Math 411 - Fall 2014 - 2nd Exam.

1. (25 pts) Determine which of the following statements are true or false:
 - a) Let X be a discrete random variable that takes values $1, 2, 3$. The distribution function F_X is not continuous at the points $1, 2, 3$.
 - b) Let X, Y be two random variables. Then $\text{var}(X + Y) = \text{var}(X) + \text{var}(Y)$.
 - c) Let U be uniformly distributed on $[0, 2]$. Let $a, b \in [\frac{1}{2}, \frac{3}{2}]$ and $n \geq 2$. Then
 \[P\left(a - \frac{1}{n} < U < a + \frac{1}{n} \right) = P\left(b - \frac{1}{n} < U < b + \frac{1}{n} \right). \]
 - d) Let X be a hypergeometric random variable with parameters n, N, m. (n is the size of the “sample”, N is the total population and m is the size of the “target” population). If n is very small with respect to N, m, then X can be approximated by a Binomial r.v. Y with parameters $n, \frac{m}{N}$.
 - e) If X is normal with parameters μ, σ^2 and a, b are real numbers, then $Y = aX + b$ is also normal with $E[Y] = a\mu + b$.

2. (20 pts) Let X be a discrete random variable taking values $\{1, 2, 3, 4\}$ with equal probabilities. Write the probability mass function and the distribution function of X.
 a) Compute the probabilities: $P\{1 \leq X \leq 3\}, P\{1 < X \leq 3\}$ and $P\{1 < X < 2\}$.
 b) Compute the expected value of $Y := X^2$.

3. (20 pts) Let X be a random variable with density
 \[f_X(t) := a \begin{cases}
 t & 0 < t \leq 1 \\
 2 - t & 1 < t \leq 2 \\
 0 & \text{otherwise}
 \end{cases} \]
 where a is a real number. Compute a) $P(X \leq \frac{1}{2})$ and b) $E[X]$.

4. (15 pts) Let U be uniformly distributed on $[0, 1]$. Find the density of the random variable U^2.

5. (20 pts) Suppose that we roll two dice 12 times and let D be the number of times a double 6 appears. a) Compute the probabilities $P(D = 0)$ and $P(D = 2)$. b) Use Poisson to provide an approximation of the probabilities $P(D = 0)$ and $P(D = 2)$.

6. (20 pts) a) Suppose that a man’s height has a normal distribution with mean $\mu = 69$ (inches) and standard deviation $\sigma = 3$. What is the probability that a randomly chosen man is more than 72 inches tall?
 b) Suppose that we flip a (fair) coin 100 times. Use the (DeMoivre) central limit theorem to compute the probability to get at least 56 heads. (Use continuity correction).

Write 100 out of the 120 available points