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Abstract

We present a method for encoding unit vectors based on spherical coordinates that out-performs existing encoding

methods both in terms of accuracy and encoding/decoding time. Given a tolerance ε, we solve a simple, discrete

optimization problem to find a set of points on the unit sphere that can trivially be indexed such that the difference

in angle between the encoded vector and the original are no more than ε apart. To encode a unit vector, we simply

compute its spherical coordinates and round the result based on the prior optimization solution. We also present a

moving frame method that further reduces the amount of data to be encoded when vectors have some coherence.

Our method is extremely fast in terms of encoding and decoding both of which take constant time O(1). The

accuracy of our encoding is also comparable or better than previous methods for encoding unit vectors.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.5]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

Recent advances of technology and computational power
call for novel approaches to handling large data sets in terms
of their transmission, storage and processing. In Computer
Graphics, large data sets arise in a variety of applications.
For example, 3D scanners such as those used in the Dig-
ital Michelangelo Project [LPC∗00] produce on the order
of hundreds of millions of point samples per statue. LIght-
Detection-And-Ranging (LIDAR) typically uses laser range
scanners to scan large terrain areas and can produce billions
to tens of billions of samples per scan. Rendering meth-
ods such as Photon Mapping [Jen01] generate millions of
photons. Furthermore, as computation and storage have be-
come cheaper, larger, more complex surfaces are becoming
common. For example, hierarchical modeling tools such as
ZBrush can easily produce surfaces with millions polygons.

These large data sets require efficient techniques for trans-
mission and storage. For example, even within a single com-
puter, the bandwidth between the CPU and GPU may not be
sufficient and can be a bottleneck during rendering. There-
fore, compressing the data sent over that connection can lead
to significant increases in rendering speed.

While there are many different types of data to compress,
we focus on 3D unit vectors. Such vectors appear in many
applications in Computer Graphics. For example, these vec-
tors are used to represent normals on surfaces, to modify
lighting equations when used in normal maps or to store

photon directions in photon maps. Unit vectors can also be
viewed as points on the unit sphere and, as such, have appli-
cations in Astrophysics [GHB∗05].

Naïvely storing unit vectors as three 32 bit numbers (96
bits total) is wasteful. Meyer et al. [MSS∗10] showed that
this representation is redundant and only 51 bits are suffi-
cient to represent unit vectors within floating point precision.
However, floating point accuracy is not always necessary. To
demonstrate the point, Deering [Dee95] showed that shoot-
ing rays from the moon to Mars at floating point precision
yields sub-centimeter accuracy of the final point set. There-
fore, good encoding/decoding techniques for 3D unit vectors
that bound the maximum encoding error are needed. Such
methods must be computationally efficient for both encod-
ing and decoding (since data may need to be encoded in a
streaming fashion), accurate and robust.

Contributions

In this paper, we present a computationally efficient method
for encoding and decoding 3D unit vectors. The computation
time is constant and is independent on the required accuracy.
In addition, our method produces the smallest encoding size
for a given maximum error when compared to other known
compression methods. We further improve our compression
rates by introducing a moving frame, which can be applied to
any other method, and works especially well when combined
with our technique.
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1.1. Related Work

Encoding/decoding unit vectors is a well-studied topic in
Computer Graphics. The problem can be reformulated as
constructing a distribution of points on the unit sphere and
providing a method for finding the closest point in the distri-
bution to a given input vector.

One of the first methods for geometry compression is due
to Deering [Dee95] who encodes normal vectors by inter-
secting the sphere with the coordinate octants and then di-
viding the portion of the sphere within each octant into six
equally shaped spherical triangles. Deering then uses a uni-
form grid restricted to a triangle and finds the closest point
on the sphere to the input normal vector. Unfortunately, there
is no error analysis of this encoding technique. In addition,
the encoding requires finding the closest vector from a list of
vectors, which has computational cost that is exponential in
the number of encoded bits.

The most well-known and popular method for encoding
unit vectors is based on octahedron subdivision [THLR98,
BWK02, OB06, GKP07]. The method begins with an octa-
hedron and alternates linear subdivision and projection back
to the sphere to build a point distribution. The encoding pro-
cedure is simply to identify the octant of the input vector and
perform local subdivision around that vector. Hence, the en-
coding time is linear in the number of bits used to encode the
result. While the same procedure can be used to decode the
vector, the more common implementation is to use a table
lookup. The latter is quite fast, but as Meyer et al [MSS∗10]
point out, for high levels of accuracy the lookup table can
dominate the storage costs and may not even fit in memory.

