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Abstract

We introduce the notion of the gradient rank function of a descending chain of subgroups
of finite index and show that the lamplighter group Z2 o Z has uncountably many 2-chains
(that is chains in which each next group has index 2 in previous one) with pairwise different
gradient rank functions. Meanwhile we get some information on subgroups of finite index in the
lamplighter group.

1 Introduction

The Lamplighter group, by which we mean the wreath product of the group of order 2 with the
infinite cyclic group, denoted L (thus L = Z2 o Z) is a popular object in group theory and its
applications. Just one illustration of this is Chapter 6 in [1] and some sections in [7]. It is a 2-
step solvable group (i.e. metableian group), of exponential growth, infinitely presented and scale
invariant [2, 3], which is the cornerstone in all known results about the range of L2-Betti numbers
of groups on compact manifolds. In particular, the Atiyah’s problem about the existence of closed
manifold with non-integer and even irrational L2-Betti numbers was completely solved on the base
of considerations related to L, [2, 9, 10].

In [4], Lackenby introduced an interesting group-theoretical notion, the rank gradient, which
happens to be useful in topology, the theory of countable equivalence relations, the study of amenable
groups and other areas. Given a group G and a descending sequence {Hn}∞n=1 of subgroups of finite
index one can define

RG(G, {Hn}) = lim
n→∞

d(Hn)− 1
[G : Hn]

to be the rank gradient of the sequence {Hn} with respect to G where d(H) denotes the minimal
number of generators of a group H.

Amenable groups were introduced by J. von Neumann in 1929 and play an important role in
many areas of mathematics [3]. There are a number of results due to Lackenby, M. Abért, A.
Jaikin-Zapirain and N. Nikolov showing that amenability of G or of certain normal subgroup of G
usually implies vanishing of the rank gradient. For instance, finitely generated infinite amenable
groups have RG = 0 with respect to any normal chain with trivial intersection (see Theorem 5
in [5]). It is reasonable to study the rank gradient for sequences {Hn} with trivial core (i.e. no
nontrivial normal subgroups in the intersection ∩nHn). Indeed RG(G, {Hn}) = RG(G/N, {Hn/N})
if N / G, N < ∩nHn. The most attention is given to the case when ∩nHn = {1}. One of the
remaining open questions is

Question 1.1. [5] Let G be a finitely generated infinite amenable group. Is it true that RG(G, {Hn}) =
0 for any chain with trivial intersection?
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If ∩∞n=1Hn = H then H is a closed subgroup with respect to the profinite topology and RG(G, {Hn})
somehow is a characteristic of the pair (G,H) which in some situations may characterize the pair
(G,H) up to isomorphism. We say two pairs (G,H), (P,Q) are isomorphic is there is an isomorphism
φ : G → P such that φ(H) = Q.

If RG(G, {Hn}) = 0 then one may be interested in the decay of the function of natural argument
n ∈ N given by

rg(n) = rg(G,{Hn})(n) =
d(Hn)− 1
[G : Hn]

which we call the rank gradient function. We may omit the index (G, {Hn}) if the group and chain
in consideration is understood. Again, the rate of decay of rg(n) may be an invariant of the pair
(G,H) and may characterize the way H lies in G as a subgroup. Note that the same subgroup can
be obtained as the intersection of distinct chains: one can delete certain elements in Hn thereby
allowing rg(n) to decay as fast as one would like (and this is not the only way to get different chains
with the same intersection). Thus, we restrict our definition to the case when for some prime p, we
have [Hn+1 : Hn] = p and in this case we say the chain is a p-chain. Our main result shows that
rg(n) may be used to show that the lamplighter contains 2-chains with different decay of the rank
gradient function.

Theorem 1.2. The group L has uncountably many 2-chains with pairwise different rank gradient
functions.

This result is obtained by explicitly describing subgroups of index 2 in the “higher rank” lamp-
lighter groups Ln = Zn

2 o Z.
We also prove

Theorem 1.3. For any 2-chain {Hn} in L each member Hn is isomorphic to Li = Zi
2 oZ for some

i ≤ n.

2 Subgroups of index 2 in Ln

Let Ln = Zn
2 o Z = ⊕ZZn

2 o Z (by Z2 we mean the group of order 2, the generator of active group
Z acts as a shift in the direct sum) and An = ⊕ZZn

2 be the base group of Ln. Observe that Ln is
generated by elements ai, i = 1, 2, . . . , n and t where t is a generator of infinite multiplicative cyclic
group which we nevertheless denote in the additive way Z, and ai ∈ An, i = 1, 2, . . . , n are elements
given by an n × ∞ matrix with all entries zero except one located in i − th row and column at
place 0 (we assume that the columns are enumerated by the elements of Z). So Ln = 〈a1, . . . , an, t〉
and we will use similar notation for generation in the future. Observe that if we identify elements
of the base group An with two side infinite sequences of columns of dimension n over Z2 then the
conjugation by t acts on them as the shift τ in the set of sequences. We will later use this fact.

