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Abstract

We give a bivariate analog of the Micchelli-Rivlin quadrature for computing the
integral of a function over the unit disk using its Radon projections.
AMS subject classification: 65D32, 65D30, 41A55
Key Words: Numerical integration, orthogonal polynomials, Gaussian quadra-
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1 Introduction

There are several known classical methods in Computed Tomography for reconstructing
a function f from its x-ray or Radon transforms, such as the Fourier reconstruction
algorithm, the filtered backprojection algorithm and the so called algebraic methods.
The latter give an approximation f = SN e € span{ty, ..., b} to f with the same
x-ray transforms as those of f. One of the main advantages of the algebraic methods is
the freedom in the choice of the basis functions {;}.

Recently, a new algebraic method was presented in [7, 8, 9], where the functions {¢;}
are selected to be polynomials in IR". The method is based on the expansion of f, defined
on a ball in IR", using orthonormal polynomials, where the coefficients of this expansion
can be represented as integrals involving the Radon transform of f. The algorithm gives
an approximation to f by truncating the series expansion and discretizing the coefficients
{¢;}, and thus the performance of the method heavily relies on a good approximation of
these coefficients. In this paper, we present a quadrature formula for computing the ¢;’s
that is exact for all bivariate polynomials of degree as high as possible.

2 Preliminaries

We consider the space Ly(B) of bivariate square integrable functions defined on the unit
disk B := {(z,y) : 2® +y*> < 1}. It is a well known fact (see [1] or [5]) that the set of
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polynomials {Uy,, },2 ko, defined by

1 ) km
Ukn(z,y) == ﬁUn (x cos(Okn) +ysin(brn)), Okn:= T
where i Do
sim(n +
Up(cos®) := —ed

is the Chebyshev polynomial of second kind, form a complete orthonormal system for
Ly(B). It can be shown that the coefficients ¢ ,,(f) in the expansion of f,

f= Z Z Chn(f)Un (z cos(Og.n) + ysin(fin)) , (2.1)

n=0 k=0

with respect to this system are

Ck,n(f) = 711_/3 f(l’, y)Uk,n<x7 y) dlL’dy - i_/ll R(f, t7 ek,n)Un<t) dt? (22)

where R(f;t,0) is the Radon transform of f. Recall that the Radon transform R(f;t,0),
te(—1,1), 0 € [0,7) of a function f, defined on the unit ball B, is given by the integral
of f along the line segment [ := I(t,0) = {(x,y) : xcosf + ysinf =t} N B, namely,

V1-t?
R(f;t,0) = /I(te)f(x,y)dSZ/ f(tcos® — ssinf, tsinf + scosf) ds.

—/1—t2

In view of formula (2.2), the problem of optimal recovery of f is equivalent to the problem
of a selection of quadrature formula for the second integral in (2.2) which is exact for
polynomials of degree as high as possible. The existing algorithms utilize the fact, see
[2], that for every polynomial @) in two variables of degree N, its Radon transform can
be represented as R(Q;t,0) = v/1 — t?Qy(t), where (Qy is a polynomial in one variable of
the same degree N whose coeflicients are trigonometric polynomials in 6. Then, for every
polynomial @, formula (2.2) becomes

(@) = fr /_1 VI PUOQ, (O~ S aln)Q, ) (23)

s Okn)

where the discretization of {cj,} is done using the Gaussian formula with m nodes for
the interval [—1, 1] with weight u(t) = v/1 — 2. However, this formula is not accurate
enough, since it is exact for polynomials of degree 2m — 1, and therefore for polynomials
Q@ of degree only 2m — n — 1. In particular, when using m = n + 1 Radon projections,
we obtain the formula, currently used in the existing algorithms in [9], that is exact for
polynomials () of degree only n + 1. The main result of this paper is the derivation
of a formula for numerical integration of the Fourier-Chebyshev coefficients ¢y, (f) that
is exact for polynomials of highest possible degree. We obtain a quadrature, see (4.5),
that uses n + 1 Radon projections and is exact for all bivariate polynomials of degree
3n + 1. This formula can be viewed as a two-dimensional analog to the Micchelli-Rivlin
quadrature from [6].



