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1 Introduction

Since 1929 when von Neumann [vN29] introduced the notion of an invariant mean on a group

(and more generally on a G-set) there is a permanent interest in the study of the phenomenon

known as amenability. Amenable objects like groups, semigroups, algebras, graphs, metric spaces,

operator algebras etc. play an important role in different areas of mathematics. A big progress

in understanding of the structure of the class of amenable groups and in the study of asymptotic

characteristics of them like growth of Følner sets (the notion introduced by A.M. Vershik in [Ver73]),

drift, entropy etc. was reached in the past two decades [Ver73, Gri85, KV83, Gri98, CSGH99, BV,

Ers04, Ers03, Ers05, BKNV04].

An important role in propaganda of the idea of amenability belongs to, perhaps the best,

introductory to the subject of amenable groups book of Greenleaf [Gre69] where the following

question is formulated.

Q1. Let X be a G-set and there is an invariant mean for the pair (G, X). Does this imply that

the group G is amenable?

Here one has to add some extra conditions in order to avoid immediate negative answer to

the question. Namely, one has to assume that the group G acts faithfully (otherwise the pair

(Fm, Fm/N) would be a trivial counterexample where Fm is a free group of rank m ≥ 2, N /Fm is a

normal subgroup such that the quotient Fm/N is amenable and Fm acts on Fm/N in the standard

way). The second reasonable assumption is transitivity of the action of G on X. Otherwise one

can take X equal to a union of G-orbits and then existence of an invariant mean for (G, X) would

follow from the existence of an invariant mean for any pair (G, Gx), where x ∈ X. Of course the

action of G on orbits can be nonfaithful even in case it is faithful on X, but certainly a transitive

amenable pair (G, X) with nonamenable G can be viewed as a more interesting example giving the

negative solution of the above question. So we reformulate the Greenleaf question as follows.

Q2. Let a group G act transitively and faithfully on a set X. If the pair (G, X) is amenable (i.e.

there is G-invariant mean on X) does this imply amenability of G?
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Surprisingly, the question of Greenleaf did not attract attention of a large community of mathe-

maticians, although it was solved (in negative) in [vD90]. But recently the interest to this question

came back and a number of new constructions are on the way to print. This is stimulated, in

particular, by the observation made in [MP] that coamenability of subgroups (a subgroup H < G

is coamenable if a pair (G, G/H) is amenable) behaves differently from coamenability of normal

subgroups.

We are going to present in this note two constructions of amenable actions of nonamenable

groups. In the first construction G is a free noncommutative group and the action (G, X) is viewed

as a Schreier graph of G, so that amenability of the action is converted to amenability of the graph.

A similar construction appears in [GKN05].

In the second example we use the methods of the theory of groups acting on rooted trees

developed in [Sid98, Gri00, BGŠ03, GNS00]. We start with an arbitrary nonamenable residually

finite group G, realize it as a group acting on a spherically homogeneous rooted tree T and then

extend it to a group G̃ (also acting on a rooted tree) in a way, which guarantees amenability of the

pair (G̃, G̃/P ) where P is a parabolic subgroup (i.e. the stabilizer of a point of the boundary ∂T ).

The next question naturally arises as a part of our investigation.

P1. For which nonamenable groups G there is a faithful transitive and amenable action (G, X)?

(i.e. there is a coamenable subgroup H < G with the core

⋂

g∈G

g−1Hg

being trivial). Let us call such groups NAA groups. Observe that groups with Kazhdan T -property

are not NAA groups.

P2. Is there a finitely generated nonamenable group without property (T ) and without NAA

property?

As far as we know, Y. Glasner and N. Monod have other two constructions of amenable pairs

(G, X) with nonamenable G. It would be interesting to get more on such constructions.

2 The first construction

In our first construction the group G will is the free group Fm of rank m ≥ 2, the set X is the set

Fm/H of cosets gH, g ∈ Fm, where H < Fm is a coamenable subgroup with trivial core (so that

the left action (Fm, Fm/H) is amenable, faithful and transitive).