Theorem 2.1. Let H < Ln be a subgroup of index 2. Then either H w Ln or H w L2n. There are
2n+1 − 2 subgroups of the first type and 1 subgroup of the second type.

In the proof, we use the following well known result.

Lemma 2.2. Let M = Zp⊕ · · · ⊕Zp⊕ · · · be a finite or infinite direct sum of cyclic groups Zp with
p a prime. Then every subgroup P < M is a direct summand: M = P ⊕Q for some Q (see Chapter
10 in [6]).
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Note that we will often interpret Zn
p as a vector space of dimension n over the prime field Fp w Zp.

Before we present a proof of Theorem 2.1, we will need the following lemma.

Lemma 2.3. Let M = Zn
p . Every subgroup P < M of index p has a unique ”orthogonal” complement

Q < M such that M = P ⊕Q.
The group Q is generated by the element ā = (a1, . . . , an) which is determined by P . Then P

consists of elements x̄ = (x1, . . . , xn) whose coordinates satisfy the “orthogonality” condition

a1x1 + · · · anxn ≡ 0 (mod p).

Proof. Let [M : P ] = p. Consider subgroup P as a vector subspace of the vector space M = Zn
p .

Choose a basis b̄1, . . . , b̄n−1 of P :

b̄1 = (b1,1, . . . , b1,n)
...

b̄n−1 = (bn−1,1, . . . , bn−1,n),

bi,j ∈ Zp. Now define the (n−1)×n matrix B = (bij) which has rank n−1 and consider the system
of equations over Zp.

b1,1x1 + · · ·+ b1,nxn = 0
...

bn−1,1x1 + · · ·+ bn−1,nxn = 0.

Note that this system has a nontrivial solution ā = (a1, . . . , an) and every other solution is some
constant multiple of ā. It is then easy to see that M = P ⊕ 〈ā〉. It is also clear that given some
ā ∈ M, ā = (a1, . . . , an) with a 6= 0, the set of solutions of a1x1 + · · · anxn ≡ 0 (mod p) yields a
subgroup P of index p in M .

Observe that using the linear algebra tools the notion of orthogonal complement can be defined in a
similar way as we did for a subgroup of index p for arbitrary subgroup in elementary p-group of finite
rank. We will use the notation H⊥ to denote the orthogonal complement of a subgroup H < M in
M .

Corollary 2.4. There is a bijection between subgroups of index p in M = Zn
p and subgroups of order

p given by:
H → H⊥.

We now restrict our attention to the case when p = 2. The following is a proof of Theorem 2.1.

Proof. First, observe that the abelianization A := (Ln)ab is isomorphic to Zn
2 × Z. Define A2 < A

to be the subgroup generated by the squares of elements in A. Then, A/A2 w Zn+1
2 = 〈ā1, . . . , ān, t̄〉

where as before Z = 〈t〉 is the notation for the multiplicative infinite cyclic group generated by t, and
āi or t̄ denotes the corresponding to ai or t element of the quotient group Ln/[Ln,Ln]L2

n ' Zn+1
2 .

If we consider ai as an n×∞ matrix, then it is of the form



. . . 0 0 0 . . .
...

...
...

. . . 0 1 0 . . .
...

...
...

. . . 0 0 0 . . .




,
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where the 1 is in the i-th row and the 0-th column. Recall that each ai is the i-th generator of A0
n

where we define
An =

⊕

Z
Zn

2 =
⊕

j∈Z
Aj

n.

The number of subgroups of index 2 in Ln is equal to the number of subgroups of index 2 in Zn+1
2 ,

which is equal to the number of epimorphisms Ln → Z2, which is equal to 2n+1 − 1 (as a kernel
of any such epimorphism is an orthogonal complement to a subgroup of order 2 generated by a
nonidentity element). We have a short exact sequence

1 → An → Ln
φ→ 〈t〉 → 1,

where φ is the natural projection onto Z = 〈t〉. Let H < Ln be of index 2. H is normal in Ln and
therefore shift invariant.

There are two cases: either φ[H] = 〈t2〉 or φ[H] = 〈t〉.

Case 1. Assume φ[H] = 〈t2〉. In this case H ∩ An = An, otherwise [Ln : H] ≥ 4, and there is
only one subgroup H of index 2 in Ln with this property. Furthermore, t2 ∈ H and H = An o 〈t2〉.