3 The one dimensional case

Relation (2.3) shows that the discretization of ¢, (f) is closely related to the investigation
of quadratures of the form

/ab p(t) P, (t)g(t) dt ~ iajg(xj), a<w <<y <b, (3.1)

where P, is a polynomial of degree n. We say that a number M is the algebraic degree of
precision (ADP) of (3.1) if (3.1) is exact for all polynomials of degree M and there is a
polynomial of degree M + 1 for which this formula is not exact.

Formulas of type (3.1) have been investigated in [3]. Here we state one of the theorems
derived in [3], which applies to our case.

Theorem 3.1 The quadrature formula

/_11 VI 2U, () f(t) dt ~ ’f a;f <cos M) , (3.2)

e 2n + 2

with 0i 1
a; = (—1)"! " s (2) = D
2n +2 2n + 2

is the unique formula of highest ADP (equal to 3n + 1) among all formulas of this type
with n + 1 nodes.

4 Quadratures for the Fourier-Chebyshev coefficients

In this section, we consider formulas of type

n+1

/B F(, ) Un(x cos 0+ ysin0) dedy ~ S byR(f: €. 0), (4.1)

j=1
with nodes {;} and coefficients {b;}. Clearly (4.1) is not exact for the polynomial
n+1

Up(zcosd + ysin) [ ] (zcosf + ysind — &;)?,

J=1

and therefore ADP(4.1)< 3n + 1. Formulas of type (4.1) with ADP= 3n + 1 are called
Gaussian. The following theorem holds.

Theorem 4.1 There is a unique Gaussian quadrature of type (4.1), given by

[ Fy)Un(weosd + ysind) dedy = 5" SR (Fre0sPT0T ) (4
| f(@,y)Un(zcosf +ys xy~2n+2j:1 jcos5———0). (4



Proof: For every angle § and function GG, we have

1 [ /it
/ G(x,y) dxdy:/ [/ G(tcosf — ssinf, tsinf + scos0) ds] dt,
B

1 | J-viez
and thus

/ f(z,y)U, (zcosh + ysinb) dxdy

-2
—/ [/ tcos@—ssin@,tsin@—i—scos@)ds] Un(t) dt

/ (f31,0)Un (1) dt. (4.3)

Consider a formula of type (4.1) with coefficients {b;} and nodes {{;}. Note that for
every bivariate polynomial @ of degree 3n + 1, R(Q;t,0) = v/1 — t2Qy(t), where Qy is a
polynomial of degree 3n+1 whose coefficients are trigonometric polynomials in 6. Also, all
univariate polynomials of degree 3n+4 1 could be described as Qg for some @Q € 73,1 (IR?).
From this observation and (4.3), it follows that

/Qx YU, (zcos @ + ysinb) dedy = /11R(Q;t,9)Un(t)dt
_ /_11 VI = U, (£)Qy(t) dt

and
n+1 n+1

> bR(Q:€5,0) Z biy/1 = &E7Q0(&;)-
j=1

Therefore formula (4.1) is Gaussian if and only if the formula

n+1

/\/1—t2U )Qo(t) dt = Zb\/ —E2Q4(&)) (4.4)

is exact for all polynomials Qg € m3,41([R). Now we apply Theorem 3.1 and derive that

§; = cos %, j=1,...,n+1, and that the coefficients b; are given by
oo (2= 1 T .
2
2n +2 2n+2 /1—53' 2n +2
The proof is completed. O

Now, let us return to the computation of the coeflicients ¢y, (f). We apply the Gaus-
sian quadrature (4.2) from Theorem 4.1 and derive that

1 n+1

cen(f) = I Z(—l)j_lR (f;cos W,ka) . (4.5)
j=1




This formula computes exactly the coefficients ¢, (Q)) of a bivariate polynomial () of
degree 3n+1, using the n+1 Radon projections along the line segments I (cos (22] +12 Okn),
j=1,...,n+1. Notice that the calculation of ¢, (f) does not involve multiplication but
only the addition/subtraction of the corresponding Radon transforms, which, in addition
to the improved accuracy, improves the computational time and memory efficiency of the
proposed formula.

A related question, which is still open, is whether formula (4.2) is the only Gaussian

formula among formulas of type

n+1

/f (z,y)Un(z cos 0 + ysinb) dedy ~ > byR(f:&,0;),

7j=1

where the Radon transforms are taken not along parallel lines, but any n+1 lines 1(¢;, 6,)
in the ball B .
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