonlinear lifting $\Delta_F : \mathbb{R}^{m+1} \to C([-\pi, \pi])$ with $\|\Delta_F\| \leq \sqrt{e}$, see [11].

9 Appendix: Improved estimates for $\text{rad}(K_w)$

The purpose of this appendix is to show that the estimates derived in Theorem 4.5 can be improved if we assume more structure for the Banach space X. Let us begin by recalling a lemma from [9, Lemma 4] (see also [1, Cor. 2.3.11]).

Lemma 9.1. If $x, y \in X$ and $\|x\|, \|y\| \leq \varepsilon$, then $\|x + y\| \leq 2\varepsilon[1 - \delta_X(\|x - y\|/\varepsilon)]$ whenever $\varepsilon > 0$.

As noted in the introduction, when X is uniformly convex, then δ_X is strictly increasing. Therefore, it has a compositional inverse δ_X^{-1} which is also strictly increasing and satisfies $\delta_X^{-1}(t) \leq 2, 0 \leq t \leq 1$ and $\delta_X^{-1}(0) = 0$. Hence, the following result improves on the upper estimate (ii) of Theorem 4.5.

Proposition 9.2. Let X be a uniformly convex Banach space with modulus of convexity δ_X, defined in (1.3). If

$$\min_{x \in K_w} \text{dist}(x, V) = \gamma \varepsilon, \quad \text{for } \gamma \leq 1,$$

then,

$$\text{diam}(K_w) \leq \varepsilon \mu(N, V) \delta_X^{-1}(1 - \gamma).$$

Proof: Let us fix any $u_1, u_2 \in K_w$ and take $u_0 = \frac{u_1 + u_2}{2}$. For any $u \in X$, we denote by $P_V(u)$ the best approximation to u from V, which is unique. Then, we have

\[
\text{dist}(u_0, V) = \|u_0 - P_V(u_0)\| \leq \|u_1 + u_2\| - \frac{1}{2}(P_V(u_1) + P_V(u_2))
\]

\[
= \left\| \frac{1}{2}([u_1 - P_V(u_1)] + [u_2 - P_V(u_2)]) \right\| := \frac{1}{2}\|\eta_1 + \eta_2\|. \quad (9.1)
\]
Let \(\alpha := \| \eta_1 - \eta_2 \| \). Since \(\| \eta_1 \|, \| \eta_2 \| \leq \varepsilon \), if we start with (9.1) and then using Lemma 9.1, we find that

\[
\gamma \varepsilon \leq \text{dist}(u_0, V) \leq \frac{1}{2} \| \eta_1 + \eta_2 \| \leq \varepsilon [1 - \delta_X(\alpha / \varepsilon)].
\]

This gives \(\gamma \leq 1 - \delta_X(\alpha / \varepsilon) \), so we get

\[
\alpha \leq \varepsilon \delta_X^{-1}(1 - \gamma).
\]

Clearly \(u_1 - u_2 \in \mathcal{N} \), so we have \([P_V(u_1) - P_V(u_2)] + [\eta_1 - \eta_2] = u_1 - u_2 \in \mathcal{N} \). From the definition of \(\mu(\mathcal{N}, V) \), see (4.1), we derive that

\[
\mu(\mathcal{N}, V) \geq \frac{\| u_1 - u_2 \|}{\| u_1 - u_2 - P_V(u_1) + P_V(u_2) \|} = \frac{\| u_1 - u_2 \|}{\| \eta_1 - \eta_2 \|},
\]

which gives

\[
\| u_1 - u_2 \| \leq \alpha \mu(\mathcal{N}, V) \leq \varepsilon \mu(\mathcal{N}, V) \delta_X^{-1}(1 - \gamma).
\]

Since \(u_1, u_2 \) were arbitrary we have proven the claim. \(\blacksquare \)

We next give an estimate of \(\text{diam}(K_w) \) from below by using the concept of the modulus of smoothness. Recall that the modulus of smoothness of \(\mathcal{X} \) (see e.g. [9, 18, 1]) is defined by

\[
\rho_X(\tau) = \sup \left\{ \frac{\| x + y \| + \| x - y \|}{2} - 1 : \| x \| = 1, \| y \| \leq \tau \right\}. \tag{9.2}
\]