Let D0 < An, D0 ' Z2n
2 be a subgroup of n×∞ matrices where the only nonzero entries belong

to columns placed at 0 and 1. Define Dj = t−2jD0t
2j . Then notice Di ∩ Dj = 0 for i 6= j and

An = ⊕j∈ZDj . The element t2 acts by conjugation on ⊕j∈ZDj as the one-step shift τ . This implies
H w L2n.

Case 2. Now we assume φ[H] = 〈t〉. We have 2n+1 − 2 such subgroups H. In this case,
H ∩An = P is a shift invariant subgroup of index 2 in An. Because P is shift invariant, there must
be some x ∈ An whose matrix representation has only one nonzero column, namely the column with
place 0, such that x /∈ P . Let q ∈ Zn

2 be the vector with coordinates the same as x. That is, we
consider x as an n× 1 vector and relabel it q for clarity. Then let Q0 be the orthogonal complement
to 〈q〉:

A0
n = 〈q〉 ⊕Q0

where as before we have An = ⊕i∈ZAi
n. Note that we are considering Q0 and 〈q〉 as subgroups of

A0
n and so Q0 is a subgroup of H since otherwise we would have [L : H] ≥ 4. Define Q = ⊕i∈ZQi

where Qi = t−iQ0ti.
Let R = Z2[t, t−1] be the ring of Laurent polynomials in Z2. It is isomorphic to the group ring

Z2[Z] where as before Z is and additive notation for the multiplicative infinite cyclic group generated
by t. The group An can be converted into an R-module Mn by the agreement that the generator t
of cyclic group acts on An as the right shift τ (remember that elements of An are viewed to be two
sided infinite sequences of columns representing the elements of Zn

2 ). Moreover An is the additive
group of this module, Mn is a free R-module of rank n and is isomorphic to Rn.

Observe that Q is a shift invariant subgroup of H. Because of lemma 2.2 there is a subgroup
S < P such that the decomposition P = Q⊕ S holds. S also is a shift invariant subgroup of P and
therefore can be interpreted as R-module. Therefore P, Q and S can be considered as submodules
of Mn and the decomposition of modules P = Q ⊕ S holds (we will not change the notation for
P,Q, S when converting them in modules or vise versa, each time it will be clear if we consider these
objects as abelian groups or as R-modules).
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We will need the following lemma. Any graduate level textbook in Algebra will contain the fact
that a ring of polynomials with coefficients in some field is a principal ideal domain. The ring R
is the localization of the polynomial ring in the multiplicative set consisting of the non-negative
powers of t [8]. Many properties of the Laurent polynomial ring follow from the general properties
of localization as well as the next one which is well known fact, but being unable to find a reference
we add a proof of it.

Lemma 2.5. The ring R is a principal ideal domain.

Proof. Let I be an ideal in R. Then I ∩ Z2[t] is an ideal in Z2[t], and since the ring of polynomials
over the field is a principal ideal domain, I ∩ Z2[t] = (f) for some f ∈ Z2[t]. Then Rf ⊂ I. Each
h ∈ I has a form h = t−kg for some k ∈ N and g ∈ Z2[t]. Thus g ∈ I ∩ Z2[t] = (f), and so
h = t−kfa ∈ Rf for some a in R. Therefore Rf = I.

Being a submodules of a free finitely generated module Mn ' Rn over a principal ideal domain
R the modules P,Q and S are also free. As P is a subgroup of index 2 in An, the module P is free
of rank n, Q is free of rank n − 1 and S is free of rank 1. Thus the Rn-module P being converted
into a group generated by the additive group P and the element t acting by conjugation on P as
shift τ becomes isomorphic to Rn o Z ' Ln.

We have 2n+1−2 subgroups H which can be obtained in the second case. Indeed, there are 2n−1
choices for vector q and therefore the subgroup Q. And to each choice of Q we have two choices to
construct H: either to assume that t ∈ H or that t is not in H. Thus we get 2(2n − 1) = 2n+1 − 2
subgroups in the case (2). This finishes the proof of the first theorem.

The theorem 1.3 is a corollary of theorem 2.1.

