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Long term objectives of the research program

Objectives

Develop numerical techniques for solving nonlinear conservation equations (PDEs with
dominant hyperbolic features) with the following guaranteed/certified properties:

Be invariant domain preserving.

Be asymptotic preserving (or well-balanced).

Be (somewhat) discretization agnostic.

Satisfy some entropy inequalities.

Key challenge: The above properties must be guaranteed/certified.

Why?

Numerical methods with certified properties

are robust.

can be used in confidence with very little know-how from the user.

do not involve numerical parameter “to learn.”
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Fields of applications

Fields of applications

Compressible Euler equations (transonic to hypersonic)

Euler-Poisson equations

Compressible Navier-Stokes

Gray radiation hydrodynamics

Ideal magnetohydrodynamics

Radiation transport

Multi-material fluid flows

Shallow water equations
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Results established so far

Some results established so far

Asymptotic and invariant domain preserving approximation of radiation transport.
(First-order in streaming regime, second-order in diffusion regime). Guermond,
Popov, Ragusa (2020)

Robustness is guaranteed for all the above methods up to second-order accuracy.
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Current work

Current work

Demonstration of extreme scalability of the proposed algorithms for the
compressible Euler equations and other hyperbolic systems using the deal.ii
library, Maier, Kronbichler (2021)

MPI
Multithreading
SIMD vectorisation

Invariant domain preserving approximation of Euler equation with tabulated
equation of state. Clayton, G, Popov (2021).

Topic of the today: extension to compressible Navier-Stokes using semi-implicit
time stepping

Second-order accurate technique that is guaranteed to be invariant domain preserving
technique under hyperbolic CFL. G, Maier, Popov Tomas (2021)

Beyond SSP ... explicit and IMEX ... (in preparation).

Invariant domain preserving approximation for mixed approximation.
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Current work: extreme scalability

Figure: Continuous Q1 elements, 1.817B grid points, Maier, Kronbichler (2021)
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Objectives

Conservation equation for u = (ρ,m,E):

∂tρ+∇·(vρ) = 0,

∂tm +∇·(v ⊗m + p(u)I− s(v)) = f,

∂tE +∇·(v(E + p(u))− s(v)v + k(u)) = f·v.

+ BC and Initial data.

Fluid is Newtonian and heat-flux follows Fourier’s law:

s(v) = 2µe(v) + (λ− 2
3
µ)∇·vI, e(v) = 1

2
(∇v + (∇v)T),

k(u) = −c−1
v κ∇e,

with µ > 0, λ ≥ 0, and κ > 0.
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Objectives

Two invariant domains can be identified:

A := {u | ρ > 0, e(u) > 0, s(u) > smin}, For Euler

B := {u | ρ > 0, e(u) > 0}, For NS
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Difficulties: conflicting invariant sets and conflicting variables

Difficulties: conflicting invariant sets and conflicting variables

Which invariant domain to preserve?
Minimum entropy principle is true for Euler.
Minimum entropy principle is false for NS.

Which variable should be used?
“Right variable” for Euler is u = (ρ,m, E) (conserved variables).
“Right variable” for NS is (ρ, v, e) (primitive variables).
Some advocate “entropy variable” and “entropy stability”. Why?

How to do the explicit-implicit time stepping?

Most“IMEX” methods cannot make the diference between conserved and primitive
variables.
Very few mathematically precise/correct results on the topic: Zhang & Shu (2017)

with ∆t ≤ ch2.
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Our solution

Our solution (an overview)

Use operator splitting to separate hyperbolic part and parabolic part.

Hyperbolic operator

∂tρ+∇·(vρ) = 0,

∂tm +∇·(v ⊗m + p(u)I) = 0,

∂tE +∇·(v(E + p(u)) = 0,

v·n|∂D = 0, or other admissible BC.

Parabolic operator

∂tρ = 0,

∂tm−∇·(s(v)) = f,

∂tE +∇·(k(u)− s(v)v) = f·v,
v|∂D = 0, k(u)·n|∂D = 0.