The space \(\mathcal{X} \) is said to be uniformly smooth if \(\lim_{\tau \to 0} \rho_X(\tau)/\tau = 0 \). Clearly, \(\rho_X(\tau) \) is a pointwise supremum of a family of convex functions, so it is a convex and strictly increasing function of \(\tau \) (see [1, Prop. 2.7.2]). Let us consider the quotient space \(\mathcal{X}/V \). Each element of this space is a coset \([x + V]\) with the norm \(||[x + V]||_{\mathcal{X}/V} := \text{dist}(x, V) \). It is known (for example, it easily follows from [18, Prop.1.e.2-3]) that \(\rho_{\mathcal{X}/V}(\tau) \leq \rho_X(\tau) \), so any quotient space of a uniformly smooth space is also uniformly smooth.

Lemma 9.3. Suppose \(\mathcal{X} \) is a Banach space. If \(u_0, u_1 \in \mathcal{X} \) with \(\| u_0 \| = \| u_1 \| = \varepsilon \) and

\[
\inf_{\lambda \in (0,1)} \| \lambda u_0 + (1 - \lambda) u_1 \| = \gamma \varepsilon, \quad 0 < \gamma \leq 1,
\]

then

\[
\| u_0 - u_1 \| \geq 2 \gamma \varepsilon \rho_X^{-1}(1 - \frac{1}{2\gamma}). \tag{9.3}
\]

Proof: Let \(x := \lambda_0 u_0 + (1 - \lambda_0) u_1 \) be such that \(\| x \| = \gamma \varepsilon \). We denote by \(\bar{x} := x/\gamma \varepsilon \), \(y := \frac{u_0 - u_1}{2\gamma \varepsilon} \) and let \(\tau = \| y \| \). It follows from (9.2) that

\[
\rho_X(\tau) \geq \left(\frac{\| \bar{x} + y \| + \| \bar{x} - y \|}{2} - 1 \right) = \frac{1}{2\gamma \varepsilon} \left(||x + \frac{1}{2}(u_0 - u_1)|| + ||x - \frac{1}{2}(u_0 - u_1)|| \right) - 1. \tag{9.4}
\]

Consider the function \(\phi(t) = ||x + t(u_0 - u_1)|| : \| x \| \) defined for \(t \in \mathbb{R} \). It is a convex function which attains its minimum value \(\gamma \varepsilon \) when \(t = 0 \). For \(t = -\lambda_0 \) we get \(x_t = u_1 \) and for \(t = 1 - \lambda_0 \) we get \(x_t = u_0 \). This implies that for \(t \in [-\lambda_0, 1 - \lambda_0] \) we have \(\gamma \varepsilon \leq \phi(t) \leq \varepsilon \) and for \(t \notin [-\lambda_0, 1 - \lambda_0] \) we have \(\phi(t) \geq \varepsilon \). So from (9.4), we get

\[
\rho_X(\tau) \geq \frac{1}{2\gamma \varepsilon} (\gamma \varepsilon + \varepsilon) - 1 = \frac{1 - \gamma}{2\gamma}, \]

27
which yields (9.3).

With the above lemma in hand, we can give the following lower estimate for the diameter of \mathcal{K}_w.

Proposition 9.4. Let \mathcal{X} be a Banach space with modulus of smoothness $\rho_{\mathcal{X}}$. If

$$\min_{x \in \mathcal{K}_w} \text{dist}(x, V) = \gamma \varepsilon, \quad \text{for} \quad 0 < \gamma \leq 1,$$

then

$$\text{diam}(\mathcal{K}_w) \geq 2\varepsilon \mu(\mathcal{N}, V) \gamma \rho_{\mathcal{X}}^{-1}\left(\frac{1-\gamma}{2\gamma}\right).$$

