## Mathematical Probability, Math 411 - Homework 5

From the textbook solve the problem 41at the end of the Chapter 2, and problems $1,2,5,6,7,8$ at the end of Chapter 3. Also solve the following problems.

Problem 1. (a) A burglar just stole your key chain which has $n$ keys, exactly two of which open your apartment door. He will try to open your door using the keys one by one in a random order. Whenever a key does not open your door, he will not attempt to use this key again. What is the probability that the burglar opens your door on the $k$ th attempt.
(b) Find the expectation and the variance of the number of tries he has to do to find a key which opens the door. Simplify your answers.
You can use the following formulas:

$$
\begin{gathered}
1+2+3+\cdots+n=\frac{n(n+1)}{2}, \\
1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
\end{gathered}
$$

and

$$
1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

Problem 2. 1. Show that for any positive integer $n$ we have

$$
\frac{1}{n(n+1)(n+2)}=\frac{1}{2 n}-\frac{1}{n+1}+\frac{1}{2(n+2)}
$$

2. Use part 1. to find a formula for the sum

$$
\sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)}
$$

3. Let $X$ be a random variable with the range $\{1,2,3, \ldots\}$ and the probability mass function $p_{X}(n)=\frac{C}{n(n+1)(n+2)}$, where $C$ is some constant. Find the value of $C$ for which this is a well defined probability mass function.
4. Show that $\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$ and using this compute $\mathbf{E}(X)$.
5. Show that the variance of $X$ does not exists.

Problem 3. There are $n$ people coming to your birthday party. The probability that the $i$-th guest brings you a birthday present is $p_{i}$ independently of all other guests. What is the expected number of presents you get? (Hint: represent as a sum of random variables)