The idea is not new, e.g. Demkowicz, Oden, Rachowicz (1990), etc.

But how can it be done properly?
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Our solution

Our solution (an overview)

Combine the explicit and implicit part using Strang’s splitting in some clever way.

The devil is in the details. Just “invoking” Strang’s splitting is wishful thinking.
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Our solution

Our solution for the hyperbolic part (an overview)

Use conserved variables for the hyperbolic part.

Make the hyperbolic part explicit.

Invoke the ”invariant-domain” technology with ”convex limiting” for the explicit
hyperbolic part.
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Our solution

Our solution for the parabolic part (an overview)

Use primitive variables for the parabolic part.

Make the viscous terms implicit (in some clever way).

Make the implicit algorithm ”invariant-domain” preserving up to second-order in
time.



Background for the this work Compressible Navier-Stokes Numerical illustrations

Comments about IMEX vs. Strang

Comments about IMEX vs. Strang

We are not aware (yet?) of the existence of any second-order IMEX technique
that is invariant domain preserving for the NS equations and that is not
somewhat equivalent to Strang splitting or a variation thereof.

There is a very fundamental difficulty here: How to go beyond second-order and
guarantee some ”invariant-domain” preserving properties?
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Hyperbolic step

The hyperbolic step consists of solving

∂tρ+∇·(vρ) = 0,

∂tm +∇·(v ⊗m + p(u)I) = 0,

∂tE +∇·(v(E + p(u))) = 0,

v·n|∂D = 0, or other admissible BC.

Let f(u) be the Euler flux.
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Overview of solution strategy

Three step strategy

(i) Construct low-order invariant domain preserving method (GMS-GV).

(ii) Construct a high-order scheme that may not be invariant domain preserving
(entropy viscosity commutator).

(iii) Apply convex limiting with correct bounds inferred from low-order solution to get
a high-order method that is invariant domain preserving.
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Brief description of the method

Sequence of shape-regular meshes (Th)h>0.

Scalar-valued finite element space P(Th) with basis functions {ϕi}i∈V . (Assume
P(Th) ⊂ C0(D;R) for simplicity.)

Vector-valued approximation space P(Th) := (P(Th))d+2. (⇐ current weakness)
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(I) Hyperbolic step; GMS-GV scheme

Set

cij :=

∫
D
ϕi∇ϕj dx , nij :=

cij

‖cij‖`2

,

mi :=

∫
D
ϕi dx .

(these are the only mesh-dependent coefficients of the method!)

Let ∆t be some time step.

Let uh(·, tn) approximated by
∑

i∈V Un
i ϕi , Un

i ∈ P(Th) ∩ A (some current
admissible state).

Compute low-order update UL,n+1
i

mi

∆t
(UL,n+1

i − Un
i ) +

∑
j∈I(i)

f(Un
j )cij −

∑
j∈I(i)\{i}

dL,n
ij (Un

j − Un
i ) = 0.

dL,n
ij low-order graph viscosity.
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Overview of solution strategy

SKIP BORING DETAILS
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(I) GMS-GV scheme

Theorem (GMS-GV, Local invariance, JLG+BP (2016-2018))

Let n ≥ 0 and let i ∈ V.

Assume that ∆t is small enough so that 1− 4∆t

∑
j∈I(i)\{i} d

L,n
ij

mi
≥ 0.

Let B ⊂ A be a convex invariant set

Then
(Un

j ∈ B, ∀j ∈ I(i)) =⇒ (UL,n+1
i ∈ B).

This is the generalization of the maximum principle for any discretization (any
mesh), in any space dimension, for any hyperbolic system.

GMS-GV is a bulletproof scheme. GMS-GV cannot fail .



Background for the this work Compressible Navier-Stokes Numerical illustrations

(I) GMS-GV scheme

Theorem (GMS-GV, Local invariance, JLG+BP (2016-2018))

Let n ≥ 0 and let i ∈ V.