Proof: Let $x_0 \in \mathcal{K}_w$ satisfy $\text{dist}(x_0, V) = \gamma \varepsilon$. Given any $\eta \in \mathcal{N}$ with $\|\eta\| = 1$, we fix $\alpha, \beta > 0$, such that $\text{dist}(x_0 + \alpha \eta, V) = \varepsilon = \text{dist}(x_0 - \beta \eta, V)$. Note that $x_0 + \alpha \eta$ and $x_0 - \beta \eta$ belong to \mathcal{K}_w, and therefore,

$$\text{diam}(\mathcal{K}_w) \geq \alpha + \beta. \quad (9.5)$$

We now apply Lemma 9.3 for the quotient space \mathcal{X}/V with $u_0 = [x_0 + \alpha \eta + V]$ and $u_1 = [x_0 - \beta \eta + V]$. It follows from (9.3) that

$$\text{dist}((\alpha + \beta) \eta, V) = \|u_0 - u_1\|_{\mathcal{X}/V} \geq 2\varepsilon \gamma \rho_{\mathcal{X}/V}^{-1}\left(\frac{1-\gamma}{2\gamma}\right) \geq 2\varepsilon \gamma \rho_{\mathcal{X}}^{-1}\left(\frac{1-\gamma}{2\gamma}\right). \quad (9.6)$$

Finally, observe that, in view of (9.5), we have

$$\inf_{\eta \in \mathcal{N}, \|\eta\| = 1} \text{dist}(\eta, V) \leq \text{diam}(\mathcal{K}_w) \inf_{\eta \in \mathcal{N}, \|\eta\| = 1} \text{dist}(\eta, V) = \text{diam}(\mathcal{K}_w) \Theta(\mathcal{N}, V) = \frac{\text{diam}(\mathcal{K}_w)}{\mu(\mathcal{N}, V)}.$$

Therefore, using (9.6), we arrive at

$$\text{diam}(\mathcal{K}_w) \geq 2\varepsilon \mu(\mathcal{N}, V) \gamma \rho_{\mathcal{X}}^{-1}\left(\frac{1-\gamma}{2\gamma}\right).$$

Remark 9.5. For a general Banach space \mathcal{X}, we have that $\delta_{\mathcal{X}}(\tau) \geq 0$ and $\rho_{\mathcal{X}}(\tau) \leq \tau$, for $\tau > 0$, and in general those are the best estimates. So for every Banach space \mathcal{X} we obtain from Proposition 9.4 that $\text{diam}(\mathcal{K}_w) \geq \varepsilon(1 - \gamma)\mu(\mathcal{N}, V)$.

Moduli of convexity and smoothness are computed (or well estimated) for various classical spaces. In particular, their exact values for the L_p spaces, $1 < p < \infty$, have been computed in [13]. We will just state the asymptotic results (see e.g. [18])

$$\delta_{L_p}(\varepsilon) = \begin{cases} (p - 1)\varepsilon^2/8 + o(\varepsilon^2), & \text{for } 1 < p < 2, \\ \varepsilon^p/p2^p + o(\varepsilon^p), & \text{for } 2 \leq p < \infty, \end{cases}$$

$$\rho_{L_p}(\tau) = \begin{cases} \tau^p/p + o(\tau^p), & \text{for } 1 < p \leq 2, \\ (p - 1)\tau^2/2 + o(\tau^2), & \text{for } 2 \leq p < \infty. \end{cases}$$

From the parallelogram identity, we have,

$$\delta_{L_2}(\varepsilon) = 1 - \sqrt{1 - \varepsilon^2/4}, \quad \rho_{L_2}(\tau) = \sqrt{1 + \tau^2} - 1.$$

It follows from Propositions 9.2 and 9.4 that

$$\varepsilon \mu(\mathcal{N}, V)\sqrt{1 - \gamma^2} \leq \text{diam}(\mathcal{K}_w)_{L_2} \leq 2\varepsilon \mu(\mathcal{N}, V)\sqrt{1 - \gamma^2}.$$

By isomorphism of Hilbert spaces this last result holds for any Hilbert space, and (up to a constant) we retrieve the results of [6].
References

Ronald DeVore
Department of Mathematics, Texas A&M University, College Station, TX 77840, USA
rdevore@math.tamu.edu

Guergana Petrova
Department of Mathematics, Texas A&M University, College Station, TX 77840, USA
gpetrova@math.tamu.edu

Przemyslaw Wojtaszczyk
Interdisciplinary Center for Mathematical and Computational Modelling,
University of Warsaw, 00-838 Warsaw, ul. Prosta 69, Poland
wojtaszczyk@icm.edu.pl