New perpective on time stepping techniques: Beyond strong stability.

J.-L. Guermond

Department of Mathematics Texas A&M University

Oden Institute Seminar, Feb 2, 2022

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Collaborators and acknowledgments

This work done in collaboration with:

 Alexandre Ern (École Nationale des Ponts & Chaussées, Paris, France)

Other collaborators

- Bennett Clayton (TAMU, TX)
- Martin Kronbichler (Uppsala, Sweden)
- Matthias Maier (TAMU, TX)
- ▶ B. Popov (TAMU, TX)
- Laura Saavedra (Universidad Politcnica de Madrid)
- Madison Sheridan (TAMU, TX)
- Ignacio Tomas (SANDIA, NM)
- Eric Tovar (TAMU, TX)

Support:

Outline

Introduction

nvariant domains Problems with SSP time stepping Invariant-domain-preserving Explict Runge-Kutta Numerical illustrations Invariant-domain-preserving IMEX

Introduction

э

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Cauchy problem

$$\begin{split} &\partial_t \mathbf{u} + \nabla \cdot (\mathbb{f}(\mathbf{u}) + \mathrm{g}(\mathbf{u}, \nabla \mathbf{u})) = \mathbf{S}(\mathbf{u}), \qquad (\mathbf{x}, t) \in D \times \mathbb{R}_+. \\ &u(\mathbf{x}, 0) = \mathbf{u}_0(\mathbf{x}), \qquad \qquad \mathbf{x} \in D. \end{split}$$

æ

・ロト ・ 日 ト ・ モ ト ・ モ ト

Cauchy problem

$$\begin{split} &\partial_t \mathbf{u} + \nabla \cdot (\mathbb{f}(\mathbf{u}) + \mathrm{g}(\mathbf{u}, \nabla \mathbf{u})) = \mathbf{S}(\mathbf{u}), \qquad (\mathbf{x}, t) \in D \times \mathbb{R}_+. \\ &u(\mathbf{x}, 0) = \mathbf{u}_0(\mathbf{x}), \qquad \qquad \mathbf{x} \in D. \end{split}$$

• *D* open polyhedral domain in \mathbb{R}^d .

・ロト ・聞ト ・ヨト ・ヨト

Cauchy problem

$$\begin{split} \partial_t \mathbf{u} + \nabla \cdot (\mathbf{f}(\mathbf{u}) + \mathbf{g}(\mathbf{u}, \nabla \mathbf{u})) &= \mathbf{S}(\mathbf{u}), \qquad (\mathbf{x}, t) \in D \times \mathbb{R}_+. \\ u(\mathbf{x}, 0) &= \mathbf{u}_0(\mathbf{x}), \qquad \qquad \mathbf{x} \in D. \end{split}$$

- *D* open polyhedral domain in \mathbb{R}^d .
- ▶ Field **u** takes values in \mathbb{R}^m ; that is, **u** : $D \times \mathbb{R}_+ \to \mathbb{R}^m$

э

(日)、

Cauchy problem

$$\begin{split} \partial_t \mathbf{u} + \nabla \cdot (\mathbf{f}(\mathbf{u}) + \mathbf{g}(\mathbf{u}, \nabla \mathbf{u})) &= \mathbf{S}(\mathbf{u}), \qquad (\mathbf{x}, t) \in D \times \mathbb{R}_+. \\ u(\mathbf{x}, 0) &= \mathbf{u}_0(\mathbf{x}), \qquad \qquad \mathbf{x} \in D. \end{split}$$

A D F A B F A B F A B F

э

- *D* open polyhedral domain in \mathbb{R}^d .
- ▶ Field **u** takes values in \mathbb{R}^m ; that is, $\mathbf{u} : D \times \mathbb{R}_+ \to \mathbb{R}^m$
- $f \in C^1(\mathbb{R}^m; \mathbb{R}^{m \times d})$, the hyperbolic flux.

Cauchy problem

$$\begin{split} &\partial_t \mathbf{u} + \nabla \cdot (\mathbb{f}(\mathbf{u}) + \mathbf{g}(\mathbf{u}, \nabla \mathbf{u})) = \mathbf{S}(\mathbf{u}), \qquad (\mathbf{x}, t) \in D \times \mathbb{R}_+. \\ &u(\mathbf{x}, 0) = \mathbf{u}_0(\mathbf{x}), \qquad \qquad \mathbf{x} \in D. \end{split}$$

- *D* open polyhedral domain in \mathbb{R}^d .
- ▶ Field **u** takes values in \mathbb{R}^m ; that is, $\mathbf{u} : D \times \mathbb{R}_+ \to \mathbb{R}^m$
- $f \in C^1(\mathbb{R}^m; \mathbb{R}^{m \times d})$, the hyperbolic flux.
- $g \in C^1(\mathbb{R}^m \times \mathbb{R}^{m \times d}; \mathbb{R}^{m \times d})$, the diffusive/parabolic flux.

A D F A B F A B F A B F

Cauchy problem

$$\begin{split} \partial_t \mathbf{u} + \nabla \cdot (\mathbf{f}(\mathbf{u}) + \mathbf{g}(\mathbf{u}, \nabla \mathbf{u})) &= \mathbf{S}(\mathbf{u}), \qquad (\mathbf{x}, t) \in D \times \mathbb{R}_+. \\ u(\mathbf{x}, 0) &= \mathbf{u}_0(\mathbf{x}), \qquad \qquad \mathbf{x} \in D. \end{split}$$

- D open polyhedral domain in \mathbb{R}^d .
- ▶ Field **u** takes values in \mathbb{R}^m ; that is, $\mathbf{u} : D \times \mathbb{R}_+ \to \mathbb{R}^m$
- $f \in C^1(\mathbb{R}^m; \mathbb{R}^{m \times d})$, the hyperbolic flux.
- $g \in C^1(\mathbb{R}^m \times \mathbb{R}^{m \times d}; \mathbb{R}^{m \times d})$, the diffusive/parabolic flux.
- ▶ $\mathbf{S} \in C^1(\mathbb{R}^m; \mathbb{R}^{m \times d})$, source.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Cauchy problem

$$\begin{split} \partial_t \mathbf{u} + \nabla \cdot (\mathbf{f}(\mathbf{u}) + \mathbf{g}(\mathbf{u}, \nabla \mathbf{u})) &= \mathbf{S}(\mathbf{u}), \qquad (\mathbf{x}, t) \in D \times \mathbb{R}_+. \\ u(\mathbf{x}, 0) &= \mathbf{u}_0(\mathbf{x}), \qquad \qquad \mathbf{x} \in D. \end{split}$$

- D open polyhedral domain in \mathbb{R}^d .
- ▶ Field **u** takes values in \mathbb{R}^m ; that is, **u** : $D \times \mathbb{R}_+ \to \mathbb{R}^m$
- $f \in C^1(\mathbb{R}^m; \mathbb{R}^{m \times d})$, the hyperbolic flux.
- $g \in C^1(\mathbb{R}^m \times \mathbb{R}^{m \times d}; \mathbb{R}^{m \times d})$, the diffusive/parabolic flux.
- ▶ $\mathbf{S} \in C^1(\mathbb{R}^m; \mathbb{R}^{m \times d})$, source.
- u₀, admissible initial data.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Cauchy problem

$$\begin{split} \partial_t \mathbf{u} + \nabla \cdot (\mathbf{f}(\mathbf{u}) + \mathbf{g}(\mathbf{u}, \nabla \mathbf{u})) &= \mathbf{S}(\mathbf{u}), \qquad (\mathbf{x}, t) \in D \times \mathbb{R}_+. \\ u(\mathbf{x}, 0) &= \mathbf{u}_0(\mathbf{x}), \qquad \qquad \mathbf{x} \in D. \end{split}$$

- D open polyhedral domain in \mathbb{R}^d .
- ▶ Field **u** takes values in \mathbb{R}^m ; that is, **u** : $D \times \mathbb{R}_+ \to \mathbb{R}^m$
- $f \in C^1(\mathbb{R}^m; \mathbb{R}^{m \times d})$, the hyperbolic flux.
- $g \in C^1(\mathbb{R}^m \times \mathbb{R}^{m \times d}; \mathbb{R}^{m \times d})$, the diffusive/parabolic flux.
- ▶ $\mathbf{S} \in C^1(\mathbb{R}^m; \mathbb{R}^{m \times d})$, source.
- **u**₀, admissible initial data.
- ▶ Periodic BCs or **u**₀ has compact support (to simplify BCs)

・ 日 ・ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

Hyperbolicity (recall)

Definition

The system $\partial_t \mathbf{u} + \nabla \cdot (\mathbf{f}(\mathbf{u}) = \mathbf{0}$ is said to be hyperbolic if for all unit vector $\mathbf{n} \in \mathbb{R}^d$ and all \mathbf{v} in the domain of \mathbf{f}

 $f'(\mathbf{v})\mathbf{n}$ is diagonalizable with real eigenvalues.