Assume that ∆t is small enough so that 1− 4∆t

∑
j∈I(i)\{i} d

L,n
ij

mi
≥ 0.

Let B ⊂ A be a convex invariant set

Then
(Un

j ∈ B, ∀j ∈ I(i)) =⇒ (UL,n+1
i ∈ B).

This is the generalization of the maximum principle for any discretization (any
mesh), in any space dimension, for any hyperbolic system.

GMS-GV is a bulletproof scheme. GMS-GV cannot fail .



Background for the this work Compressible Navier-Stokes Numerical illustrations

(II) High-order viscosity: be careful

Key idea

Reduce the graph viscosity dn
ij as much as possible to be as close as possible to the

Galerkin solution (very accurate).

Be careful: do not be too greedy

Using zero artificial viscosity, dH,n
ij = 0 may seem to be a good idea (if your world

is linear), but it is always a bad idea.

Using linear stabilization may seem to be a good idea (if your world is linear), but
it is not robust w.r.t. entropy inequalities.
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(II) High-order viscosity: Commutator-based entropy viscosities

High-order viscosity: Commutator-based entropy viscosities

Consider an entropy pair (η(v),F(v)).

Key idea: measure smoothness of an entropy using the chain rule.

∇·(F(u)) = (∇η(u))T∇·(f(u))

Commutator-based entropy viscosity is defined by setting

Rn
i :=

∑
j∈I(i)(F(Un

j )− (η′(Un
i ))Tf(Un

j ))cij

‖
∑

j∈I(i)(F(Un
j )cij‖+ ‖

∑
j∈I(i)(η′(Un

i ))Tf(Un
j ))cij‖

dH,n
ij := dL,n

ij max(Rn
i ,R

n
j )

The formal accuracy of scheme only dictated by the approximation space P(Th)
(i.e.,. any order).
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(III) Convex limiting: Strategy

Strategy

Let Ψ : B → R be a quasiconcave functional
(ex: density, internal energy, entropy, . . . ).

Assume low-order update satisfies Ψ(UL,n+1
i ) ≥ 0.

We want to “limit” the high-order update UH,n+1
i → Un+1

i so that

Ψ(Un+1
i ) ≥ 0 .
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i → Un+1

i so that

Ψ(Un+1
i ) ≥ 0 .
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Overview of solution strategy

SKIP BORING DETAILS
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(III) Limiting strategy

UL
i + Pij

UL
i + `ijPij

UL
i

{Ψi(v) = 0}
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Summary of the hyperbolic step

Let S1h(tn + ∆t, tn) : P(Th)→ P(Th) denote the nonlinear update for the
hyperbolic problem described in Guermond, Nazarov, Popov, Tomas, (2018)
(2019).

Theorem (GNPT (2018) (2019))

S1h is locally invariant domain preserving if CFL ≤ 1.
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Parabolic step

∂tρ = 0,

∂tm−∇·(s(v)) = f,

∂tE +∇·(k(u)− s(v)v) = f·v,
v|∂D = 0, k(u)·n|∂D = 0.

Let ∆t be some time step.

Let un
h ∈ P(Th) ∩ B (some current admissible state).
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Parabolic step: density update

Density update
%n+1
i := %ni , ∀i ∈ V.
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Parabolic step: velocity update

Introduce bilinear form associated with viscous dissipation,

a(v,w) :=

∫
D
s(v):e(w)dx , v,w ∈ H1

0(D) := H1
0 (D;Rd ).

Let {ek}k∈{1:d} be the canonical Cartesian basis of Rd . For any i ∈ V and

j ∈ I(i) define d×d matrix Bij ∈ Rd×d by setting

(Bij )kl := a(ϕjel , ϕiek ) :=

∫
D
s(ϕjel ):∇s(ϕiek ) dx , ∀k, l ∈ {1:d}.

