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Abstract

We give a bivariate analog of the Micchelli-Rivlin quadrature for computing the
integral of a function over the unit disk using its Radon projections.
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1 Introduction

There are several known classical methods in Computed Tomography for reconstructing
a function f from its x-ray or Radon transforms, such as the Fourier reconstruction
algorithm, the filtered backprojection algorithm and the so called algebraic methods.
The latter give an approximation f̃ =

∑N
i=1 ciψi ∈ span{ψ1, . . . , ψN} to f with the same

x-ray transforms as those of f . One of the main advantages of the algebraic methods is
the freedom in the choice of the basis functions {ψi}.

Recently, a new algebraic method was presented in [7, 8, 9], where the functions {ψi}
are selected to be polynomials in IRn. The method is based on the expansion of f , defined
on a ball in IRn, using orthonormal polynomials, where the coefficients of this expansion
can be represented as integrals involving the Radon transform of f . The algorithm gives
an approximation to f by truncating the series expansion and discretizing the coefficients
{ci}, and thus the performance of the method heavily relies on a good approximation of
these coefficients. In this paper, we present a quadrature formula for computing the ci’s
that is exact for all bivariate polynomials of degree as high as possible.

2 Preliminaries

We consider the space L2(B) of bivariate square integrable functions defined on the unit
disk B := {(x, y) : x2 + y2 ≤ 1}. It is a well known fact (see [1] or [5]) that the set of
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polynomials {Uk,n}∞, n
n=0,k=0, defined by

Uk,n(x, y) :=
1√
π
Un (x cos(θk,n) + y sin(θk,n)) , θk,n :=

kπ

n+ 1
,

where

Un(cos θ) :=
sin(n+ 1)θ

sin θ
,

is the Chebyshev polynomial of second kind, form a complete orthonormal system for
L2(B). It can be shown that the coefficients ck,n(f) in the expansion of f ,

f =
∞∑
n=0

n∑
k=0

ck,n(f)Un (x cos(θk,n) + y sin(θk,n)) , (2.1)

with respect to this system are

ck,n(f) :=
1

π

∫
B
f(x, y)Uk,n(x, y) dxdy =

1

π

∫ 1

−1
R(f ; t, θk,n)Un(t) dt, (2.2)

where R(f ; t, θ) is the Radon transform of f . Recall that the Radon transform R(f ; t, θ),
t ∈ (−1, 1), θ ∈ [0, π) of a function f , defined on the unit ball B, is given by the integral
of f along the line segment I := I(t, θ) = {(x, y) : x cos θ + y sin θ = t} ∩B, namely,

R(f ; t, θ) :=
∫
I(t,θ)

f(x, y) ds =
∫ √1−t2

−
√

1−t2
f(t cos θ − s sin θ, t sin θ + s cos θ) ds.

In view of formula (2.2), the problem of optimal recovery of f is equivalent to the problem
of a selection of quadrature formula for the second integral in (2.2) which is exact for
polynomials of degree as high as possible. The existing algorithms utilize the fact, see
[2], that for every polynomial Q in two variables of degree N , its Radon transform can
be represented as R(Q; t, θ) =

√
1− t2Qθ(t), where Qθ is a polynomial in one variable of

the same degree N whose coefficients are trigonometric polynomials in θ. Then, for every
polynomial Q, formula (2.2) becomes

ck,n(Q) =
1

π

∫ 1

−1

√
1− t2Un(t)Qθk,n

(t) dt ≈
m∑
j=1

ajUn(ηj)Qθk,n
(ηj) (2.3)

=
m∑
j=1

ajUn(ηj)√
1− η2

j

R(Q; ηj, θk,n),

where the discretization of {ck,n} is done using the Gaussian formula with m nodes for
the interval [−1, 1] with weight µ(t) =

√
1− t2. However, this formula is not accurate

enough, since it is exact for polynomials of degree 2m− 1, and therefore for polynomials
Q of degree only 2m − n − 1. In particular, when using m = n + 1 Radon projections,
we obtain the formula, currently used in the existing algorithms in [9], that is exact for
polynomials Q of degree only n + 1. The main result of this paper is the derivation
of a formula for numerical integration of the Fourier-Chebyshev coefficients ck,n(f) that
is exact for polynomials of highest possible degree. We obtain a quadrature, see (4.5),
that uses n + 1 Radon projections and is exact for all bivariate polynomials of degree
3n + 1. This formula can be viewed as a two-dimensional analog to the Micchelli-Rivlin
quadrature from [6].
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3 The one dimensional case

Relation (2.3) shows that the discretization of ck,n(f) is closely related to the investigation
of quadratures of the form

∫ b

a
µ(t)Pn(t)g(t) dt ≈

m∑
j=1

ajg(xj), a < x1 < · · · < xm < b, (3.1)

where Pn is a polynomial of degree n. We say that a number M is the algebraic degree of
precision (ADP) of (3.1) if (3.1) is exact for all polynomials of degree M and there is a
polynomial of degree M + 1 for which this formula is not exact.