э

A D F A B F A B F A B F

Example 1: Navier-Stokes

• Find $\mathbf{u} := (\rho, \mathbf{m}, E)^{\mathsf{T}}$ so that

$$\begin{split} &\partial_t \rho + \nabla \cdot (\mathbf{v}\rho) = 0, \\ &\partial_t \mathbf{m} + \nabla \cdot (\mathbf{v} \otimes \mathbf{m} + \rho(\mathbf{u})\mathbb{I} - \mathfrak{s}(\mathbf{v})) = \mathbf{0}, \\ &\partial_t E + \nabla \cdot (\mathbf{v}(E + \rho(\mathbf{u})) - \mathfrak{s}(\mathbf{v}) \cdot \mathbf{v} + \mathbf{q}(\mathbf{u})) = 0, \end{split}$$

with $\mathbf{v} := \mathbf{m}/\rho$: velocity; $p(\mathbf{u})$: pressure.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Example 1: Navier-Stokes

• Find $\mathbf{u} := (\rho, \mathbf{m}, E)^{\mathsf{T}}$ so that

$$\begin{split} &\partial_t \rho + \nabla \cdot (\mathbf{v}\rho) = 0, \\ &\partial_t \mathbf{m} + \nabla \cdot (\mathbf{v} \otimes \mathbf{m} + p(\mathbf{u})\mathbb{I} - \mathfrak{s}(\mathbf{v})) = \mathbf{0}, \\ &\partial_t E + \nabla \cdot (\mathbf{v}(E + p(\mathbf{u})) - \mathfrak{s}(\mathbf{v}) \cdot \mathbf{v} + \mathbf{q}(\mathbf{u})) = 0, \end{split}$$

with $\mathbf{v} := \mathbf{m}/\rho$: velocity; $p(\mathbf{u})$: pressure.

Fluxes

$$f(\mathbf{u}) := \begin{pmatrix} \mathbf{v}\rho \\ \mathbf{v} \otimes \mathbf{m} + p(\mathbf{u})\mathbb{I} \\ \mathbf{v}(\mathcal{E} + p(\mathbf{u})) \end{pmatrix}, \qquad g(\mathbf{u}, \nabla \mathbf{u}) := \begin{pmatrix} 0 \\ -s(\mathbf{v}) \\ -s(\mathbf{v}) \cdot \mathbf{v} + \mathbf{q}(\mathbf{u}) \end{pmatrix}$$

٠

A D F A B F A B F A B F

Example 1: Navier-Stokes

• Find $\mathbf{u} := (\rho, \mathbf{m}, E)^{\mathsf{T}}$ so that

$$\begin{split} \partial_t \rho + \nabla \cdot (\mathbf{v}\rho) &= 0, \\ \partial_t \mathbf{m} + \nabla \cdot (\mathbf{v} \otimes \mathbf{m} + p(\mathbf{u})\mathbb{I} - \mathfrak{s}(\mathbf{v})) &= \mathbf{0}, \\ \partial_t E + \nabla \cdot (\mathbf{v}(E + p(\mathbf{u})) - \mathfrak{s}(\mathbf{v}) \cdot \mathbf{v} + \mathbf{q}(\mathbf{u})) &= 0, \end{split}$$

with $\mathbf{v} := \mathbf{m}/\rho$: velocity; $p(\mathbf{u})$: pressure.

Fluxes

$$f(\mathbf{u}) := \begin{pmatrix} \mathbf{v}\rho \\ \mathbf{v} \otimes \mathbf{m} + p(\mathbf{u})\mathbb{I} \\ \mathbf{v}(\mathcal{E} + p(\mathbf{u})) \end{pmatrix}, \qquad g(\mathbf{u}, \nabla \mathbf{u}) := \begin{pmatrix} 0 \\ -s(\mathbf{v}) \\ -s(\mathbf{v}) \cdot \mathbf{v} + \mathbf{q}(\mathbf{u}) \end{pmatrix}$$

Possible definitions for
$$\mathfrak{s}$$
 and q :
 $\mathfrak{s}(\mathbf{v}) = 2\mu \mathfrak{e}(\mathbf{v}) + (\lambda - \frac{2}{3}\mu)(\nabla \cdot \mathbf{v})\mathbb{I}, \qquad \mathbf{q}(\mathbf{u}) = -\kappa \nabla e(\mathbf{u}).$

æ

٠

(日)、

• Find
$$\mathbf{u} := (\rho, \mathbf{m}, E, \mathcal{E}_{\mathrm{R}})^{\mathsf{T}}$$
 so that

$$\begin{split} \partial_t \rho + \nabla \cdot (\mathbf{v}\rho) &= 0, \\ \partial_t \mathbf{m} + \nabla \cdot (\mathbf{v} \otimes \mathbf{m} + (p(\mathbf{u}) + p_{\mathrm{R}}(\mathcal{E}_{\mathrm{R}}))\mathbb{I}) &= \mathbf{0}, \\ \partial_t E + \nabla \cdot (\mathbf{v}(E + p(\mathbf{u}) + p_{\mathrm{R}}(\mathcal{E}_{\mathrm{R}}))) - \nabla \cdot (\frac{c}{3\sigma_{\mathrm{t}}} \nabla \mathcal{E}_{\mathrm{R}}) &= 0, \\ \partial_t \mathcal{E}_{\mathrm{R}} + \nabla \cdot (\mathbf{v}(\mathcal{E}_{\mathrm{R}} + p_{\mathrm{R}}(\mathcal{E}_{\mathrm{R}}))) - \mathbf{v} \cdot \nabla p_{\mathrm{R}}(\mathcal{E}_{\mathrm{R}}) - \nabla \cdot (\frac{c}{3\sigma_{\mathrm{t}}} \nabla \mathcal{E}_{\mathrm{R}}) &= \sigma_{\mathrm{a}} c (a_{\mathrm{R}} T^4 - \mathcal{E}_{\mathrm{R}}), \end{split}$$

with $\mathcal{E}_{\rm R}:$ radiation energy; $p_{\rm R}(\mathcal{E}_{\rm R}):$ radiation pressure; $\mathcal{T}(u):$ temperature;

э

(日)、

• Find
$$\mathbf{u} := (\rho, \mathbf{m}, E, \mathcal{E}_{\mathrm{R}})^{\mathsf{T}}$$
 so that

$$\begin{split} \partial_t \rho + \nabla \cdot (\mathbf{v}\rho) &= 0, \\ \partial_t \mathbf{m} + \nabla \cdot (\mathbf{v} \otimes \mathbf{m} + (p(\mathbf{u}) + p_{\mathrm{R}}(\mathcal{E}_{\mathrm{R}}))\mathbb{I}) &= \mathbf{0}, \\ \partial_t E + \nabla \cdot (\mathbf{v}(E + p(\mathbf{u}) + p_{\mathrm{R}}(\mathcal{E}_{\mathrm{R}}))) - \nabla \cdot (\frac{c}{3\sigma_{\mathrm{t}}} \nabla \mathcal{E}_{\mathrm{R}}) &= 0, \\ \partial_t \mathcal{E}_{\mathrm{R}} + \nabla \cdot (\mathbf{v}(\mathcal{E}_{\mathrm{R}} + p_{\mathrm{R}}(\mathcal{E}_{\mathrm{R}}))) - \mathbf{v} \cdot \nabla p_{\mathrm{R}}(\mathcal{E}_{\mathrm{R}}) - \nabla \cdot (\frac{c}{3\sigma_{\mathrm{t}}} \nabla \mathcal{E}_{\mathrm{R}}) &= \sigma_{\mathrm{a}} c (a_{\mathrm{R}} T^4 - \mathcal{E}_{\mathrm{R}}), \end{split}$$

with $\mathcal{E}_{\rm R}$: radiation energy; $p_{\rm R}(\mathcal{E}_{\rm R})$: radiation pressure; $T(\mathbf{u})$: temperature;

c: speed of light; $\sigma_{\rm a}$, $\sigma_{\rm t}$: absorption and total cross sections; $a_{\rm R} := \frac{4\sigma}{c}$ radiation constant; σ the Stefan–Boltzmann constant.

・ロット 御ママ キョマ キョン

• Find
$$\mathbf{u} := (\rho, \mathbf{m}, E, \mathcal{E}_{\mathrm{R}})^{\mathsf{T}}$$
 so that

$$\begin{split} \partial_t \rho + \nabla \cdot (\mathbf{v}\rho) &= 0, \\ \partial_t \mathbf{m} + \nabla \cdot (\mathbf{v} \otimes \mathbf{m} + (p(\mathbf{u}) + p_{\mathrm{R}}(\mathcal{E}_{\mathrm{R}}))\mathbb{I}) = \mathbf{0}, \\ \partial_t E + \nabla \cdot (\mathbf{v}(E + p(\mathbf{u}) + p_{\mathrm{R}}(\mathcal{E}_{\mathrm{R}}))) - \nabla \cdot (\frac{c}{3\sigma_{\mathrm{t}}} \nabla \mathcal{E}_{\mathrm{R}}) = 0, \\ \partial_t \mathcal{E}_{\mathrm{R}} + \nabla \cdot (\mathbf{v}(\mathcal{E}_{\mathrm{R}} + p_{\mathrm{R}}(\mathcal{E}_{\mathrm{R}}))) - \mathbf{v} \cdot \nabla p_{\mathrm{R}}(\mathcal{E}_{\mathrm{R}}) - \nabla \cdot (\frac{c}{3\sigma_{\mathrm{t}}} \nabla \mathcal{E}_{\mathrm{R}}) = \sigma_{\mathrm{a}} c(a_{\mathrm{R}} T^4 - \mathcal{E}_{\mathrm{R}}), \end{split}$$

with $\mathcal{E}_{\rm R}$: radiation energy; $p_{\rm R}(\mathcal{E}_{\rm R})$: radiation pressure; $T(\mathbf{u})$: temperature;

c: speed of light; $\sigma_{\rm a}$, $\sigma_{\rm t}$: absorption and total cross sections; $a_{\rm R} := \frac{4\sigma}{c}$ radiation constant; σ the Stefan–Boltzmann constant.