The group H will be constructed in a combinatorial-geometric way via the construction of a

2m-regular amenable graph (with some extra properties) which will be converted to a Schreier

graph Γ = Γ(Fm, H, S) where S = {a1, . . . , am} is a free set of generators of Fm.

Remind that the set of vertices of the graph Γ is identified with the set of left cosets gH, g ∈ Fm

and two “vertices” gH and hH are connected by an oriented edge labelled by s if gH = shH, where

s ∈ S ∪ S−1. Obviously the degree of each vertex of this graph is 2m. Amenability of the pair

2



(Fm, H) is equivalent to amenability of the graph Γ, which can be defined as existence of a sequence

{Fn} of finite subsets of Γ with the property that |∂Fn|/|Fn| → 0 as n → ∞, where ∂Fn is the

boundary of Fn (for amenability of graphs see [CSGH99]). One of properties that insure amenability

of a graph is subexponentiality of the growth [CSGH99] (which means that the number of vertices

in Γ of combinatorial distance ≤ n from a distinguished vertex v0 grows slower than exponential

functions). It is known [Har00] that every 2m-regular (nonoriented and without labelling of edges)

graph ∆ can be converted to a Schreier graph of a free group Fm by putting an orientation on the

edges and labelling of the edges by the elements of the set S∪S−1. Therefore any example of a 2m-

regular graph of subexponential growth leads to a construction of an amenable pair (Fm, Fm/H).

A free generating set of the subgroup H < Fm can be found in the following way.

Construct a spanning subtree T in ∆ and let E0 be the set of the edges of ∆ that do not

belong to T . For each e ∈ E0 let te be the path peq where p is the geodesic path in T joining the

initial vertex v0 of ∆ with the beginning of the edge e and q is the geodesic path in T joining the

endpoint of e with v0. Let we be the word read along the path te. Then {we, e ∈ E0} is a free set

of generators of H.

There are plenty of 2m-regular graphs of subexponential (even polynomial) growth. The prob-

lem only is in getting the faithfulness of the action of Fm on Fm/H, i.e., in showing that the

core ⋂

g∈Fm

g−1Hg (1)

is trivial. The last step in our construction is to show how to construct the graph ∆ which guarantees

the triviality of the core (1).

A word w over the alphabet S ∪S−1 represents an element of H if and only if the path lw in ∆

starting in the vertex v0 and determined by the word w is closed. If we change the reference vertex

v0 by a vertex u0, then we will replace the group H by its conjugate g−1Hg, where g is an element

given by a word that can be read on any path joining v0 with u0. Thus, if we construct a graph

∆ with the property that for any nonempty freely reduced word w there is a vertex u of the graph

such that the path beginning in u and determined by the word w is not closed, then the core of

H will be trivial. This property is satisfied if for any positive integer r there is a vertex ur of the

graph, such that the length of any back-trackless loop in ∆ beginning in ur is greater than r (i.e.

the neighborhood of ur in ∆ of radius r is a tree).

Construction of a 2m-regular graph which satisfies all the listed properties is easy. Start with

an m-dimensional grid Z
m = ∆0, where m > 1, and make a sequence of local surgeries in it by

replacement at the r-th step the 1-neighborhood of a vertex ur of ∆0 (see Figure 2) by the graph

shown next on Figure 2, where Γr is any (2m − 1)-regular graph with 2m(2m − 1)r−1 vertices.

The graph ∆0 has polynomial growth of degree 2m. It is clear that if we choose the sequence

{ur}
∞
r=1 of vertices in ∆0 such that the distance dr of ur from the origin 0 of ∆0 = Z

m is growing

very fast than the graph ∆ obtained from ∆0 by such local reconstructions will have a polynomial

growth (and hence will be amenable) and the core of the corresponding group H will be trivial.
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Figure 1:

3 Automorphism groups of rooted trees

Let X = (X1, X2, . . .) be a sequence of finite sets and let us denote by X
∗ the set of words x1x2 . . . xn,

where xi ∈ Xi, together with the empty word ∅. Let us denote

X
n = {x1 . . . xn : xi ∈ Xi} = X1 × · · · × Xn

and X
0 = {∅}. Then X

∗ =
⊔

n≥0 X
n.