Let f
n+ 1

2
h :=

∑
j∈V F

n+ 1
2

j ϕj ∈ P(Th) approximate f(tn + 1
2

∆t). Use

Crank-Nicolson to compute un+1
h : solve for Vn+ 1

2 s.t.%ni miV
n+ 1

2 + 1
2

∆t
∑

j∈I(i) BijV
n+ 1

2 = miM
n
i + 1

2
∆tmiF

n+ 1
2

i , ∀i ∈ V◦

V
n+ 1

2
i = 0, ∀i ∈ V∂ ,

And set

Vn+1
i := 2Vn+ 1

2 − Vn
i , Mn+1

i := %n+1
i Vn+1

i , ∀i ∈ V.
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Parabolic step: internal energy update

Bilinear form associated with the thermal diffusion

b(e,w) := c−1
v κ

∫
D
∇e·∇w dx , ∀e,w ∈ H1(D).

For any i ∈ V and j ∈ I(i) we set

βij := b(ϕj , ϕi ).

We further assume that the acute angle condition holds:

βij ≤ 0, ∀i 6= j ∈ V.
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Parabolic step: internal energy update (high-order update)

Introduce v
n+ 1

2
h :=

∑
i∈V V

n+ 1
2

i ϕi and define

K
n+ 1

2
i :=

1

mi

∫
D
s(vn+ 1

2 ):e(vn+ 1
2 )ϕi dx , ∀i ∈ V.

Then update internal energy ei
H,n+ 1

2

mi%
n
i (ei

H,n+ 1
2 − eni ) + 1

2
∆t

∑
j∈I(i)

βijei
H,n+ 1

2 = 1
2

∆tmiK
n+ 1

2
i , ∀i ∈ V.

Update internal energy eH,n+1
i

eH,n+1
i = 2ei

H,n+ 1
2 − eni , ∀i ∈ V.

Caution

No guarantee of positivity of the internal energy here.
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Parabolic step: internal energy update

Solution

Use backward Euler for low-order internal energy eL,n+1
i .

And use FCT to limit.

SKIP BORING DETAILS
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Parabolic step: internal energy update (limiting from below)

Theorem (Positivity and conservation)

Let Un be an admissible state. Let Un+1 be the parabolic update. Then, Un+1 is an
admissible state, i.e., Un+1

i ∈ B for all i ∈ V and all ∆t, and the following holds for all
i ∈ V and all ∆t:

%n+1
i = %ni > 0, ∀i ∈ V,

min
j∈V

en+1
j ≥ min

j∈V
enj > 0,

∑
i∈V

miE
n+1
i =

∑
i∈V

miE
n
i +

∑
i∈V

∆tmiF
n+ 1

2
i ·Vn+ 1

2
i .
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Full algorithm

Let S1h(t + ∆t, t) : P(Th)→ P(Th) denote the nonlinear update for the
hyperbolic substep from t to t + ∆t.

Let S2h(t + ∆t, t) : P(Th)×P(Th)→ P(Th) be the nonlinear update for the
parabolic substep from t to t + ∆t.

The update un+1
h ∈ P(Th) is computed as follows:

un+1
h = S1h(tn + ∆t, tn + 1

2
∆t) ◦ S2h(tn + ∆t, tn) ◦ (S1h(tn + 1

2
∆t, tn)(un

h), f
n+ 1

2
h ).

Or

w1
h := S1h(tn + 1

2
∆t, tn)(un

h),

w2
h := S2h(tn + ∆t, tn)(w1

h, f
n+ 1

2
h ),

un+1
h := S1h(tn + ∆t, tn + 1

2
∆t)(w2

h).
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Main result

Theorem (JLG+BP+MM+IT (2020))

Let P(Th) be a discrete space a described in Guermond-Popov-Tomas (2019).

Let un
h ∈ P(Th) and un

h(x)∈ B for all x.

Let ∆t ≤ ∆t0(uh), where ∆t0(uh) is the largest hyperbolic time step that makes
the algorithm in Guermond-Popov-Tomas (2019) invariant-domain preserving for
the Euler problem.