Possible definitions:

$$p_{\mathrm{R}}(\mathcal{E}_{\mathrm{R}}) := \frac{1}{3} \mathcal{E}_{\mathrm{R}}; \qquad c_{\mathrm{v}} T = e(\mathbf{u}) := \frac{1}{\rho} (E - \frac{1}{2} \rho \mathbf{v}^2).$$

- Notice non conservative term: $\mathbf{v} \cdot \nabla p_{\mathrm{R}}(\mathcal{E}_{\mathrm{R}})$
- ▶ Variable \mathcal{E}_{R} is smooth (due to presence of $\nabla \cdot (\frac{c}{3\sigma_{t}} \nabla \mathcal{E}_{R})$).
- $\blacktriangleright \Longrightarrow \mathsf{field} \ \mathcal{E}_\mathrm{R} \ \mathsf{is} \ \mathsf{smooth}$

 $\implies \text{legitimate to perform change of variable } \mathcal{E}_{\mathrm{R}} \rightarrow \widetilde{\mathcal{E}}_{\mathrm{R}} := \mathcal{E}_{\mathrm{R}}^{\frac{3}{4}}.$

► After some algebra ~→ Definition of conservative hyperbolic flux:

$$\mathbb{f}(\widetilde{\mathbf{u}}) := \begin{pmatrix} \mathbf{v}\rho \\ \mathbf{v} \otimes \mathbf{m} + q(\widetilde{\mathbf{u}})\mathbb{I} \\ \mathbf{v}(E + q(\widetilde{\mathbf{u}})) \\ \mathbf{v}\widetilde{\mathcal{E}}_{\mathrm{R}} \end{pmatrix}.$$

with $q(\widetilde{\mathbf{u}}) := p(\widetilde{\mathbf{u}}) + \frac{1}{3} \widetilde{\mathcal{E}}_{\mathrm{R}}^{\frac{4}{3}}$ (notice that $p(\widetilde{\mathbf{u}}) = p(\mathbf{u})$).

Hyperbolic flux is made conservative.

イロト 不良 ト イヨト イヨト

Parabolic flux

$$g(\mathbf{u}, \nabla \mathbf{u}) := \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ -\frac{c}{3\sigma_{\mathrm{t}}} \nabla \mathcal{E}_{\mathrm{R}} \\ -\frac{c}{3\sigma_{\mathrm{t}}} \nabla \mathcal{E}_{\mathrm{R}} \end{pmatrix}.$$

Source

$$egin{aligned} \mathbf{S}(\mathbf{u}) &:= egin{pmatrix} 0 \ \mathbf{0} \ 0 \ \sigma_{\mathrm{a}} c(\mathcal{E}_{\mathrm{R}} - \mathbf{a}_{\mathrm{R}} \mathcal{T}^4) \end{pmatrix}. \end{aligned}$$

æ

(日)、

Existence uniqueness: Scalar equations

- Existence and uniqueness of entropy solutions well understood in any space dimension for any Lipschitz flux.
 - Oleinik (1959)
 - Vol'pert (1967)
 - Kruzkov (1970)

э

(日)、

Approximation: Scalar equations

- Approximation theory for scalar conservation theory well understood in any space dimension.
- Convergence rate deduced from a posteriori estimates:
 - Kuznecov (1976),
 - Cockburn–Gremaud (1996),
 - Bouchut–Perthame (1998),
 - Eymard–Gallouet–Herbin (1998),
 - Chainais-Hillaret (1999),
 - JLG-Popov (2016) ...

э

イロト 不得 トイヨト イヨト

Existence uniqueness: Hyperbolic systems

 Wellposedness known only for data with small total variation in 1D (Glimm (1965), Bianchini–Bressan (2005)).

Existence uniqueness: Hyperbolic systems

- Wellposedness known only for data with small total variation in 1D (Glimm (1965), Bianchini–Bressan (2005)).
- Partial positive results for special systems in 1D.

Existence uniqueness: Hyperbolic systems

- Wellposedness known only for data with small total variation in 1D (Glimm (1965), Bianchini–Bressan (2005)).
- Partial positive results for special systems in 1D.
- Negative results: Entropy conditions may not be sufficient for systems Chiodaroli–De Lellis (2015).

Approximation theory for systems almost non existent in 1D: See Bressan's seminar, Jan 8, 2021, (Laboratoire Jacques-Louis Lions) https://www.ljll.math.upmc.fr/IMG/pdf/ ljll210108bressan.a-2.5mo.pdf

- Approximation theory for systems almost non existent in 1D: See Bressan's seminar, Jan 8, 2021, (Laboratoire Jacques-Louis Lions) https://www.ljll.math.upmc.fr/IMG/pdf/
 - ljll210108bressan.a-2.5mo.pdf
- ► For the Lax-Friedrichs and the Godunov scheme, convergence is known only for 2×2 systems in 1D (compensated compactness argument, no convergence rate), Ding-Chen-Luo (1989)

3

・ロン ・雪 と ・ ヨ と

Approximation theory for systems almost non existent in 1D: See Bressan's seminar, Jan 8, 2021, (Laboratoire Jacques-Louis Lions) https://www.ljll.math.upmc.fr/IMG/pdf/

https://www.ljll.math.upmc.ir/IMG/pdf ljll210108bressan.a-2.5mo.pdf

- ▶ For the Lax-Friedrichs and the Godunov scheme, convergence is known only for 2×2 systems in 1D (compensated compactness argument, no convergence rate), Ding-Chen-Luo (1989)
- There are 2×2 systems in 1D for which the Godunov method yields an unbounded BV norm as the mesh size goes to zero, Bressan-Jenssen-Baiti (2006).

 Approximation theory for systems almost non existent in 1D: See Bressan's seminar, Jan 8, 2021, (Laboratoire Jacques-Louis Lions)

https://www.ljll.math.upmc.fr/IMG/pdf/ ljll210108bressan.a-2.5mo.pdf

- ▶ For the Lax-Friedrichs and the Godunov scheme, convergence is known only for 2×2 systems in 1D (compensated compactness argument, no convergence rate), Ding-Chen-Luo (1989)
- There are 2×2 systems in 1D for which the Godunov method yields an unbounded BV norm as the mesh size goes to zero, Bressan-Jenssen-Baiti (2006).
- Very little hope to prove convergence of approximation techniques in two and three dimensions with realistic data. (With current mathematical knowledge.)

What can we do?

What can Numerical Analysis do?

What can we do?

- What can Numerical Analysis do?
- Numerous computational fluid dynamics codes developed!

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

What can we do?

- What can Numerical Analysis do?
- Numerous computational fluid dynamics codes developed!
- ▶ Planes fly. Nuclear reactors run.

What can we do?

- What can Numerical Analysis do?
- Numerous computational fluid dynamics codes developed!
- ▶ Planes fly. Nuclear reactors run.
- Engineers do not wait for mathematicians to find answers.

э

・ロト ・ 一下・ ・ ヨト・

Proposed strategy

- Reduce expectations.
- Try to ensure the approximation satisfies "physical bounds"
- ► Try to ensure the approximation complies with thermodynamics.
- Try to achieve linear complexity with respect the number of degrees of freedom.

э

(日)、

Outline

Introduction Invariant domains

Problems with SSP time stepping Invariant-domain-preserving Explict Runge-Kutta Numerical illustrations Invariant-domain-preserving IMEX

Invariant domains

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Key assumption: existence of an invariant domain

▶ Let $\mathbf{u}_0 \in \mathcal{D}$.

There exists a set A ⊊ ℝ^m, convex and depending on u₀, so that the "entropy" solution takes values in A for a.e. x ∈ D and t > 0.

$$(\mathbf{u}_0(\mathbf{x}) \in \mathcal{A}, \forall \mathbf{x} \in D) \Longrightarrow (\mathbf{u}(\mathbf{x}, t) \in \mathcal{A}, \forall \mathbf{x} \in D, \forall t > 0).$$

This is a generalization of the maximum principle.

э

(日)、
Examples

Scalar conservation equations

$$\mathcal{A} := [\operatorname*{ess\,inf}_{x \in \mathbb{R}} u_0(x), \operatorname*{ess\,sup}_{x \in \mathbb{R}} u_0(x)] \hspace{1em} ext{is a convex subset of } \mathbb{R}$$

Examples

Euler equations with specific entropy s

$$\mathcal{A} := \{ \mathbf{u} := (\rho, \mathbf{m}, E) \in \mathbb{R}^{d+2} \mid \rho > 0, E - \frac{1}{2} \frac{\mathbf{m}^2}{\rho} > 0, s(\mathbf{u}) \ge \operatorname{ess\,inf}_{\mathbf{x} \in D} s(\mathbf{u}_0) \}$$

Navier-Stokes equations

$$\mathcal{A} := \{(
ho, \mathbf{m}, E) \in \mathbb{R}^{d+2} \mid
ho > 0, E - rac{1}{2}rac{\mathbf{m}^2}{
ho} > 0\}$$

- \mathcal{A} is convex in both cases.
- Invariant domain for the Euler equations is smaller than that for the Navier-Stokes equations.