We can transform X
∗ into a rooted tree in a natural way: connect every vertex v ∈ X

n to the

vertices of the form vx for x ∈ Xn+1. The empty word ∅ is the root of the tree. The tree X
∗ is

called the spherically-homogeneous tree of the spherical index (|X1|, |X2|, . . .). The spherical index

determines the tree uniquely, up to an isomorphism of rooted trees.

We denote Xn = (Xn+1, Xn+2, . . .). The spherically homogeneous tree X
∗ is called regular if its

spherical index is constant. In this case we may assume that the sequence X = (X1, X2, . . .) is also

constant. In this case Xn = X = (X, X, . . .).

The boundary X
ω of the tree X

∗ is identified with the set of the infinite words of the form

x1x2 . . ., where xi ∈ Xi. The disjoint union X
ω t X

∗ has a natural topology defined by the base

consisting of the cylindrical sets

vX
ω
|v| t vX

∗
|v|

of words starting with a given finite word v. Here |v| denotes the length of the word v, i.e.,

v ∈ X
|v|. The topological space X

ω t X
∗ is compact and totally disconnected. The subspace X

ω is

homeomorphic to the Cantor set and the topology on it is the direct product topology of the finite

discrete sets Xi. The subset X
∗ is discrete and dense in X

ω t X
∗.

The boundary X
ω also has a natural measure (that we call Bernoulli measure) equal to the direct

product of the uniform probability measures on the sets Xi. It is the unique measure invariant

under the action of the full automorphism group of X
∗.

We are interested in groups acting faithfully on the tree X
∗ by automorphisms. Every such an

action extends in a unique way to an action by homeomorphisms on X
ω tX

∗. The obtained action

on X
ω is measure-preserving.

An action of G on X
∗ is said to be level-transitive, if it is transitive on every level X

n of the tree

X
∗. The action is level-transitive if and only if the induced action on X

ω is minimal, i.e., has dense
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Figure 2:
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orbits (see [GNS00]). In particular, if an action of G on X
∗ is faithful and level-transitive, then the

restriction of the action onto any G-orbit of X
ω is also faithful.

An action is level-transitive if and only if it is ergodic with respect to the Bernoulli measure on

X
ω.

If g is an automorphism of X
∗ and v ∈ X

n is a word, then the restriction g|v is the automorphism

of the tree X
∗
n defined by the condition that

(vw)h = vhwg|v

for all w ∈ X
∗
n. It is easy to see that g|v is uniquely defined and is an automorphism of X

∗
n.

If the sequence X is constant (and hence Xn = X for all n), then an automorphism g of X
∗ is

said to be finite-state if the set {g|v : v ∈ X
∗} is finite. The set of all finite-state automorphisms is

a countable subgroup of the automorphism group of X
∗, is called the group of finite automata and

is denoted F(X).

If g is an automorphism of the tree X
∗, then we say that an infinite word x1x2 . . . ∈ X

ω is g-rigid,

if there exists such n that g|x1...xn
is trivial. The set of g-rigid points is obviously open.

We say that an automorphism g of X
∗ is almost finitary, if the set of g-rigid points of X

ω has

full measure.

Proposition. The set of almost finitary automorphisms of X
∗ is a group.

Proof. We have the following obvious properties of restrictions

g|v1v2
= g|v1

|v2
, (g1g2) |v = (g1|v) (g2|vg1 ) ,

(
g−1

)
|v =

(
g|

vg−1

)−1
.

Suppose that g is almost finitary. Then for almost every sequence x1x2 . . . ∈ X
ω there exists n

such that g|
(x1...xn)g−1 = 1, since g−1 is measure-preserving. But then

g−1|x1...xn
=

(
g|

(x1...xn)g−1

)−1
= 1,

which proves that g−1 is almost finitary.

Suppose now that g1, g2 are almost finitary. Then for almost every x1x2 . . . ∈ X
ω there exists n

such that g1|x1...xn
= 1 and g2|(x1...xn)g1 = 1, since g1 is measure-preserving. Then we have

(g1g2) |x1...xn
= g1|x1...xn

· g2|(x1...xn)g
1

= 1,

i.e., g1g2 is also almost finitary.

