Math 609, Homework 6

1. Let \(n, k \), the knots \(t_1, \ldots, t_{n+k+1} \), and the coefficients \(c_1, \ldots, c_n \) be specified, and \(f(x) = \sum_{i=1}^n c_i B_i^k(x) \). Write a program that has an input \(n, k \), the knots and the coefficients and as output gives the value of \(f(x) \) for any \(x \). Test the program for several values of your input.

2. (a) Show that for \(k \geq 3 \),

\[
\frac{d^2}{dx^2} \sum_{i=-\infty}^{\infty} c_i B_i^k(x) = k(k-1) \sum_{i=-\infty}^{\infty} \left(\frac{c_i - c_{i-1}}{t_{i+k} - t_i} - \frac{c_{i-1} - c_{i-2}}{t_{i+k-1} - t_{i-1}} \right) \frac{B_i^{k-2}(x)}{t_{i+k} - t_i}
\]

(b) Suppose that the knots are taken to be all the integers, namely \(t_i = i \). Show that \(B_i^k(x) = B_0^k(x - t_i) \).

(c) Show that

\[
\sum_{i=0}^{n} B_i^k(x) = 1
\]

when \(x \in [t_k, t_{k+n}] \).

(d) Show that

\[
\sum_{i=0}^{n} B_i^k(x) > 0
\]

when \(x \in [t_1, t_{k+n+1}] \).

3. (a) Can \(a \) and \(b \) be defined so that the function \(S \), defined as: \(S(x) = (x - 2)^3 + a(x - 1)^2 \), when \(x \leq 2 \), \(S(x) = (x - 2)^3 - (x - 3)^2 \), when \(2 \leq x \leq 3 \), and \(S(x) = (x - 3)^3 + b(x - 2)^2 \), when \(x \geq 3 \) is a natural cubic spline? Why or why not?

(b) Find a natural cubic spline function \(S \) with knots \(-1, 0, 1\) that interpolates the table:

\[
S(-1) = 5, \quad S(0) = 7, \quad S(1) = 9.
\]

4. Let

\[
f(x) = \frac{1}{1 + 6x^2}
\]

(a) Write a program to perform Lagrange polynomial interpolation at the uniform points and the Chebyshev points on the interval \([-1, 1]\) for \(f \).

(b) Write a program to perform natural cubic spline interpolation at the uniform points for \(f \).

Investigate the convergence by running the program for different values of \(n \). In the write up include plots of \(f, L_n, S_n \) for \(n = 8, 16, 32 \). Answer the following questions.

Does \(L_n \) converge uniformly to \(f \) on \([-1, 1]\)?

Does \(S_n \) converge uniformly to \(f \) on \([-1, 1]\)?