A D F A B F A B F A B F

Hyperbolic and parabolic operators may have conflicting constraints.

æ

(日) (四) (日) (日) (日)

- Hyperbolic and parabolic operators may have conflicting constraints.
- ► Example 1: Navier-Stokes
 - Euler: Conserved variables are natural for solving the hyperbolic problem
 - Navier-Stokes: primitive variables (velocity, internal energy) are more appropriate for the parabolic part.
 - The invariant domain of the Euler part is smaller than the invariant domain of the parabolic part.

・ロト ・ 雪 ト ・ ヨ ト ・

- Hyperbolic and parabolic operators may have conflicting constraints.
- ► Example 1: Navier-Stokes
 - Euler: Conserved variables are natural for solving the hyperbolic problem
 - Navier-Stokes: primitive variables (velocity, internal energy) are more appropriate for the parabolic part.
 - The invariant domain of the Euler part is smaller than the invariant domain of the parabolic part.
- **Example 2**: Gray radiation hydrodynamics
 - Euler: Conserved variables $(\rho, \mathbf{m}, E, \mathcal{E}_{R}^{\frac{3}{4}})^{\mathsf{T}}$.
 - Parabolic part: $(T, \mathcal{E}_{R})^{T}$.
 - The invariant domain of the Euler part is smaller than the invariant domain of the parabolic part.

- How can one reconcile all these constraints?
- How can one construct approximation techniques in time and space that preserve invariant domains?

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

Outline

Introduction Invariant domains Problems with SSP time stepping

nvariant-domain-preserving Explict Runge-Kutta Numerical illustrations nvariant-domain-preserving IMEX

SSP

э

・ロト ・聞ト ・ヨト ・ヨト

- Approximate $\mathbf{u}(\mathbf{x}, t)$ in space with dofs in $\mathbb{R}^{m \times l}$.
- I : dimension of the approximation vector space (Finite elements (C⁰ or dG), Finite Volume, Finite Differences, etc.).
- ▶ Let $\mathbf{F} : \mathbb{R}^{m \times I} \to \mathbb{R}^{m \times I}$ be approximation in space of $-\nabla \cdot \mathbb{f}(\mathbf{u})$. (The way this is done does not matter here.)
- ▶ Semi-discrete problem: Find $\mathbf{U} \in C^1([0, T]; \mathbb{R}^{m \times l})$ s.t.

$$\mathbb{M}\partial_t \mathbf{U} = \mathbf{F}(\mathbf{U}), \quad \mathbf{U}(0) = \mathbf{U}_0.$$

 \mathbb{M} : mass matrix (invertible)

▶ Assume $U_0 \in \mathcal{A}'$.

・ロト ・聞ト ・ヨト ・ヨト

- ▶ Assume $U_0 \in \mathcal{A}'$.
- ▶ How can one construct time-stepping technique that guarantee $\mathbf{U}^n \in \mathcal{A}^l$, for all $n \ge 0$?

(日)、

► Key assumption: (Forward Euler with low-order flux is invariant-domain preserving.) $\exists \Delta t^* > 0$ s.t. $\forall \Delta t \in (0, \Delta t^*)$ and $\forall \mathbf{V} \in \mathbb{R}^{m \times l}$

$$(\mathbf{V}\in\mathcal{A}')\Longrightarrow(\mathbf{V}+\Delta t(\mathbb{M})^{-1}\mathbf{F}(\mathbf{V})\in\mathcal{A}').$$

 $\Leftrightarrow \mathcal{A}^{l}$ is invariant by the forward Euler method under the CFL condition $\Delta t \in (0, \Delta t^{*})$.

・ロト ・ 四ト ・ ヨト ・ ヨト

► Key assumption: (Forward Euler with low-order flux is invariant-domain preserving.) $\exists \Delta t^* > 0$ s.t. $\forall \Delta t \in (0, \Delta t^*)$ and $\forall \mathbf{V} \in \mathbb{R}^{m \times l}$

$$(\mathbf{V}\in\mathcal{A}')\Longrightarrow(\mathbf{V}+\Delta t(\mathbb{M})^{-1}\mathbf{F}(\mathbf{V})\in\mathcal{A}').$$

 $\Leftrightarrow \mathcal{A}^{I}$ is invariant by the forward Euler method under the CFL condition $\Delta t \in (0, \Delta t^{*})$.

► Key idea by Shu&Osher (1988)

Use explicit Runge-Kutta methods where the final update is a convex combination of updates computed with the forward Euler method.

・日本 本語 本本語 本語 本

 Generic form of s-stage, explicit Runge-Kutta, strong-stability-preserving methods (SSPRK)

$$\mathbf{W}^{(i)} := \sum_{k \in \{0: i-1\}} \alpha_{ik} \mathbf{W}^{(k)} + \beta_{ik} \Delta t \mathbf{F}(\mathbf{W}^{(k)}), \quad \forall i \in \{1:s\}.$$

- The update at t_{n+1} is given by $\mathbf{U}^{n+1} := \mathbf{W}^{(s)}$.
- Theory well understood now:
 - Kraaijevanger (1991) (amazing paper),
 - Spiteri-Ruuth (2002),
 - Ferracina-Spijker (2005),
 - Higueras (2005).

A D F A B F A B F A B F

Examples (for $\partial_t u = L(t, u)$)

$$w^{(1)} := u^{n} + \Delta t L(t_{n}, u^{n}),$$

$$w^{(2)} := \frac{1}{2}u^{n} + \frac{1}{2}(w^{(1)} + \Delta t L(t_{n} + \Delta t, w^{(1)})),$$

α				γ		
1			1			0
$\frac{3}{4}$	$\frac{1}{4}$		0	$\frac{1}{4}$		1
$\frac{1}{3}$	Ō	$\frac{2}{3}$	0	Ó	$\frac{2}{3}$	$\frac{1}{2}$

$$\begin{split} w^{(1)} &:= u^n + \Delta t L(t_n, u^n), \\ w^{(2)} &:= \frac{3}{4} u^n + \frac{1}{4} (w^{(1)} + \Delta t L(t_n + \Delta t, w^{(1)})), \\ w^{(3)} &:= \frac{1}{3} u^n + \frac{2}{3} (w^{(2)} + \Delta t L(t_n + \frac{1}{2} \Delta t, w^{(2)})), \end{split}$$

・ロト ・聞ト ・ヨト ・ヨト

Examples (for $\partial_t u = L(t, u)$)

▶ SSPRK(4,3)

α				β				γ
1				$\frac{1}{2}$				0
0	1			Ō	$\frac{1}{2}$			$\frac{1}{2}$
$\frac{2}{3}$	0	$\frac{1}{3}$		0	Ō	$\frac{1}{6}$		1
Ő	0	Ő	1	0	0	Ő	$\frac{1}{2}$	$\frac{1}{2}$

$$\begin{split} w^{(1)} &:= u^n + \frac{1}{2} \Delta t L(t_n, u^n), \\ w^{(2)} &:= w^{(1)} + \frac{1}{2} \Delta t L(t_n + \frac{1}{2} \Delta t, w^{(1)}), \\ w^{(3)} &:= \frac{2}{3} u^n + \frac{1}{3} (w^{(2)} + \frac{1}{2} \Delta t L(t_n + \Delta t, w^{(1)}), \\ w^{(4)} &:= w^{(3)} + \frac{1}{2} \Delta t L(t_n + \frac{1}{2} \Delta t, w^{(3)}), \end{split}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Problems with SPPRK

Definition (Efficiency ratio) Let $c_{os} := \inf_{i \in \{1:s\}} \inf_{k \in \mathcal{K}_i} \alpha_{ik} \beta_{ik}^{-1}$.

Proposition

Under the same CFL constraint, the number of function evaluations of SSPRK(s, p) is equal to $s/c_{os} \times$ that of the forward Euler method.

Examples

- c_{os} for SSPRK(2,2) is 1 (instead of $2 \Rightarrow \frac{1}{2}$ efficiency).
- c_{os} for SSPRK(3,3) is 1 (instead of $3 \Rightarrow \frac{1}{3}$ efficiency).
- c_{os} for SSPRK(4,3) is 2 (instead of $4 \Rightarrow \frac{1}{2}$ efficiency).

Problems with SPPRK: Efficiency

- SSPRK methods are inefficient!
- The most popular method SSPRK(3,3) is actually the most inefficient!

・ロト ・四ト ・ヨト ・ヨト

Problems with SPPRK: Accuracy

 Accuracy of SSPRK methods restricted to fourth-order if one insists on never stepping backward in time.

・ロト ・四ト ・ヨト ・ヨト

Problems with SPPRK: extensions to IMEX methods

- The SSPRK paradigm cannot be easily modified to accommodate implicit and explicit sub-steps.
- Two exceptions:
 - Parabolic time step restriction $\Delta t \leq ch^2$
 - Scalar conservation equations that are variations of the heat-equation.

э

(日)、

Problems with SPPRK: extensions to IMEX methods

Example (Compressible Navier-Stokes)

- Difficulties: conflicting invariant sets and conflicting variables.
- Which invariant domain to preserve?
 - Minimum entropy principle is true for Euler.
 - Minimum entropy principle is false for NS.
- Which variable should be used?
 - "Right variable" for Euler is $\mathbf{u} = (\rho, \mathbf{m}, E)$ (conserved variables).
 - "Right variable" for NS is (ρ, ν, e) (primitive variables).
 - Some advocate "entropy variable" and "entropy stability". Why?
- How to do the explicit-implicit time stepping?
- How linearization should be done in the implicit substeps?
 - Most "IMEX" methods cannot make the difference between conserved and primitive variables.
 - Most "IMEX" methods cannot be properly linearized and be conservative (no generic theory).
 - Difficulty can be overcome by assuming ∆t ≤ ch², Zhang & Shu (2017).