Let us denote by A(X) the group of almost finitary automorphisms of X
∗. We have the following

examples of almost finitary automorphisms.

Proposition. Let X be constant. An element g ∈ F(X) is almost finitary if for every v ∈ X
∗ there

exists u ∈ X
∗ such that g|vu = 1.

6



Proof. Let {g1, g2, . . . , gn} = {g|v : v ∈ X∗} be the set of the states of g. There exists v1 such that

g1|v1
= 1. There exists v2 such that g2|v1v2

= 1, and further, by induction, there exists a sequence

v1, v2, . . . , vn of words such that gi|v1v2...vi
= 1 for i = 1, . . . , n. Then for every i = 1, . . . , n we have

gi|v1v2...vn
= gi|v1v2...vi

|vi+1...vn
= 1.

We conclude that for every word containing the word w = v1v2 . . . vn, i.e., for every word of the

form u1wu2, we have

g|u1wu2
= g|u1

|w|u2
= gi|w|u2

= 1|u2
= 1

for some i.

Thus, if an infinite word x1x2 . . . ∈ X
ω contains w = v1v2 . . . vn as a subword, then g|x1...xn

= 1

for some n, i.e., x1x2 . . . is g-rigid. But it is obvious that the set of infinite words containing a given

finite word w has full measure.

Let g be a homeomorphism of a compact topological space X . A point ξ ∈ X is said to be

g-regular if either ξg 6= ξ, or g fixes pointwise a neighborhood of ξ. If G is a homeomorphism group

of X , then a point ξ ∈ X is said to be G-regular, if it is g-regular for every g ∈ G.

Suppose that G is a countable homeomorphism group of a compact space X . One can prove

the following properties of G-regular points (see [GNS00] and [Nek04]):

1. The set of G-regular points is co-meager, i.e., is an intersection of a countable set of open

dense sets.

2. Suppose that G is generated by a finite generating set S and that the action is minimal on

X , i.e., that every G-orbit is dense. Then for every G-regular point ξ the Schreier graph

Γ (G, Gξ, S) is locally contained in the Schreier graph Γ (G, Gζ , S) for every ζ ∈ X .

Here Gζ denotes the stabilzier of ζ in G. A graph Γ1 is locally contained in a graph Γ2 if for

every vertex v1 of Γ1 and every R ∈ N there exists a vertex v2 of Γ2 such that the ball in Γ1 of

radius R with center in v1 is isomorphic as a labeled graph with the ball in Γ2 of radius R with

center in v2. The balls are viewed as subgraphs of Γi with the induced graph structure.

Note that if g|x1x2...xn
is trivial, then all the points of the cylindrical set x1x2 . . . xnX

ω
n are g-

regular. Consequently, every g-rigid point of X
ω is g-regular. In particular, if G is a countable

subgroup of A(X), then almost every point of X
ω is G-regular.

Theorem. If a finitely-generated group G ≤ A(X) is level-transitive, then for every point ξ ∈ Xω

the G-space G/Gξ is amenable.

Proof. Almost every G-orbit on X
ω consists of G-rigid sequences. Hence, for almost every w ∈ X

ω

and for every g ∈ G the sequences w and wg are co-final, i.e., are of the form w = v1w
′ and

wg = v2w
′, where v1, v2 ∈ X

n for some n and w′ ∈ X
∗
n.

The co-finality equivalence relation is hyperfinite, i.e., is a union of an increasing sequence of

measurable equivalence relations with finite equivalence classes. Namely, the co-finality relation is
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equal to
⋃

n≥1 En, where En is the equivalence relation consisting of the pairs (w1, w2) ∈ X
ω × X

ω

such that w1 = v1w
′ and w2 = v2w

′ for some w′ ∈ X
ω
n and v1, v2 ∈ X

n.