Oliveira et al [OB06] and Griffith et al [GKP07] both ex-
plore using platonic solids other than octahedra for encod-
ing unit vectors. Griffith et al [GKP07] show that the oc-
tahedron does not produce good coding results compared
to other solids and advocate using a sphere covering with
low number of faces [SHS97]. The authors also provide a
barycentric encoding method whose computation is propor-
tional to the number of faces in the covering and is inde-
pendent of the number of bits used to encode the vectors.
However, the maximum error is poor compared to other
methods. Qsplat [RL00] also encodes unit vectors using a
warped barycentric encoding on a cube, which has error per-
formance similar to the barycentric encoding in Griffith et
al [GKP07].

Bass et al [BB06] describe an encoding using overlapping
cones that works well with entropy encoders [Whe96], but
the encoding time is still linear in the number of output bits.
The Octahedron Normal Vector method [MSS∗10] uses an
octahedron to encode unit vectors and does so by flattening
the octahedron into a 2D square. The authors then place a
regular grid over the square and encode the vector as an in-
dex. This flattening process can be performed with a small
number of conditional operations, and both encoding and de-
coding take constant time. Moreover, the maximum error as-

Figure 1: The encoding in Equation 1 defines a rectangu-

lar domain (left) that maps to S using spherical coordinates

(right). Any point in this domain will the central point for its

encoded value.

sociated with this technique is much lower than typical oc-
tahedron encoding for the same number of bits.

Healpix [GHB∗05] was not introduced in Computer
Graphics but in the field of Astrophysics. The method cre-
ates a point distribution on the unit sphere for which the area
associated with each point from the distribution is constant.
The motivation for this technique does not come from com-
pression but from processing spherical information and per-
forming Fourier analysis on the sphere. Hence, the authors
do not provide fast encoding or decoding methods, but the
technique can still be used for compression.

2. Encoding

Each point (x,y, z) on the unit sphere S has spherical coordi-
nates (φ,θ) ∈ [0,π]× [0,2π), where

x = sin(φ)cos(θ), y = sin(φ) sin(θ), z = cos(φ).

Given Nφ and Nθ, we consider the set P = {(x̂, ŷ, ẑ)} of Nφ ·
Nθ points on the sphere, defined as

x̂ = sin(φ̂)cos(θ̂), y = sin(φ̂) sin(θ̂), z = cos(φ̂),

where

(φ̂, θ̂) =

(

j
π

Nφ − 1
,k

2π

Nθ

)

,

with j ∈ {0, . . . ,Nφ − 1} and k ∈ {0, . . . ,Nθ − 1}. We gen-
erate these points by dividing the parameter range for φ and
θ into Nφ and Nθ uniform subintervals, respectively. Each
point from P is represented by the pair ( j,k). Given a unit
vector n with spherical coordinates (φ,θ), we encode the
vector by choosing a point n̂ ∈ P with ( j,k) determined as

j = round
(

φ(Nφ−1)
π

)

,

k = round
(

θNθ
2π

)

mod Nθ,
(1)

where round(x) gives the integer closest to x.

Our goal is to select Nφ and Nθ in such a way that the
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Figure 2: Total number of points generated for various val-

ues of Nφ with a maximum error of 4◦. The minimum is 1334

points with Nφ = 32.

total number of points in P is minimal for a given prescribed
angle accuracy ε. Therefore, the angle between an encoded
vector n and the corresponding decoded vector n̂ should be
≤ ε. Since the arcs that correspond to φ close to 0 or π have
smaller lengths than the arcs corresponding to φ near π/2, we
can use fewer points near the poles to guarantee the desired
accuracy ε. We achieve this effect by choosing the number
Nθ adaptively, depending on j, namely Nθ = Nθ( j). In this

case, the total number of points in P will be ∑
Nφ−1
j=0 Nθ( j).

Next, we discuss how to determine the values Nθ( j), j =
0, . . . ,Nφ−1 given a value of Nφ. The rounding operations in
Equation 1 define a rectangular domain in terms of φ and θ

with sides of length π
Nφ−1 and 2π

Nθ( j) , respectively, as shown

in Figure 1. All points with coordinates (φ,θ) within this
domain will be encoded to have the same decoded angles
(φ̂, θ̂). Mapping this domain to the sphere creates a curved
patch as shown on the right of Figure 1.

Without loss of generality, we restrict ourselves to the top
half of the sphere φ > π/2. The point in the patch furthest
from its center n̂ corresponds to the bottom left (or right) cor-
ner and has coordinates (φ̂+ π

2(Nφ−1) , θ̂+
2π

Nθ( j)
). The angle

between this point and n̂ is cos−1(cos(φ̂)cos(φ̂+ π
2(Nφ−1) )+

cos( π
Nθ( j)

) sin(φ̂) sin(φ̂+ π
2(Nφ−1) )).Setting this value to be

less than or equal to ε and solving for the smallest integer
Nθ( j) that satisfies this inequality yields

Nθ( j) =















π

cos−1

(

cos(ε)−cos(φ̂) cos(φ̂+ π
2(Nφ−1) )

sin(φ̂) sin(φ̂+ π
2(Nφ−1) )

)















.