Let un+1
h ∈ P(Th) be computed as above (previous slide).

Then un+1
h (x) ∈ B for all x.

The algorithm is conservative (global mass and total energy conserved).
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Outline

Numerical illustration

1 Background for the this work
2 Compressible Navier-Stokes
3 Numerical illustrations
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1D convergence tests

1D convergence tests. Viscous shockwave. Exact solution by Becker (1922).

Truncated domain D = (−1, 1.5).

Consolidated error indicator, q ∈ {1, 2∞}:

δq(t) :=
‖ρh(t)− ρ(t)‖Lq(D)

‖ρ(t)‖Lq(D)

+
‖mh(t)−m(t)‖Lq(D)

‖m(t)‖Lq(D)

+
‖Eh(t)− E(t)‖Lq(D)

‖E(t)‖Lq(D)

.

Table: 1D Viscous shockwave (exact solution by Becker (1922)), P1 meshes. Convergence tests,
t = 3, CFL = 0.4.

I δ1(t) rate δ2(t) rate δ∞(t) rate

50 5.85E-02 – 3.11E-01 – 8.28E-03 –
100 2.50E-02 1.23 1.91E-01 0.71 2.82E-03 1.55
200 4.83E-03 2.37 3.27E-02 2.54 5.13E-04 2.46
400 1.07E-03 2.17 9.79E-03 1.74 9.32E-05 2.46
800 2.52E-04 2.09 2.29E-03 2.10 2.02E-05 2.21

1600 6.20E-05 2.02 5.76E-04 1.99 4.89E-06 2.05
3200 1.55E-05 2.00 1.46E-04 1.98 1.23E-06 1.99
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2D convergence tests

1D Viscous shockwave computed in 2D. Exact solution by Becker (1922).

Truncated domain: D = (−0.5, 1)×(0, 1).

Same consolidated error indicator, q ∈ {1, 2∞} as in 1D.

Table: 2D Viscous schockwave, P1 nonuniform Delaunay meshes, t = 3, CFL ∈ {0.4, 0.9}.

CFL I δ1(t) rate δ2(t) rate δ∞(t) rate

0.4

4458 8.99E-03 – 1.49E-02 – 1.20E-01 –
17589 1.35E-03 2.76 3.04E-03 2.31 3.23E-02 1.91
34886 5.19E-04 2.80 1.47E-03 2.13 1.44E-02 2.36
69781 2.45E-04 2.17 7.20E-04 2.05 7.93E-03 1.72

139127 1.04E-04 2.47 3.71E-04 1.93 3.27E-03 2.56

0.9

4458 6.99E-03 – 2.03E-02 – 1.58E-01 –
17589 9.51E-04 2.91 3.39E-03 2.61 3.61E-02 2.15
34886 3.98E-04 2.54 1.60E-03 2.20 1.55E-02 2.47
69781 1.79E-04 2.30 7.54E-04 2.17 8.23E-03 1.83

139127 8.17E-05 2.28 3.67E-04 2.09 3.28E-03 2.67
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2D benchmark

Shock/viscous boundary layer interaction (Daru&Tenaud (2000, 2009)).

re¯ection on the right wall, the shock wave interacts with this boundary layer, modifying the
¯ow pattern near the horizontal wall. This is illustrated in Fig. 10, showing the density
contours at t � 0:6: The shock-boundary layer interaction results in a lambda-shape like shock
pattern. As the stagnation pressure in the boundary layer is lower than that of the out¯ow
region, a separated boundary layer ``bubble'' takes place under this shock pattern. The bubble
is delimited by a supersonic shear layer in which a lot of instabilities occur. The triple point
emerging from the lambda-shape like shock pattern generates a slip line which rolls up around

Fig. 8. Representation of the shock tube.

Fig. 9. x±t diagram of the density.