Problems with SPPRK: extensions to IMEX methods

- Conjecture: There does not exist any IMEX method that is SSP for general systems. (At the exclusion of scalar conservation equations and under the proper time step restriction).
- Conclusion: One needs a new paradigm.

A D F A B F A B F A B F

Outline

Introduction Invariant domains Problems with SSP time stepping Invariant-domain-preserving Explict Runge-Kutta Numerical illustrations Invariant-domain-preserving IMEX

IDPERK

э

・ロト ・四ト ・ヨト ・ヨト

Peep under the hood of SSPRK

- The beauty of SSPRK methods is that the forward Euler sub-step is a black box.
- The black box invokes two fluxes (not just one as one might think):
 - Low-order (in space) \mathbf{F}^{L} , low-order mass matrix \mathbb{M}^{L}
 - High-order (in space) \mathbf{F}^{H} , low-order mass matrix \mathbb{M}^{H}
- Ideally, one would like to solve

$$\mathbb{M}^{\mathsf{H}}\partial_{t}\mathsf{U}=\mathsf{F}^{\mathsf{H}}(\mathsf{U})$$

since the space approximation is accurate, but this method violates the invariant domain property.

Peep under the hood of SSPRK

Key assumptions

Assumption 1: (Forward Euler with low-order flux is invariant-domain preserving.) Assume ∃Δt* > 0 so that for all Δt ∈ (0, Δt*) for all V ∈ ℝ^{m×l}

$$(\mathbf{V}\in\mathcal{A}')\Longrightarrow(\mathbf{V}+\Delta t(\mathbb{M}^{\mathsf{L}})^{-1}\mathbf{F}^{\mathsf{L}}(\mathbf{V})\in\mathcal{A}').$$

► Assumption 2: There exists a nonlinear limiting operator $\ell : \mathcal{A}' \times (\mathbb{R}^m)' \times (\mathbb{R}^m)' \to (\mathbb{R}^m)'$ such that for all $(\mathbf{V}, \mathbf{\Phi}^L, \mathbf{\Phi}^H)$ $(\mathbf{V} + \Delta t(\mathbb{M}^L)^{-1}\mathbf{\Phi}^L \in \mathcal{A}') \Longrightarrow (\ell(\mathbf{V}, \mathbf{\Phi}^L, \mathbf{\Phi}^H) \in \mathcal{A}').$

Lemma

For all $\mathbf{V} \in \mathcal{A}^{I}$ and all $\Delta t \in (0, \Delta t^{*})$, we have

 $\ell(V,F^{\mathsf{L}}(V),F^{\mathsf{H}}(V))\in\mathcal{A}'$

Peep under the hood of SSPRK

- Given \mathbf{U}^n in the invariant set \mathcal{A}^l (approximation at time t^n),
- The forward Euler step proceeds as follows:
 - Compute low-order flux F^L(Uⁿ)
 - Compute high-order flux F^H(Uⁿ)
 - Compute update Uⁿ⁺¹ by limiting

$$\mathbf{U}^{n+1} := \ell(\mathbf{U}^n, \mathbf{F}^{\mathsf{L}}(\mathbf{U}^n), \mathbf{F}^{\mathsf{H}}(\mathbf{U}^n)).$$

Theorem (IDP Explicit Euler) Assume $\mathbf{U}^n \in \mathcal{A}^I$. Then $\mathbf{U}^{n+1} \in \mathcal{A}^I$ for all $\Delta t \in (0, \Delta t^*)$.

A D F A B F A B F A B F

Key idea of invariant-domain-preserving ERK

Externalize the limiting process at each RK sub-step.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Details for s-stage ERK method

Consider Butcher tableau for s-stage method

• Rename last line, set $c_1 = 0$ and $c_{s+1} = 1$.

э

A D F A B F A B F A B F

- Assume $c_k \ge 0$ for all $k \in \{1: s+1\}$.
- ▶ For sake of simplicity assume $c_{l-1} \leq c_l$, $\forall l \in \{2: s+1\}$, and set

$$l' := l - 1.$$

(Otherwise set $I' := \max\{k < I \mid c_I - c_k \ge 0\}$.)

3

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- Let $\mathbf{U}^n \in \mathcal{A}^I$.
- Set $\mathbf{U}^{n,1} := \mathbf{U}^n$.
- Loop over $l \in \{2: s+1\}$.
- Compute first-order update starting from $U^{n,l'}$ (think of l' = l 1)

$$\mathbb{M}^{\mathsf{L}}\mathbf{U}^{\mathsf{L},\mathsf{l}} := \mathbb{M}^{\mathsf{L}}\mathbf{U}^{n,\mathfrak{l}'} + \Delta t(c_{\mathsf{l}} - c_{\mathfrak{l}'})\mathbf{F}^{\mathsf{L}}(\mathbf{U}^{n,\mathfrak{l}'}).$$

Compute high-order ERK update starting from Uⁿ

$$\mathbb{M}^{\mathsf{H}}\mathbf{U}^{\mathsf{H},l} := \mathbb{M}^{\mathsf{H}}\mathbf{U}^{n} + \Delta t \sum_{k \in \{1: l-1\}} a_{l,k} \mathbf{F}^{\mathsf{H}}(\mathbf{U}^{n,k}).$$

э

A D F A B F A B F A B F

- Let $\mathbf{U}^n \in \mathcal{A}^I$.
- Set $\mathbf{U}^{n,1} := \mathbf{U}^n$.
- Loop over $l \in \{2: s + 1\}$.
- Compute first-order update starting from $U^{n,l'}$ (think of l' = l 1)

$$\mathbb{M}^{\mathsf{L}}\mathbf{U}^{\mathsf{L},\mathsf{l}} := \mathbb{M}^{\mathsf{L}}\mathbf{U}^{n,\mathfrak{l}'} + \Delta t(c_{\mathsf{l}} - c_{\mathfrak{l}'})\mathbf{F}^{\mathsf{L}}(\mathbf{U}^{n,\mathfrak{l}'}).$$

Compute high-order ERK update starting from Uⁿ

$$\mathbb{M}^{\mathsf{H}}\mathbf{U}^{\mathsf{H},l} := \mathbb{M}^{\mathsf{H}}\mathbf{U}^{n} + \Delta t \sum_{k \in \{1: l-1\}} a_{l,k} \mathbf{F}^{\mathsf{H}}(\mathbf{U}^{n,k}).$$

• Incompatibility of the starting points $(\mathbf{U}^{n,l'} \neq \mathbf{U}^n$ in general).

• Let $\mathbf{U}^n \in \mathcal{A}^I$.

=

- Set $\mathbf{U}^{n,1} := \mathbf{U}^n$.
- Loop over $l \in \{2: s + 1\}$.
- Compute first-order update starting from $U^{n,l'}$ (think of l' = l 1)

$$\mathbb{M}^{\mathsf{L}}\mathbf{U}^{\mathsf{L},\mathsf{l}} := \mathbb{M}^{\mathsf{L}}\mathbf{U}^{n,\mathfrak{l}'} + \Delta t(c_{\mathsf{l}} - c_{\mathfrak{l}'})\mathbf{F}^{\mathsf{L}}(\mathbf{U}^{n,\mathfrak{l}'}).$$

Compute high-order ERK update starting from Uⁿ

$$\mathbb{M}^{\mathsf{H}}\mathsf{U}^{\mathsf{H},l} := \mathbb{M}^{\mathsf{H}}\mathsf{U}^{n} + \Delta t \sum_{k \in \{1: l-1\}} a_{l,k} \mathsf{F}^{\mathsf{H}}(\mathsf{U}^{n,k}).$$

- ▶ Incompatibility of the starting points $(\mathbf{U}^{n,l'} \neq \mathbf{U}^n$ in general).
- Subtract ERK update at $t^n + c_l \Delta t$ from ERK update at $t^n + c_{l'} \Delta t$

$$\Rightarrow \qquad \mathbb{M}^{\mathsf{H}}\mathsf{U}^{\mathsf{H},l} = \mathbb{M}^{\mathsf{H}}\mathsf{U}^{\mathsf{H},l'} + \Delta t \sum_{k \in \{1:l-1\}} (a_{l,k} - a_{l',k})\mathsf{F}^{\mathsf{H}}(\mathsf{U}^{n,k}).$$

- ▶ Replace **U**^{H,I'} (which is not IDP) by **U**^{n,I'} (which is IDP by induction assumption).
- Final scheme

$$\mathbb{M}^{\mathsf{L}} \mathbf{U}^{\mathsf{L},l} := \mathbb{M}^{\mathsf{L}} \mathbf{U}^{n,l'} + \Delta t \underbrace{(c_l - c_{l'}) \mathbf{F}^{\mathsf{L}}(\mathbf{U}^{n,l'})}_{\mathbf{\Phi}^{\mathsf{L}}}.$$
$$\mathbb{M}^{\mathsf{H}} \mathbf{U}^{\mathsf{H},l} := \mathbb{M}^{\mathsf{H}} \mathbf{U}^{n,l'} + \Delta t \underbrace{\sum_{k \in \{1:l-1\}} (a_{l,k} - a_{l',k}) \mathbf{F}^{\mathsf{H}}(\mathbf{U}^{n,k})}_{\mathbf{\Phi}^{\mathsf{H}}}.$$
$$\mathbf{U}^{n,l} := \ell(\mathbf{U}^{n,l'}, \mathbf{\Phi}^{\mathsf{L}}, \mathbf{\Phi}^{\mathsf{H}}).$$

▶ Set $\mathbf{U}^{n+1} := \mathbf{U}^{n,s+1}$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Theorem Assume that $\mathbf{U}^n \in \mathcal{A}^l$. Then $\mathbf{U}^{n+1} \in \mathcal{A}^l$ for all $\Delta t \in (0, \frac{\Delta t^*}{\max_{l \in \{2:s+1\}}(c_l - c_{l'})}).$

Corollary

The complexity of the ERK method is optimal if the points $\{c_l\}_{l \in \{1:s+1\}}$ are equi-distributed in [0, 1].