We see, therefore, that the G-orbit equivalence relation (the equivalence relation whose equiv-

alence classes are the G-orbits) is a sub-relation of the hyperfinite co-finality relation, up to sets

of measure zero. The group G acts by measure-preserving transformations on X
ω, hence, by Theo-

rem 1 of [Kai97] the Schreier graphs Γ (G, Gw, S) are amenable for almost every w ∈ X
ω. Moreover,

since almost every point of X
ω is G-regular and the Schreier graphs Γ (G, Gw, S), for G-regular w,

are locally contained in every graph Γ (G, Gξ, S), the Schreier graph Γ (G, Gξ, S) is amenable for

all ξ ∈ X
ω.

4 Second construction

Let us show how the last theorem can be used to construct amenable actions of non-amenable

groups. This construction was inspired by a “tree-wreathing” construction of S. Sidki.

Let G be any finitely-generated residually finite non-amenable group. It is known, that it acts

faithfully on a spherically homogeneous rooted tree X
∗. Take an additional letter $ /∈ Xi and

consider a new sequence Y = (X1 ∪ {$}, X2 ∪ {$}, . . .). The tree X
∗ is in a natural way a sub-tree

of the tree Y
∗. We can extend the action of G on X

∗ to an action on Y
∗ in the following way.

Suppose that w ∈ Y
∗ is arbitrary. If w ∈ Y

∗ does not belong to X
∗, then it can be uniquely written

in the form w = v$u for v ∈ X
∗ and u ∈ Y

∗
|v|+1. Then we set

wg = vg$u

for all g ∈ G. It is easy to see that we get in this way an action of G on Y
∗, which extends the

original action on X
∗, and thus is also faithful. Note also that (in the case of a constant sequence

X) the obtained action is finite-state if and only if the original action on X
∗ is finite-state.

The obtained action of G on Y
∗ is an action by almost finitary automorphisms, since every

sequence y1y2 . . . ∈ Y
ω containing the letter $ is G-rigid. Hence, we get an embedding of G into

A(Y). However, the action of G is not level-transitive on Y
∗.

But it is easy to embed G < A(Y) into a level-transitive subgroup of A(Y). It is sufficient to take,

for instance any level-transitive finitely-generated subgroup H < A(Y) and consider F = 〈G, H〉.

Then F is a non-amenable subgroup of A(Y), and thus by the proved theorem, the F -space F/Fw

is amenable for every w.

Probably, the simplest example of the group H is the infinite cyclic group generated by the

adding machine. We identify the alphabets Yi with the sets {0, 1, . . . di − 1}, where (d1, d2, . . .) is

the spherical index of Y
∗, and define the adding machines an acting on Y

∗
n by the recurrent rule

(iw)an =

{
(i + 1)w for i = 0, 1, . . . , dn+1 − 2

0wan+1 for i = dn+1 − 1.

Then a0 is an automorphism of Y
∗ generating a level-transitive cyclic group.
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An explicit construction can be done in the following way. Consider the constant sequence

X = (X, X, . . .), where X = {0, 1}, and define three automorphisms a, b, c of X
∗ by the inductive

rules

(0w)a = 1
(
wb

)
(1w)a = 0

(
wb

)

(0w)b = 0 (wa) (1w)b = 1 (wc)

(0w)c = 0 (wc) (1w)c = 1 (wa) .

It is known that the group generated by the automorphisms a, b, c is isomorphic to the free product

C2 ∗ C2 ∗ C2 of three groups of order 2, and thus is non-amenable. The definition of the transfor-

mations a, b and c implies that they are finite-state. This example of a three-state automaton was

found by our students E. Muntyan and D. Savchuk. A proof, that it generates the free product

C2 ∗ C2 ∗ C2 can be found in [Nek05].

The above construction gives the following non-amenable group with amenable Schreier graphs.

It is the group G generated by four transformations a, b, c, d acting on the tree defined over the

alphabet Y = {0, 1, 2} and satisfying the recursions

(0w)a = 1
(
wb

)
(1w)a = 0

(
wb

)
(2w)a = 2w

(0w)b = 0 (wa) (1w)b = 1 (wc) (2w)b = 2w

(0w)c = 0 (wc) (1w)c = 1 (wa) (2w)c = 2w

(0w)d = 1w (1w)d = 2w (2w)d = 0
(
wd

)
.
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