# Quadrature Formula for Computed Tomography 

Borislav Bojanov,* Guergana Petrova ${ }^{\dagger}$

August 13, 2009


#### Abstract

We give a bivariate analog of the Micchelli-Rivlin quadrature for computing the integral of a function over the unit disk using its Radon projections. AMS subject classification: 65D32, 65D30, 41A55 Key Words: Numerical integration, orthogonal polynomials, Gaussian quadratures, Radon projections.


## 1 Introduction

There are several known classical methods in Computed Tomography for reconstructing a function $f$ from its $x$-ray or Radon transforms, such as the Fourier reconstruction algorithm, the filtered backprojection algorithm and the so called algebraic methods. The latter give an approximation $\tilde{f}=\sum_{i=1}^{N} c_{i} \psi_{i} \in \operatorname{span}\left\{\psi_{1}, \ldots, \psi_{N}\right\}$ to $f$ with the same $x$-ray transforms as those of $f$. One of the main advantages of the algebraic methods is the freedom in the choice of the basis functions $\left\{\psi_{i}\right\}$.

Recently, a new algebraic method was presented in [7, 8, 9], where the functions $\left\{\psi_{i}\right\}$ are selected to be polynomials in $\mathbb{R}^{n}$. The method is based on the expansion of $f$, defined on a ball in $\mathbb{R}^{n}$, using orthonormal polynomials, where the coefficients of this expansion can be represented as integrals involving the Radon transform of $f$. The algorithm gives an approximation to $f$ by truncating the series expansion and discretizing the coefficients $\left\{c_{i}\right\}$, and thus the performance of the method heavily relies on a good approximation of these coefficients. In this paper, we present a quadrature formula for computing the $c_{i}$ 's that is exact for all bivariate polynomials of degree as high as possible.

## 2 Preliminaries

We consider the space $L_{2}(B)$ of bivariate square integrable functions defined on the unit disk $B:=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$. It is a well known fact (see [1] or [5]) that the set of

[^0]polynomials $\left\{U_{k, n}\right\}_{n=0, k=0}^{\infty, n}$, defined by
$$
U_{k, n}(x, y):=\frac{1}{\sqrt{\pi}} U_{n}\left(x \cos \left(\theta_{k, n}\right)+y \sin \left(\theta_{k, n}\right)\right), \quad \theta_{k, n}:=\frac{k \pi}{n+1}
$$
where
$$
U_{n}(\cos \theta):=\frac{\sin (n+1) \theta}{\sin \theta}
$$
is the Chebyshev polynomial of second kind, form a complete orthonormal system for $L_{2}(B)$. It can be shown that the coefficients $c_{k, n}(f)$ in the expansion of $f$,
\[

$$
\begin{equation*}
f=\sum_{n=0}^{\infty} \sum_{k=0}^{n} c_{k, n}(f) U_{n}\left(x \cos \left(\theta_{k, n}\right)+y \sin \left(\theta_{k, n}\right)\right) \tag{2.1}
\end{equation*}
$$

\]

with respect to this system are

$$
\begin{equation*}
c_{k, n}(f):=\frac{1}{\pi} \int_{B} f(x, y) U_{k, n}(x, y) d x d y=\frac{1}{\pi} \int_{-1}^{1} \mathcal{R}\left(f ; t, \theta_{k, n}\right) U_{n}(t) d t \tag{2.2}
\end{equation*}
$$

where $\mathcal{R}(f ; t, \theta)$ is the Radon transform of $f$. Recall that the Radon transform $\mathcal{R}(f ; t, \theta)$, $t \in(-1,1), \theta \in[0, \pi)$ of a function $f$, defined on the unit ball $B$, is given by the integral of $f$ along the line segment $I:=I(t, \theta)=\{(x, y): x \cos \theta+y \sin \theta=t\} \cap B$, namely,

$$
\mathcal{R}(f ; t, \theta):=\int_{I(t, \theta)} f(x, y) d s=\int_{-\sqrt{1-t^{2}}}^{\sqrt{1-t^{2}}} f(t \cos \theta-s \sin \theta, t \sin \theta+s \cos \theta) d s
$$