э

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Outline

Introduction Invariant domains Problems with SSP time stepping Invariant-domain-preserving Explict Runge-Kutta Numerical illustrations

Numerical illustrations

э

・ロト ・聞ト ・ヨト ・ヨト

Examples (optimal methods)

æ

0

 $\frac{2}{3}$

<ロト <回ト < 注ト < 注ト

Examples SSPRK (sub-optimal methods)

æ

・ロト ・聞ト ・ヨト ・ヨト
Examples: popular RK4 (left) and 3/8 rule (right)

0 1 2 1 2 1 2 1 2 1	0 1 2 0 0	0 1 2 0	0 1	0	0 1 3 2 3 1	$ \begin{array}{c} 0 \\ \frac{1}{3} \\ -\frac{1}{3} \\ 1 \end{array} $	0 1 —1	0 1	0	
1	$\frac{1}{6}$	$\frac{2}{6}$	$\frac{2}{6}$	$\frac{1}{6}$	1	$\frac{1}{8}$	$\frac{3}{8}$	38	$\frac{1}{8}$	
	RK	(4,4	$;\frac{1}{2})$			RK	(4,4; ³ /4)		

æ

イロト 不得 トイヨト イヨト

Examples RK5 methods: Equi-distributed (left), Butcher's method (right)

- ▲ @ → - ▲ Ξ

문 🛌 문

All the tests are done with

$$\Delta t := \mathsf{CFL} \times s \times \Delta t^*,$$

➤ ⇒ All the methods perform exactly the same number of time steps independently of s (i.e., number of flux evaluations is constant).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- 4th-order FD in space.
- Linear transport D = (0, 1)

$$\partial_t u + \partial_x u = 0, \qquad u_0(x) := \begin{cases} (4\frac{(x-x_0)(x_1-x)}{x_1-x_0})^6 & x \in (x_0 := 0.1, x_1 := 0.4) \\ 0 & otherwise \end{cases}$$

- Local maximum/minimum principle guaranteed at every grid point.
- Global maximum and minimum also exactly enforced.
- All errors computed in L^{∞} -norm.

- 3

・ロト ・ 雪 ト ・ ヨ ト

Table: Second-order methods (SSPRK(2,2) behaves badly).

		CFL	= 0.2			CFL = 0.25					
1	RK(2,2;1)	rate	$RK(2,2;\frac{1}{2})$	rate	Ιſ	RK(2,2;1)	rate	$RK(2,2;\frac{1}{2})$	rate		
50	4.72E-02	-	1.23E-01	-		4.91E-02	-	1.30E-01	-		
100	2.81E-03	4.07	1.50E-02	3.03		4.51E-03	3.44	4.32E-02	1.60		
200	1.16E-03	1.28	1.24E-03	3.60		2.01E-03	1.17	2.14E-03	4.34		
400	3.38E-04	1.78	3.47E-04	1.84		5.41E-04	1.89	5.67E-04	1.91		
800	8.79E-05	1.94	9.28E-05	1.90		1.38E-04	1.97	1.48E-04	1.94		
1600	2.22E-05	1.98	2.33E-05	1.99		3.47E-05	1.99	3.78E-05	1.97		
3200	5.58E-06	1.99	5.92E-06	1.98		8.73E-06	1.99	5.36E-05	50		

æ

・ロト ・回ト ・ヨト ・ヨト

Table: Third-order methods (SSPRK(3,3) behaves badly).

			CFL = 0	.05					CFL = 0	.25		
1	RK(3,3;1)	rate	RK(3,3; ¹ / ₃)	rate	RK(4,3;1)	rate	RK(3,3;1)	rate	$RK(3,3;\frac{1}{3})$	rate	RK(4,3;1)	rate
50	5.15E-02	-	4.76E-02	-	5.15E-02	-	5.48E-02	-	1.55E-01	-	6.08E-02	-
100	5.41E-03	3.25	5.41E-03	3.14	5.41E-03	3.25	5.15E-03	3.41	6.12E-02	1.35	6.15E-03	3.31
200	3.79E-04	3.83	3.79E-04	3.83	3.79E-04	3.83	3.92E-04	3.72	1.07E-03	5.84	3.83E-04	4.01
400	2.27E-05	4.06	2.27E-05	4.06	2.27E-05	4.06	2.89E-05	3.76	2.18E-04	2.29	2.30E-05	4.06
800	1.58E-06	3.85	1.58E-06	3.85	1.58E-06	3.85	3.20E-06	3.18	6.41E-05	1.77	1.59E-06	3.85
1600	9.12E-08	4.12	1.22E-07	3.69	8.13E-08	4.28	8.23E-07	1.96	1.83E-05	1.81	8.25E-08	4.27
3200	1.52E-08	2.58	6.84E-08	0.84	5.31E-09	3.94	2.40E-07	1.78	5.39E-06	1.76	5.39E-09	3.94

æ

・ロト ・回ト ・ヨト ・ヨト

Table: Fourth-order methods (SSPRK(5,4) behaves badly).

			CFL = 0	.05			CFL = 0.1						
1	RK(4,4; ¹ / ₂)	rate	$RK(4,4;\frac{3}{4})$	rate	RK(5,4; ¹ / ₂)	rate	$RK(4,4;\frac{1}{2})$	rate	$RK(4,4;\frac{3}{4})$	rate	$RK(5,4;\frac{1}{2})$	rate	
50	4.32E-02	-	4.72E-02	-	4.32E-02	-	6.35E-02	-	5.18E-02	-	6.28E-02	-	
100	5.41E-03	3.00	5.40E-03	3.13	5.41E-03	3.00	5.36E-03	3.57	5.20E-03	3.31	5.66E-03	3.47	
200	3.79E-04	3.84	3.79E-04	3.83	3.79E-04	3.83	3.79E-04	3.82	3.79E-04	3.78	3.79E-04	3.90	
400	2.27E-05	4.06	2.27E-05	4.06	2.27E-05	4.06	2.27E-05	4.06	2.59E-05	3.87	2.27E-05	4.06	
800	1.58E-06	3.85	1.58E-06	3.85	1.58E-06	3.84	1.58E-06	3.84	4.05E-06	2.68	1.58E-06	3.85	
1600	8.13E-08	4.28	2.88E-07	2.46	8.58E-08	4.20	8.13E-08	4.28	9.94E-07	2.03	1.13E-07	3.80	
3200	5.36E-09	3.92	6.98E-08	2.04	8.95E-09	3.26	4.97E-09	4.03	2.45E-07	2.02	2.72E-08	2.06	

æ

・ロト ・回ト ・ヨト ・ヨト

Table: Fifth-order methods (least efficient method behaves badly).

		CFL =	= 0.02		Γ	CFL = 0.025					
1	$RK(6,5;\frac{5}{6})$	rate	$RK(6,5;\frac{2}{3})$	rate	Π	$RK(6,5;\frac{5}{6})$	rate	$RK(6,5;\frac{2}{3})$	rate		
50	5.19E-02	-	5.19E-02	-	Π	5.20E-02	-	5.19E-02	-		
100	5.41E-03	3.26	5.41E-03	3.26		5.41E-03	3.26	5.41E-03	3.26		
200	3.79E-04	3.83	3.79E-04	3.83	I	3.79E-04	3.84	3.79E-04	3.84		
400	2.27E-05	4.06	2.27E-05	4.06		2.27E-05	4.06	2.27E-05	4.06		
800	1.58E-06	3.84	1.58E-06	3.85		1.58E-06	3.85	1.58E-06	3.85		
1600	8.13E-08	4.28	8.48E-08	4.22		8.24E-08	4.26	8.71E-08	4.18		
3200	6.24E-09	3.70	7.10E-09	3.58	I	6.32E-09	3.70	1.16E-08	2.91		

æ

▲□▶ ▲□▶ ▲□▶ ▲□▶

2D linear transport, \mathbb{P}_1 FE (3th-order super-convergent)

4th-order FD in space.

• Linear transport $D := (0,1)^2$ with $\beta := (0.9,1)^T$

$$\partial_t u + \nabla \cdot (\beta u) = 0, \qquad u_0(\mathbf{x}) := \begin{cases} (4 \frac{(x - x_0)(x_1 - x)}{x_1 - x_0})^4 \times (4 \frac{(y - y_0)(y_1 - y)}{y_1 - y_0})^4 & x \in D_0 \\ 0 & oth. \end{cases}$$

with $D_0\{x_0 \le x \le x_1, y_0 \le y \le y_1\}$, $x_0 = y_0 = 0.1$, $x_1 = y_1 = 0.4$.