Note that any value of Nφ ≥
π
2ε +1 yields values of Nθ( j),

j = 0, . . . ,Nφ − 1 such that the maximum encoding error is
no more than ε. We need to find a value of Nφ for which the

total number of points in P, ∑
Nφ−1
j=0 Nθ( j), attains its mini-

mum. Figure 2 shows a graph of the total number of points
in P for ε = 4◦ generated for different values of Nφ. When

Figure 3: Point distributions on the sphere for spherical en-

coding using the same number of points Nθ( j) = 64 for each

value of j (left) and our variable number of points where

maxNθ( j) = 64 (right). The spheres contain 2112 points

(left) and 1334 points (right) with a maximum angle error

of 4◦.

Nφ is close to the lower bound of π
2ε + 1, the total number

of points on the sphere is large. As Nφ increases, the num-
ber of points drops quickly to a minimum (in this case, 1334
points) and then increases again. To find the optimal value
of Nφ, we simply find a neighborhood of the minimum and
perform a discrete search. Notice that this optimization only
has to be performed once for a value of ε and the result Nθ( j)
can be stored as a list of numbers and used to encode/decode
any number of vectors.

Figure 3 shows two point distributions on the sphere and
demonstrates the difference between using a constant num-
ber of points for each value of Nφ (left) and our variable num-
ber of points (right). Each set of points will have the same
maximum encoding error. However, our method is much
more efficient in terms of memory. Figure 4 illustrates the
regions on the sphere that our encoding in Equation 1 pro-
duces.

2.1. Moving Frames

Our encoding method, described in Section 2, is computa-
tionally efficient since it requires only constant time both
for encoding and decoding regardless of the precision ε re-
quired. The method is also suitable for encoding vectors
without any coherence. However, we can improve the com-
pression results if the method is applied to coherent data. In
this case, we assume that we are given an ordered list of unit
3D vectors ni that, when decoded, have value n̂i.

Our encoding has the property that, for values of j close
to 0 or Nφ − 1, the number of possible values Nθ( j) for k is
small as shown in Figure 4. To take advantage of this prop-
erty, we use a moving frame to encode the vectors ni. Let F i

be a 3×3 matrix with orthonormal columns (F i
x , F i

y , F i
z ) that

describes the coordinate frame associated with the ith vector
ni. If n̂i = F i

z , then we set F i+1 = F i. If not, we define F i+1
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Figure 4: Our distribution of points on the sphere with a

maximum error of 10◦ and the regions on the sphere that

map to each point.

as

F i+1
z = n̂i,

F i+1
x = ((F i

z · n̂
i)n̂i −F i

z )‖(F
i
z · n̂

i)n̂i −F i
z‖

−1,

F i+1
y = F i+1

z ×F i+1
x .

We then represent ni+1 in this coordinate frame and output
the encoded values ( j,k) of (F i+1)T ni+1. To decode the vec-
tor, we simply apply the decoding procedure from Section 2
and multiply by F i+1, which we build from the previously
decoded vector. We initialize the entire process by setting
F0 to be the Euclidean axes.

In the situation where the angle between two consecutive
vectors ni and ni+1 is small, this approach will produce sig-
nificant compression gains. Figure 5 shows the distribution
of normals from the polygons of the buddha model with re-
spect to the Euclidean axes (left) and the distribution where
each normal is represented in terms of its associated frame
(right). Notice that in the first case, the normals are mostly
uniformly distributed over the sphere whereas, in the second
case, the normals are almost all concentrated at the positive
z-axis. The backside of the sphere on the right (not visible in
this image) is extremely sparse.

This moving frame approach is not specific to our en-
coding method and many encoding techniques could benefit
from this method, especially when coupled with an entropy
encoder. However, due to the structure of our point distribu-
tion, our method is particularly well-suited to this technique.

2.2. Entropy Encoding

In conjunction with the moving frame, we apply an adaptive
arithmetic encoder [Whe96] to the output of our encoding
method, which results in even more compression. To use this

Figure 5: Normals ni from the buddha model (left) and

the normals represented in each of their coordinate frames

(F i)T ni using our moving frame approach (right).

encoder, we build a distribution for j and individual distri-
butions for k for every value of j, since a different number
Nθ( j) of k’s are possible for each value of j. When using the
moving frame, described in Section 2.1, the distribution for
j tends to be skewed towards zero and compresses well with
the arithmetic encoder.

