Math 411 - Fall 2014 - 1st Homework.

1. Consider the set \(A = \{ A, B, C, D, E, F, G \} \). How many subsets of \(A \) of size 3 we have? How many of these subsets contain at least one of the letters \(A \) or \(B \)?

2. How many 5-digit numbers are there for which

 - a) the digit 7 appears at most 2 times.
 - b) each digit appears at most 1 time.
 - c) no two consecutive digits are equal.

 Remark: 00000 is considered a 5-digit number in our case.

3. In how many way a teacher can devide 20 exercises into 3 tests if the first test must have 6 problems and the other two must have 7 problems?

4. - a) How many distinct nonnegative integer valued solutions of \(x_1 + x_2 + x_3 = 4 \) are possible?
 - b) Compute how many partial derivatives of order 4 an analytic function of 3 variables has.

5. How many different linear arrangement are there of the letters \(A, B, C, D, E \) for which

 - a) \(A \) is last in line?
 - b) \(A \) is not last in line?
 - c) \(A \) is before \(D \)?
 - d) \(A, B \) and \(C \) are next to each other?

Due to Friday September 12.

Hints-solutions

1. a) \(\binom{7}{3} \).
2. a) \(9^3 + \binom{5}{1}9^4 + \binom{5}{2}9^3 \)
 - b) \(10 \times 9 \times 8 \times 7 \times 6 \).
 - c) \(10 \times 9 \times 9 \times 9 \times 9 \).
3. \(\binom{20}{6,7,7} \) (e.g. see Examples 5a, 5b)
4. a) (See Proposition 6.1) \(\binom{6}{2} \) (b) same as a).
5. a) 4!, b) 5! - 4! c) \(\frac{1}{2} \!5! \), d) 3! \times 3!.

1