- Local maximum/minimum principle guaranteed at every grid point.
- Global maximum and minimum also exactly enforced.
- All errors computed at T = 0.5 with CFL = 0.2

э

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

2D linear transport, \mathbb{P}_1 FE (3th-order super-convergent)

Table: Second- and third-order ERK methods at CFL = 0.2.

	- 1	RK(2,2;1)	rate	$RK(2,2;\frac{1}{2})$	rate	RK(3,3;1)	rate	$RK(3,3;\frac{1}{3})$	rate	RK(4,3;1)	rate
Ę	51 ²	2.58E-02	-	2.61E-02	-	3.27E-02	-	3.33E-02	-	3.29E-02	-
lou	101 ²	1.32E-03	4.29	1.32E-03	4.30	7.82E-04	5.39	1.00E-03	5.05	8.02E-04	5.36
8	201 ²	4.73E-04	1.48	4.73E-04	1.49	8.28E-05	3.24	1.09E-04	3.21	8.03E-05	3.32
-	401 ²	1.26E-04	1.90	1.26E-04	1.90	9.44E-06	3.13	2.41E-05	2.17	9.33E-06	3.11
	801 ²	3.22E-05	1.97	3.22E-05	1.97	1.03E-06	3.19	6.46E-06	1.90	1.06E-06	3.13

э

(日)、

Linear transport with non-smooth solutions

Figure: Three solids problem at T = 1, using RK(2,2;1) at CFL = 0.25. 2D \mathbb{P}_1 finite elements on non-uniform meshes. From left to right: I = 6561; I = 24917; I = 98648; I = 389860.

(日) (同) (日) (日)

Linear transport with non-smooth solutions

Table: Three solids problem at T = 1 and CFL = 0.25. 2D \mathbb{P}_1 finite elements on non-uniform meshes. Relative error in the L^1 -norm for methods RK(2,2;1) and RK(4,3;1).

1	RK(2,2;1)	rate	RK(4,3;1)	rate
1605	2.45E-01	-	2.49E-01	-
6561	1.28E-01	0.93	1.31E-01	0.92
24917	7.34E-02	0.81	7.49E-02	0.84
98648	4.26E-02	0.78	4.44E-02	0.76
389860	2.44E-02	0.81	2.56E-02	0.80

э

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

2D Burgers equation

2D Burgers equation in $D := (-.25, 1.75)^2$:

 $\partial_t u + \nabla \cdot (\mathbf{f}(u)) = 0, \qquad \mathbf{f}(u) := \frac{1}{2} (u^2, u^2)^\mathsf{T}, \qquad u(\mathbf{x}, 0) = u_0(\mathbf{x}) \text{ a.e. } \mathbf{x} \in D,$

with the initial data

$$u_0(\mathbf{x}) := egin{cases} 1 & ext{if } |x_1 - rac{1}{2}| \leq 1 ext{ and } |x_2 - rac{1}{2}| \leq 1 \ -a & ext{otherwise.} \end{cases}$$

2D Burgers equation

Table: Burgers' equation. 2D \mathbb{P}_1 finite elements on uniform meshes. T = 0.65 at CFL = 0.25. Relative error in the L^1 -norm for all the methods.

1	RK(2,2;1)	rate	$RK(2,2;\frac{1}{2})$	rate	RK(3,3;1)	rate	$RK(3,3;\frac{1}{3})$	rate	RK(4,3;1)	rate
51 ²	7.71E-02	-	7.79E-02	-	7.71E-02	-	8.03E-02	-	7.71E-02	-
101 ²	3.69E-02	1.06	3.73E-02	1.06	3.69E-02	1.06	3.85E-02	1.06	3.69E-02	1.06
201 ²	2.30E-02	0.68	2.32E-02	0.68	2.30E-02	0.68	2.38E-02	0.70	2.30E-02	0.68
401 ²	1.24E-02	0.90	1.24E-02	0.90	1.24E-02	0.90	1.27E-02	0.90	1.24E-02	0.90
801 ²	6.47E-03	0.93	6.52E-03	0.93	6.48E-03	0.93	6.65E-03	0.93	6.47E-03	0.93
1	$RK(4,4;\frac{1}{2})$	rate	$RK(4,4;\frac{3}{4})$	rate	RK(5,4;0.51)	rate	$RK(6,5;\frac{5}{6})$	rate	$RK(6,5;\frac{2}{3})$	rate
/ 51 ²	RK(4,4; ¹ / ₂) 7.94E-02	rate –	$\frac{RK(4,4;\frac{3}{4})}{8.15E-02}$	rate _	RK(5,4;0.51) 7.79E-02	rate –	$RK(6,5;\frac{5}{6})$ 1.81E-01	rate _	RK(6,5; ² / ₃) 9.29E-02	rate –
/ 51 ² 101 ²	RK(4,4; ¹ / ₂) 7.94E-02 3.80E-02	rate - 1.06	RK(4,4; ³ / ₄) 8.15E-02 3.89E-02	rate - 1.07	RK(5,4;0.51) 7.79E-02 3.89E-02	rate - 1.00	RK(6,5; $\frac{5}{6}$) 1.81E-01 8.56E-02	rate - 1.08	RK(6,5; ² / ₃) 9.29E-02 4.39E-02	rate - 1.08
/ 51 ² 101 ² 201 ²	RK(4,4; ¹ / ₂) 7.94E-02 3.80E-02 2.36E-02	rate - 1.06 0.69	RK(4,4; ³ / ₄) 8.15E-02 3.89E-02 2.40E-02	rate - 1.07 0.70	RK(5,4;0.51) 7.79E-02 3.89E-02 2.47E-02	rate - 1.00 0.66	RK(6,5; $\frac{5}{6}$) 1.81E-01 8.56E-02 4.78E-02	rate - 1.08 0.84	RK(6,5; ² / ₃) 9.29E-02 4.39E-02 2.72E-02	rate - 1.08 0.69
/ 51 ² 101 ² 201 ² 401 ²	RK(4,4; ¹ / ₂) 7.94E-02 3.80E-02 2.36E-02 1.26E-02	rate - 1.06 0.69 0.90	RK(4,4; ³ / ₄) 8.15E-02 3.89E-02 2.40E-02 1.28E-02	rate - 1.07 0.70 0.90	RK(5,4;0.51) 7.79E-02 3.89E-02 2.47E-02 1.36E-02	rate - 1.00 0.66 0.86	RK(6,5; ⁵ / ₆) 1.81E-01 8.56E-02 4.78E-02 2.38E-02	rate - 1.08 0.84 1.00	RK(6,5; $\frac{2}{3}$) 9.29E-02 4.39E-02 2.72E-02 1.41E-02	rate - 1.08 0.69 0.95

Non-SSP methods converge as well as the SSP methods.

э

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

Outline

Introduction Invariant domains Problems with SSP time stepping Invariant-domain-preserving Explict Runge-Kutta Numerical illustrations Invariant-domain-preserving IMEX

IDPMEX

э

ヘロン 人間 とくほと くほとう

The low-order, linearized update

- Let \mathbf{F}^{L} be low-order approximation of hyperbolic flux.
- ▶ Let $\mathbf{G}^{L,\text{lin}}$ be Low-order linearized approximation of parabolic flux plus sources (i.e., approximation of $-\nabla \cdot (g(\mathbf{u}, \nabla \mathbf{u})) + \mathbf{S}(\mathbf{u})$).
- Consider the low-order update (IMEX Euler)

$$\mathbb{M}^{\mathsf{L}}\mathbf{U}^{\mathsf{L},n+1} = \mathbb{M}^{\mathsf{L}}\mathbf{U}^{n} + \Delta t\mathbf{F}^{\mathsf{L}}(\mathbf{U}^{n}) + \Delta t\mathbf{G}^{\mathsf{L},\mathsf{lin}}(\mathbf{U}^{n};\mathbf{U}^{\mathsf{L},n+1}).$$

э

・ロト ・ 厚 ト ・ ヨ ト ・ ヨ ト

The low-order, linearized update

- Assumption 1: (Forward Euler with low-order hyperbolic flux is invariant-domain preserving.) There exists Δt* > 0 such that:
 - ▶ For every $\Delta t \in (0, \Delta t^*]$, the low-order hyperbolic flux satisfies

$$(\mathbf{V}\in\mathcal{A}')\Longrightarrow(\mathbf{U}:=\mathbf{V}+\Delta t(\mathbb{M}^{\mathsf{L}})^{-1}\mathbf{F}^{\mathsf{L}}(\mathbf{V})\in\mathcal{A}').$$

• (Backward Euler with low-order, linearized, parabolic flux is invariant-domain preserving.) For all $\Delta t \in (0, \Delta t^*]$ and all $\mathbf{W} \in \mathcal{A}^l$, the operator $\mathbb{I} - \Delta t (\mathbb{M}^L)^{-1} \mathbf{G}^{L,\text{lin}}(\mathbf{W}; \cdot) : (\mathbb{R}^m)^l \to (\mathbb{R}^m)^l$ is bijective and

$$(\mathbf{V}\in\mathcal{A}')\Longrightarrow\left((\mathbb{I}-\Delta t(\mathbb{M}^{\mathsf{L}})^{-1}\mathbf{G}^{\mathsf{L},\mathsf{lin}}(\mathbf{W};\cdot))^{-1}\mathbf{V}\in\mathcal{A}'
ight).$$

Lemma (Low-order IDP Euler IMEX)

Let Assumption 1 hold. Assume that $\mathbf{U}^n \in \mathcal{A}^l$ and $\Delta t \in (0, \Delta t^*]$. Then, $\mathbf{U}^{L,n+1} \in \mathcal{A}^l$.