In view of formula (2.2), the problem of optimal recovery of $f$ is equivalent to the problem of a selection of quadrature formula for the second integral in (2.2) which is exact for polynomials of degree as high as possible. The existing algorithms utilize the fact, see [2], that for every polynomial $Q$ in two variables of degree $N$, its Radon transform can be represented as $\mathcal{R}(Q ; t, \theta)=\sqrt{1-t^{2}} Q_{\theta}(t)$, where $Q_{\theta}$ is a polynomial in one variable of the same degree $N$ whose coefficients are trigonometric polynomials in $\theta$. Then, for every polynomial $Q$, formula (2.2) becomes

$$
\begin{align*}
c_{k, n}(Q) & =\frac{1}{\pi} \int_{-1}^{1} \sqrt{1-t^{2}} U_{n}(t) Q_{\theta_{k, n}}(t) d t \approx \sum_{j=1}^{m} a_{j} U_{n}\left(\eta_{j}\right) Q_{\theta_{k, n}}\left(\eta_{j}\right)  \tag{2.3}\\
& =\sum_{j=1}^{m} \frac{a_{j} U_{n}\left(\eta_{j}\right)}{\sqrt{1-\eta_{j}^{2}}} \mathcal{R}\left(Q ; \eta_{j}, \theta_{k, n}\right),
\end{align*}
$$

where the discretization of $\left\{c_{k, n}\right\}$ is done using the Gaussian formula with $m$ nodes for the interval $[-1,1]$ with weight $\mu(t)=\sqrt{1-t^{2}}$. However, this formula is not accurate enough, since it is exact for polynomials of degree $2 m-1$, and therefore for polynomials $Q$ of degree only $2 m-n-1$. In particular, when using $m=n+1$ Radon projections, we obtain the formula, currently used in the existing algorithms in [9], that is exact for polynomials $Q$ of degree only $n+1$. The main result of this paper is the derivation of a formula for numerical integration of the Fourier-Chebyshev coefficients $c_{k, n}(f)$ that is exact for polynomials of highest possible degree. We obtain a quadrature, see (4.5), that uses $n+1$ Radon projections and is exact for all bivariate polynomials of degree $3 n+1$. This formula can be viewed as a two-dimensional analog to the Micchelli-Rivlin quadrature from [6].

## 3 The one dimensional case

Relation (2.3) shows that the discretization of $c_{k, n}(f)$ is closely related to the investigation of quadratures of the form

$$
\begin{equation*}
\int_{a}^{b} \mu(t) P_{n}(t) g(t) d t \approx \sum_{j=1}^{m} a_{j} g\left(x_{j}\right), \quad a<x_{1}<\cdots<x_{m}<b \tag{3.1}
\end{equation*}
$$

where $P_{n}$ is a polynomial of degree $n$. We say that a number $M$ is the algebraic degree of precision (ADP) of (3.1) if (3.1) is exact for all polynomials of degree $M$ and there is a polynomial of degree $M+1$ for which this formula is not exact.

Formulas of type (3.1) have been investigated in [3]. Here we state one of the theorems derived in [3], which applies to our case.

Theorem 3.1 The quadrature formula

$$
\begin{equation*}
\int_{-1}^{1} \sqrt{1-t^{2}} U_{n}(t) f(t) d t \approx \sum_{j=1}^{n+1} a_{j} f\left(\cos \frac{(2 j-1) \pi}{2 n+2}\right) \tag{3.2}
\end{equation*}
$$

with

$$
a_{j}=(-1)^{j-1} \frac{\pi}{2 n+2} \sin \frac{(2 j-1) \pi}{2 n+2}
$$

is the unique formula of highest ADP (equal to $3 n+1$ ) among all formulas of this type with $n+1$ nodes.