3. Results

We demonstrate the performance of our method by compar-
ing it to several other methods including Healpix [GHB∗05],
octahedral subdivision (Octa) [THLR98, BWK02, OB06,
GKP07], octahedral normal vectors (ONV) [MSS∗10], sex-
tant encoding (Sextant) [Dee95], and the sphere1 covering
(Sphere1) [GKP07]. As test data, we use normal vectors
generated from the polygons of common surfaces found in
Computer Graphics. We order these vectors by performing
a depth-first traversal in terms of polygon adjacency on the
surface.

Figure 6 shows the graph of the encoded size (without
entropy encoding or our moving frame approach) versus
the maximum encoding error for the normals from the bud-
dha model. Clearly, Healpix, ONV, sphere1 and our method
all have better performance than Deering’s sextant encod-
ing or the popular Octa algorithm. However, our method
and sphere1 produce a smaller encoded size than Healpix
or ONV.

Figure 7 shows the performance of all methods when we
add our moving frame technique and then apply the en-
tropy encoder on the result. In all cases, entropy encoding,
when combined with our moving frame, substantially re-
duces the encoded size. In general, Healpix, sphere1 cov-
ering and our method perform similarly in terms of error
when the maximum error is greater than 2◦. However, when
we decrease the maximum error, sphere1 covering and es-
pecially Healpix begin to perform worse. When the max-
imum angle error approaches 0.5◦, ONV and our method
perform the best, but our method produces an encoded size
roughly 15% smaller than the best encoding technique. We
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Figure 6: Compressed size without moving frames or en-

tropy encoding versus maximum encoding error (in degrees)

of various methods for the normals from the buddha model.

also tested each method using entropy encoding without the
moving frame but, due to the uniform distribution of points
over the sphere, we did not achieve significant compression
results over Figure 6.

Figure 8 compares our method versus other techniques on
several different models where all encoding techniques have
a maximum encoding error of approximately 1.2◦. The com-
pressed results in all cases use the moving frame method
together with entropy encoding. The table shows the com-
pressed file sizes and the encoding and decoding time in
terms of seconds (ignoring the time used for the moving
frame/entropy encoding) on an Intel Core i7 960. For all
data sets, our method produces the smallest encoding size
of all methods (between 10% to 33% smaller size). In all
cases, our algorithm is also the fastest in terms of encoding.
The encoding times for both our method and ONV are both
independent of ε. Despite using a few trigonometric oper-
ations, our method still outperforms ONV encoding due to
the number of conditional operations that the latter method
uses. Sphere1 and Octa both take linear time in the num-
ber of encoded bits per vector. Both Healpix and Sextant
encode vectors by searching through a list of points to find
the point closest to the input vector. Unfortunately, the num-
ber of points on the sphere increases exponentially with the
number of encoded bits per vector, which leads to significant
encoding time.

In terms of decoding, Healpix, Octa, Sextant and sphere1
all use lookup methods that require storing a table of all pos-
sible encoded vectors in memory. The decoding performance
of these methods is extremely fast. But, for small maximum
encoding error, these tables are quite large, for example tens
to hundreds of megabytes. Our decoding time is very com-
petitive with even the fastest of these methods. Moreover,
the result of our optimization Nθ( j), j = 0, . . . ,Nφ − 1 takes
a very small amount of space in memory. For 0.1◦ error, our
table takes less than 1.25 kilobytes of memory.

Compared to the error efficient methods, Healpix requires
substantial encoding time and our method is hundreds of

Figure 7: Compressed size using moving frames and en-

tropy encoding versus maximum encoding error (in degrees)

of various methods for the normals from the buddha model.

Our moving frames technique improves the compression of

all methods, though our compression benefits the most.

times faster in terms of encoding. Both Healpix and Sphere1
require large tables of all possible encoded vectors in mem-
ory for both encoding and decoding. Moreover, in the exam-
ple in Figure 8, we are approximately three times faster in
terms of encoding and this gap will widen as we decrease
ε. Finally, compared to ONV, our method, both with and
without our moving frame technique, consistently produces
a smaller encoded size for the same error and is more effi-
cient in terms of encoding/decoding performance.

4. Conclusions

Our spherical encoding method for unit vectors produces the
smallest encoded size for a given error. Moreover, our encod-
ing and decoding methods are very computationally efficient
and are independent of the desired accuracy ε. Finally, our
moving frames approach significantly improves the com-
pression results for all methods we tested, but works espe-
cially well with our encoding approach because our variable
bit encoding uses fewer bits when encoded vectors are near
the poles.
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