V. Daru, C. Tenaud / Computers & Fluids 30 (2001) 89±113 103

Figure: Description of the problem

“Standard methods” are known to give “various answers” depending on the
method (Daru&Tenaud (2000), Sjogreen&Yee (2003))
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2D benchmark

SKIP BORING DETAILS
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2D benchmark

obtained as seen in previous figures and also in Fig. 5 where plot-
ted are the density fields at t = 1 for several grids. Again, results for
RK3-WENO5 scheme on the finest grid (4000 � 2000) are lacking
in Fig. 5 because of the prohibitively large CPU time required, but
it is obvious that the two numerical methods tend to converge to
the same solution.

Computations were performed on a NEC-SX8, at the CNRS’s Na-
tional Computing Center (IDRIS). The OSMP7 scheme takes about
3 � 10�7 s.CPU per time step and grid point, at a flow-rate of 7 Giga
Flops. The CPU time required by the RK3-WENO5, at a flow-rate of
6 Giga Flops, is 2 � 10�6 s.CPU per time step and grid point, i.e. six
to seven times greater than the OSMP7 scheme.

Fig. 8. Contours of jrqj (left) and T (right, 41 contour levels between 0.4 and 1.2) obtained at t = 1 on the finest grid for several Reynolds numbers: (a) Re = 200; (b) Re = 500;
(c) Re = 750 and (d) Re = 1000.

time

x

0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

Re=200
Re=500
Re=750
Re=1000

time

y

0.4 0.5 0.6 0.7 0.8 0.9 1
0.08

0.1

0.12

0.14

0.16

Re=200
Re=500
Re=750
Re=1000

Fig. 9. x (left) and y (right) coordinates of the triple point versus time.

672 V. Daru, C. Tenaud / Computers & Fluids 38 (2009) 664–676

Uniform Cartesian mesh
4000×2000 (OSMP7).

Nonuniform Delaunay triangulation
P1 FE, (0.86M grid points)

Non uniform quadrangular mesh
Q1 FE (128M grid points)

Figure: Comparison with Daru&Tenaud (2009). Density at t = 1 for µ ∈ {10−3}.
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2D benchmark

Skin friction coefficient at time t = 1.00. The continuous lines are for the finest level
and the OSMP7 scheme as reported in Daru&Tenaud (2009).
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AOT15a airfoil

AOTa15 airfoil at Mach 0.73, Reynolds 3×106, angle 3.5o .

Grid heavily graded with a minimal resolution in the viscous sublayer of 2.1
micrometer vertical to 60 micrometer horizontal (anisotropy 30:1).

274 million gridpoints.

Onera OAT15a airfoil with graded mesh used in our computations. Actual hexahedral
3D mesh is created by extruding the quadrilateral 2D mesh in the z-direction.
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2D results

Airfoil OAT15a at Re=3 000 000, 2D, schlieren plot:
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2D results

Airfoil OAT15a at Re=3 000 000, 2D, pressure:
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2D results

Airfoil OAT15a at Re=3 000 000, 2D, mesh resolution:
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3D results

Airfoil OAT15a at Re=3 000 000, 3D, schlieren:
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3D results

Airfoil OAT15a at Re=3 000 000, 3D, pressure
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3D results

Figure: time- and z-averaged pressure coefficient. Comparison with experiments.
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Strong scaling tests

Figure: Scaling analysis broken down to show the contributions of the hyperbolic and parabolic
parts. Left: 3D Onera OAT15a airfoil, with 34.5 million grid points. Right: 2D shocktube with
134 million grid points.
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Current work

Collaborative team: J.-L. Guermond, M. Kronbichler, M. Maier, M. Nazarov, B.
Popov, L. Saavedra, M. Sheridan, I. Tomas, E. Tovar.

Implementation in Deal.II (Ryujin) of our shallow water code.

Extension beyond second-order. Current “ one-size fits all IMEX” technology is
inadequate.

Gray radiation hydrodynamics.

Euler-Poisson.

Third- and fourth-order in space with guaranteed properties and reasonable
low-order stencil.
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