## 4 Quadratures for the Fourier-Chebyshev coefficients

In this section, we consider formulas of type

$$
\begin{equation*}
\int_{B} f(x, y) U_{n}(x \cos \theta+y \sin \theta) d x d y \approx \sum_{j=1}^{n+1} b_{j} \mathcal{R}\left(f ; \xi_{j}, \theta\right) \tag{4.1}
\end{equation*}
$$

with nodes $\left\{\xi_{j}\right\}$ and coefficients $\left\{b_{j}\right\}$. Clearly (4.1) is not exact for the polynomial

$$
U_{n}(x \cos \theta+y \sin \theta) \prod_{j=1}^{n+1}\left(x \cos \theta+y \sin \theta-\xi_{j}\right)^{2}
$$

and therefore $\operatorname{ADP}(4.1) \leq 3 n+1$. Formulas of type (4.1) with $\mathrm{ADP}=3 n+1$ are called Gaussian. The following theorem holds.

Theorem 4.1 There is a unique Gaussian quadrature of type (4.1), given by

$$
\begin{equation*}
\int_{B} f(x, y) U_{n}(x \cos \theta+y \sin \theta) d x d y \approx \frac{\pi}{2 n+2} \sum_{j=1}^{n+1}(-1)^{j-1} \mathcal{R}\left(f ; \cos \frac{(2 j-1) \pi}{2 n+2}, \theta\right) . \tag{4.2}
\end{equation*}
$$

Proof: For every angle $\theta$ and function $G$, we have

$$
\int_{B} G(x, y) d x d y=\int_{-1}^{1}\left[\int_{-\sqrt{1-t^{2}}}^{\sqrt{1-t^{2}}} G(t \cos \theta-s \sin \theta, t \sin \theta+s \cos \theta) d s\right] d t
$$

and thus

$$
\begin{align*}
& \int_{B} f(x, y) U_{n}(x \cos \theta+y \sin \theta) d x d y \\
& =\frac{1}{\pi} \int_{-1}^{1}\left[\int_{-\sqrt{1-t^{2}}}^{\sqrt{1-t^{2}}} f(t \cos \theta-s \sin \theta, t \sin \theta+s \cos \theta) d s\right] U_{n}(t) d t \\
& =\frac{1}{\pi} \int_{-1}^{1} \mathcal{R}(f ; t, \theta) U_{n}(t) d t \tag{4.3}
\end{align*}
$$

Consider a formula of type (4.1) with coefficients $\left\{b_{j}\right\}$ and nodes $\left\{\xi_{j}\right\}$. Note that for every bivariate polynomial $Q$ of degree $3 n+1, \mathcal{R}(Q ; t, \theta)=\sqrt{1-t^{2}} Q_{\theta}(t)$, where $Q_{\theta}$ is a polynomial of degree $3 n+1$ whose coefficients are trigonometric polynomials in $\theta$. Also, all univariate polynomials of degree $3 n+1$ could be described as $Q_{\theta}$ for some $Q \in \pi_{3 n+1}\left(\mathbb{R}^{2}\right)$. From this observation and (4.3), it follows that

$$
\begin{aligned}
\int_{B} Q(x, y) U_{n}(x \cos \theta+y \sin \theta) d x d y & =\int_{-1}^{1} \mathcal{R}(Q ; t, \theta) U_{n}(t) d t \\
& =\int_{-1}^{1} \sqrt{1-t^{2}} U_{n}(t) Q_{\theta}(t) d t
\end{aligned}
$$

and

$$
\sum_{j=1}^{n+1} b_{j} \mathcal{R}\left(Q ; \xi_{j}, \theta\right)=\sum_{j=1}^{n+1} b_{j} \sqrt{1-\xi_{j}^{2}} Q_{\theta}\left(\xi_{j}\right)
$$