Formulas of type (3.1) have been investigated in [3]. Here we state one of the theorems
derived in [3], which applies to our case.

Theorem 3.1 The quadrature formula

∫ 1

−1

√
1− t2Un(t)f(t) dt ≈

n+1∑
j=1

ajf

(
cos

(2j − 1)π

2n+ 2

)
, (3.2)

with

aj = (−1)j−1 π

2n+ 2
sin

(2j − 1)π

2n+ 2

is the unique formula of highest ADP (equal to 3n + 1) among all formulas of this type
with n+ 1 nodes.

4 Quadratures for the Fourier-Chebyshev coefficients

In this section, we consider formulas of type

∫
B
f(x, y)Un(x cos θ + y sin θ) dxdy ≈

n+1∑
j=1

bjR(f ; ξj, θ), (4.1)

with nodes {ξj} and coefficients {bj}. Clearly (4.1) is not exact for the polynomial

Un(x cos θ + y sin θ)
n+1∏
j=1

(x cos θ + y sin θ − ξj)2,

and therefore ADP(4.1)≤ 3n + 1. Formulas of type (4.1) with ADP= 3n + 1 are called
Gaussian. The following theorem holds.

Theorem 4.1 There is a unique Gaussian quadrature of type (4.1), given by

∫
B
f(x, y)Un(x cos θ + y sin θ) dxdy ≈ π

2n+ 2

n+1∑
j=1

(−1)j−1R
(
f ; cos

(2j − 1)π

2n+ 2
, θ

)
. (4.2)
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Proof: For every angle θ and function G, we have

∫
B
G(x, y) dxdy =

∫ 1

−1

[∫ √1−t2

−
√

1−t2
G(t cos θ − s sin θ, t sin θ + s cos θ) ds

]
dt,

and thus ∫
B
f(x, y)Un (x cos θ + y sin θ) dxdy

=
1

π

∫ 1

−1

[∫ √1−t2

−
√

1−t2
f(t cos θ − s sin θ, t sin θ + s cos θ) ds

]
Un(t) dt

=
1

π

∫ 1

−1
R(f ; t, θ)Un(t) dt. (4.3)

Consider a formula of type (4.1) with coefficients {bj} and nodes {ξj}. Note that for
every bivariate polynomial Q of degree 3n + 1, R(Q; t, θ) =

√
1− t2Qθ(t), where Qθ is a

polynomial of degree 3n+1 whose coefficients are trigonometric polynomials in θ. Also, all
univariate polynomials of degree 3n+1 could be described as Qθ for some Q ∈ π3n+1(IR

2).
From this observation and (4.3), it follows that∫

B
Q(x, y)Un(x cos θ + y sin θ) dxdy =

∫ 1

−1
R(Q; t, θ)Un(t) dt

=
∫ 1

−1

√
1− t2Un(t)Qθ(t) dt,

and
n+1∑
j=1

bjR(Q; ξj, θ) =
n+1∑
j=1

bj
√

1− ξ2
jQθ(ξj).

Therefore formula (4.1) is Gaussian if and only if the formula

∫ 1

−1

√
1− t2Un(t)Qθ(t) dt =

n+1∑
j=1

bj
√

1− ξ2
jQθ(ξj) (4.4)

is exact for all polynomials Qθ ∈ π3n+1(IR). Now we apply Theorem 3.1 and derive that

ξj = cos (2j−1)π
2n+2

, j = 1, . . . , n+ 1, and that the coefficients bj are given by

bj = (−1)j−1 π

2n+ 2
sin

(2j − 1)π

2n+ 2

1√
1− ξ2

j

= (−1)j−1 π

2n+ 2
, j = 1, . . . , n+ 1.

The proof is completed. 2

Now, let us return to the computation of the coefficients ck,n(f). We apply the Gaus-
sian quadrature (4.2) from Theorem 4.1 and derive that

ck,n(f) ≈ 1

2n+ 2

n+1∑
j=1

(−1)j−1R
(
f ; cos

(2j − 1)π

2n+ 2
, θk,n

)
. (4.5)
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This formula computes exactly the coefficients ck,n(Q) of a bivariate polynomial Q of

degree 3n+1, using the n+1 Radon projections along the line segments I(cos (2j−1)π
2n+2

, θk,n),
j = 1, . . . , n+ 1. Notice that the calculation of ck,n(f) does not involve multiplication but
only the addition/subtraction of the corresponding Radon transforms, which, in addition
to the improved accuracy, improves the computational time and memory efficiency of the
proposed formula.

A related question, which is still open, is whether formula (4.2) is the only Gaussian
formula among formulas of type

∫
B
f(x, y)Un(x cos θ + y sin θ) dxdy ≈

n+1∑
j=1

bjR(f ; ξj, θj),

where the Radon transforms are taken not along parallel lines, but any n+1 lines I(ξj, θj)
in the ball B .
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