Since Z2[x, x−1] is a principal ideal domain by Lemma 2.5, a shift invariant subgroup T ofA1 = ⊕ZZ2

correspond to a principal ideal J such that

Z2[x, x−1]/J w Z2

which is a field. This implies that J is a maximal ideal generated by some irreducible polynomial
of degree 1. Thus, J = 〈f〉 with deg(f) = 1 so f = x + 1. The corresponding element of T is
then ξ = (. . . , 0, 1, 1, 0, . . .) where the 1’s are in the 0 and 1 places respectively. Additionally, ξ is a
generator of T as an R- module. One then concludes that T consists of sequences

(. . . , a−1, a0, a1, . . .)

where
∑

n

an ≡ 0 (mod 2). (1)

This observation gives an effective way to construct a subgroup H of index 2 in Ln with H ' Ln.
Choose a basis E in Zn

2 and write elements of An as n × Z matrices with respect to this basis at
each place i ∈ Z. Then take a subgroup of An consisting of elements which satisfy the relation (1)
in the first row. And after make a choice: t ∈ H or not.
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3 Construction of chains

We know that L contains 3 subgroups of index 2, 2 of which are isomorphic to L and the other is
isomorphic to L2. Furthermore, L2 has 7 subgroups of index 2, 1 of which is isomorphic to L4 and
6 are isomorphic to L2, etc. If we take a subgroup H < L of index 2k obtained from L by taking a
descending chain of subgroups of index 2 in the previous member of the chain then we have H w L2i

for some i ≤ k. We can then take a subgroup of index 2 isomorphic to L2i (call this choice type (0))
or to L2i+1 (call this choice type (1)). It is clear that d(Ln) = n + 1 (obviously Ln is generated by
n + 1 elements and the abealization of Ln is Zn

2 ×Z and is n + 1 generated). Now let ω ∈ {0, 1}N be
a sequence. Then these two types of choices for subgroups of index 2 allow us to construct a chain
{Hω

n } such that the term Hω
n is obtained from the previous term Hω

n−1 by looking at the nth term
ωn in the sequence ω. That is, a 0 dictates to make a choice of type (0) and a 1 dictates to make a
choice of type (1). It is clear that in such a way we obtain uncountably many different chains {Hω

n }
such that each of the functions rgω(n) are distinct. This provides the proof of the Theorem 1.2.

Remark: if rω = limn→∞ rgω(n) > 0 then rω = 1
2k for some k, the rank gradient of the chain

{Hω
n } is positive and the number of 0’s in the sequence ω is k. In this case, Hω = ∩nHω

n contains a
nontrivial normal subgroup. In all other cases the rank gradient of the 2-chain is 0.

4 Conclusion

It is clear that the same method used to construct uncountably many rank gradient functions of
2-chains in L allows to construct uncountably many 2-chains with pairwise different types of decay
of the rank gradient function. For instance, for this purpose one can consider a family of functions
δα(n) = 2−nα

with 0 < α < 1 and to each such function correspond a sequence ω with the property
that the rank gradient function rgω(n) is the “best approximation” of the function 2−nα

. By the “
best approximation” here, for instance, we mean the following. Starting with any subgroup H1 ' L2

of index 2 in L (which corresponds to the value ω1 = 1 of the first member of the sequence ω, and
the value rgω(1) = 1 > 1

2 = δα(1)) one can apply operation (0) till the first time when the value of
the rank gradient function will become less than the value of the function δα(n) (for corresponding
value of argument n). Then apply operation (1) till the rank gradient function will become greater
or equal to the value of δα(n) for corresponding value of n. Then again apply the operation (0) etc.
Continue in such way we will construct a 2-chain which approximates δα(n) in what we have called
the best possible way. As the rates of decay of functions δα(n) for different values of α clearly are
different the same hold for the corresponding gradient rank functions.

Our study is the first step in understanding which decays of the rank gradient function may arise
in the case of finitely generated residually finite amenable groups.

If {Hn}∞n=1 is a descending chain of subgroups of finite index in residually finite group G then
the intersection H∗ =

⋂∞
n=1 Hn is a subgroup of G closed in profinite topology (that is topology

generated by subgroups of finite index), and any closed subgroup can be obtained in that way. The
rank gradient function of the chain {Hn}∞n=1 introduced by us may serve as certain characteristic
of a subgroup H∗. Right now it is unclear how rg(n) depends on the chain {Hn}∞n=1 with the fixed
intersection H∗. Even in the case H∗ = {1} it may happen that different p-chains (p prime) with
trivial intersection have different decay of rg(n) but we do not have examples of this sort. Also it is
reasonable to consider chains with the property that Hn+1 is a maximal subgroup in {Hn}.

We have considered the case of the lamplighter group. It would be interesting to study the decay
of gradient rank function in other amenable groups, for instance in 3-generated infinite torsion
2-group of intermediate growth constructed by the first author in [11, 12].
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[2] Grigorchuk, Rostislav, and Żuk Andrzej.The Lamplighter Group as a Group Generated by a
2-state Automaton and its Spectrum. Geometriae Dedicata. 87. (2001), 209-244.
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