Therefore formula (4.1) is Gaussian if and only if the formula

$$
\begin{equation*}
\int_{-1}^{1} \sqrt{1-t^{2}} U_{n}(t) Q_{\theta}(t) d t=\sum_{j=1}^{n+1} b_{j} \sqrt{1-\xi_{j}^{2}} Q_{\theta}\left(\xi_{j}\right) \tag{4.4}
\end{equation*}
$$

is exact for all polynomials $Q_{\theta} \in \pi_{3 n+1}(\mathbb{R})$. Now we apply Theorem 3.1 and derive that $\xi_{j}=\cos \frac{(2 j-1) \pi}{2 n+2}, j=1, \ldots, n+1$, and that the coefficients $b_{j}$ are given by

$$
b_{j}=(-1)^{j-1} \frac{\pi}{2 n+2} \sin \frac{(2 j-1) \pi}{2 n+2} \frac{1}{\sqrt{1-\xi_{j}^{2}}}=(-1)^{j-1} \frac{\pi}{2 n+2}, \quad j=1, \ldots, n+1
$$

The proof is completed.
Now, let us return to the computation of the coefficients $c_{k, n}(f)$. We apply the Gaussian quadrature (4.2) from Theorem 4.1 and derive that

$$
\begin{equation*}
c_{k, n}(f) \approx \frac{1}{2 n+2} \sum_{j=1}^{n+1}(-1)^{j-1} \mathcal{R}\left(f ; \cos \frac{(2 j-1) \pi}{2 n+2}, \theta_{k, n}\right) \tag{4.5}
\end{equation*}
$$

This formula computes exactly the coefficients $c_{k, n}(Q)$ of a bivariate polynomial $Q$ of degree $3 n+1$, using the $n+1$ Radon projections along the line segments $I\left(\cos \frac{(2 j-1) \pi}{2 n+2}, \theta_{k, n}\right)$, $j=1, \ldots, n+1$. Notice that the calculation of $c_{k, n}(f)$ does not involve multiplication but only the addition/subtraction of the corresponding Radon transforms, which, in addition to the improved accuracy, improves the computational time and memory efficiency of the proposed formula.

A related question, which is still open, is whether formula (4.2) is the only Gaussian formula among formulas of type

$$
\int_{B} f(x, y) U_{n}(x \cos \theta+y \sin \theta) d x d y \approx \sum_{j=1}^{n+1} b_{j} \mathcal{R}\left(f ; \xi_{j}, \theta_{j}\right)
$$

where the Radon transforms are taken not along parallel lines, but any $n+1$ lines $I\left(\xi_{j}, \theta_{j}\right)$ in the ball $B$.

## References

[1] B. Bojanov, G. Petrova, Numerical integration over a disk. A new Gaussian quadrature formula, Numer. Math. 8,1 (1998), 39-59.
[2] B. Bojanov, G. Petrova, Uniqueness of the Gaussian quadrature for a ball, J. Approx. Theory 1041 (2000), 21-44.
[3] B. Bojanov, G. Petrova, Quadrature formulae for Fourier coefficients, J. Comput. Appl. Math., 231, (2009), 378-391.
[4] B. Bojanov, Y. Xu, Reconstruction of a polynomial from its Radon projections, SIAM J. Math. Anal. 37,1 (2005), 238-250.
[5] R. DeVore, K. Oskolkov, P. Petrushev, Approximation by feed-forward neural networks, Ann. Numer. Math., 4 (1997), 261-287.
[6] C. Micchelli and T. Rivlin, Turan formulae and highest precision quadrature rules for Chebyshev coefficients, IBM J. Res. Develop. 16 (1972), 372-379.
[7] Y. Xu, A new approach to the reconstruction of images from Radon projections Adv. Appl. Math. 36 (2006), 388-420.
[8] Y. Xu, Reconstruction from Radon projections and orthogonal expansiion on a ball, J. Phys. A: Math. Theor. 40 (2007), 7239-7253.
[9] Y. Xu, O. Tischenko, C. Hoeschen, Approximation and reconstruction from attenuated Radon projections, SIAM J. Numer. Anal. 45(1) (2007), 108-132.


[^0]:    *The author was supported by the Sofia University Research grant \# 135/2008 and by Swiss-NSF Scopes Project IB7320-111079.
    ${ }^{\dagger}$ This work has been supported in part by the Bulgarian Science Fund Grant VU-I-303/2007, the NSF Grant \#DMS-0810869, and by Award \# KUS-C1-016-04, made by King Abdullah University of Science and Technology (KAUST).