The high-order, linearized update (one Euler step)

▶ Assumption 2: There exists two nonlinear limiting operators ℓ^{hyp} , $\ell^{\text{par}} : \mathcal{A}^{I} \times (\mathbb{R}^{m})^{I} \times (\mathbb{R}^{m})^{I} \to (\mathbb{R}^{m})^{I}$ s.t. for all $(\mathbf{V}, \mathbf{\Phi}^{\mathsf{L}}, \mathbf{\Phi}^{\mathsf{H}}) \in \mathcal{A}^{I} \times (\mathbb{R}^{m})^{I} \times (\mathbb{R}^{m})^{I}$,

$$\begin{split} (\mathbf{V} + \Delta t(\mathbb{M}^{\mathsf{L}})^{-1} \mathbf{\Phi}^{\mathsf{L}} \in \mathcal{A}') \Longrightarrow (\ell^{\mathsf{hyp}}(\mathbf{V}, \mathbf{\Phi}^{\mathsf{L}}, \mathbf{\Phi}^{\mathsf{H}}) \in \mathcal{A}'), \\ (\mathbf{V} + \Delta t(\mathbb{M}^{\mathsf{L}})^{-1} \mathbf{\Phi}^{\mathsf{L}} \in \mathcal{A}') \Longrightarrow (\ell^{\mathsf{par}}(\mathbf{V}, \mathbf{\Phi}^{\mathsf{L}}, \mathbf{\Phi}^{\mathsf{H}}) \in \mathcal{A}'). \end{split}$$

э

(日)、

The high-order update (one Euler step)

- ► Given Uⁿ ∈ A^I, the high-order update Uⁿ⁺¹ is constructed as follows.
- Step 1: Compute the low-order and high-order hyperbolic updates defined by

$$\begin{split} \mathbb{M}^{\mathsf{L}} \mathbf{W}^{\mathsf{L},n+1} &:= \mathbb{M}^{\mathsf{L}} \mathbf{U}^{n} + \Delta t \mathbf{F}^{\mathsf{L}}(\mathbf{U}^{n}), \\ \mathbb{M}^{\mathsf{H}} \mathbf{W}^{\mathsf{H},n+1} &:= \mathbb{M}^{\mathsf{H}} \mathbf{U}^{n} + \Delta t \mathbf{F}^{\mathsf{H}}(\mathbf{U}^{n}). \end{split}$$

Step 2: Compute the hyperbolic fluxes Φ^L , Φ^H (details given later) and limit

$$\boldsymbol{\mathsf{W}}^{n+1}:=\ell^{\mathsf{hyp}}(\boldsymbol{\mathsf{U}}^n,\boldsymbol{\Phi}^{\mathsf{L}},\boldsymbol{\Phi}^{\mathsf{H}}).$$

A D F A B F A B F A B F

The high-order update (one Euler step)

Step 3: Compute the low-order and high-order parabolic updates defined by

$$\mathbb{M}^{\mathsf{L}} \mathbf{U}^{\mathsf{L},n+1} - \Delta t \mathbf{G}^{\mathsf{L},\mathsf{lin}}(\mathbf{U}^{n};\mathbf{U}^{\mathsf{L},n+1}) := \mathbb{M}^{\mathsf{L}} \mathbf{W}^{n+1},$$
$$\mathbb{M}^{\mathsf{H}} \mathbf{U}^{\mathsf{H},n+1} - \Delta t \mathbf{G}^{\mathsf{H},\mathsf{lin}}(\mathbf{U}^{n};\mathbf{U}^{\mathsf{H},n+1}) := \mathbb{M}^{\mathsf{H}} \mathbf{W}^{n+1},$$

Step 4: Compute the parabolic fluxes Ψ^{L} , Ψ^{H} (details given later) and limit

$$\mathbf{U}^{n+1} := \ell^{\mathsf{par}}(\mathbf{W}^{n+1}, \mathbf{\Psi}^{\mathsf{L}}, \mathbf{\Psi}^{\mathsf{H}}).$$

Lemma (High-order IDP Euler IMEX) Assume Assumptions 1 and 2. Assume that $\mathbf{U}^n \in \mathcal{A}^I$ and $\Delta t \in (0, \Delta t^*]$. Let \mathbf{U}^{n+1} be defined as above. Then $\mathbf{U}^{n+1} \in \mathcal{A}^I$.

The high-order update (IMEX)

▶ Key idea: Consider low-order and high-order updates and limit.

- ▶ Set $\mathbf{U}(t^n) = \mathbf{U}^n$ (with the induction assumption $\mathbf{U}^n \in \mathcal{A}$)
- For $t \in (t^n, t^{n+1})$ solve

$$\begin{split} \mathbb{M}^{\mathsf{L}}\partial_{t}\mathbf{U} &= \underbrace{\mathbf{F}^{\mathsf{L}}(\mathbf{U})}_{Explicit} + \underbrace{\mathbf{G}^{\mathsf{H},\mathsf{lin}}(\mathbf{U}^{n};\mathbf{U})}_{Implicit}, \\ \mathbb{M}^{\mathsf{H}}\partial_{t}\mathbf{U} &= \underbrace{\mathbf{F}^{\mathsf{H}}(\mathbf{U}) + \mathbf{G}^{\mathsf{H}}(\mathbf{U}) - \mathbf{G}^{\mathsf{H},\mathsf{lin}}(\mathbf{U}^{n};\mathbf{U})}_{Explicit} + \underbrace{\mathbf{G}^{\mathsf{H},\mathsf{lin}}(\mathbf{U}^{n};\mathbf{U})}_{Implicit}. \end{split}$$

・ 日 ・ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

The high-order update (IMEX)

Explicit Butcher tableau

Implicit Butcher tableau

æ

Hyperbolic update

▶ Let
$$l \in \{2: s + 1\}$$

▶ Compute $\mathbf{W}^{L,l}$ and $\mathbf{W}^{H,l}$

$$\begin{split} \mathbb{M}^{\mathsf{L}} \mathbf{W}^{\mathsf{L},l} &:= \mathbb{M}^{\mathsf{L}} \mathbf{U}^{n,l'} + \Delta t (c_l - c_{l'}) \mathbf{F}^{\mathsf{L}} (\mathbf{U}^{n,l'}), \\ \mathbb{M}^{\mathsf{H}} \mathbf{W}^{\mathsf{H},l} &:= \mathbb{M}^{\mathsf{H}} \mathbf{U}^{n,l'} + \Delta t \sum_{k \in \{1:l-1\}} (a_{l,k}^{\mathsf{e}} - a_{l',k}^{\mathsf{e}}) \mathbf{F}^{\mathsf{H}} (\mathbf{U}^{n,k}). \end{split}$$

► Use hyperbolic limiter $\mathbf{W}^{n,l} := \ell^{\text{hyp}}(\mathbf{U}^{\text{L},l}, \Phi^{\text{L}}, \Phi^{\text{H}}), \qquad \forall l \in \{2: s+1\}.$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Parabolic update

▶ Let *I* ∈ {2:*s* + 1}
 ▶ Compute U^{L,*I*} and U^{H,*I*}

$$\begin{split} \mathbb{M}^{\mathsf{L}} \mathbf{U}^{\mathsf{L},l} &:= \mathbb{M}^{\mathsf{L}} \mathbf{W}^{n,l'} + \Delta t (c_l - c_{l'}) \mathbf{G}^{\mathsf{L},\mathsf{lin}} (\mathbf{U}^n; \mathbf{U}^{\mathsf{L},l}), \\ \mathbb{M}^{\mathsf{H}} \mathbf{U}^{\mathsf{H},l'} &:= \mathbb{M}^{\mathsf{H}} \mathbf{W}^{n,l'} + \Delta t a^{\mathsf{i}}_{l,l} \mathbf{G}^{\mathsf{H},\mathsf{lin}} (\mathbf{U}^n; \mathbf{U}^{\mathsf{H},l}) \\ &+ \sum_{k \in \{1:l-1\}} \Delta t \left\{ (a^{\mathsf{e}}_{l,k} - a^{\mathsf{e}}_{l',k}) \mathbf{G}^{\mathsf{H}} (\mathbf{U}^{n,k}) + (a^{\mathsf{i}}_{l,k} - a^{\mathsf{i}}_{l',k} - a^{\mathsf{e}}_{l,k} + a^{\mathsf{e}}_{l',k}) \mathbf{G}^{\mathsf{H},\mathsf{lin}} (\mathbf{U}^n; \mathbf{U}^{n,k}) \right\}. \end{aligned}$$

► Notice $\Delta t(c_l - c_{l'}) > 0$, but $\Delta t a_{l,l}^i \ge 0$ (i.e., $a_{s+1,s+1}^i = 0$).

Use hyperbolic limiter

$$\mathbf{U}^{n+1} := \ell^{\mathsf{hyp}}(\mathbf{W}^{\mathsf{L}, l}, \Psi^{\mathsf{L}}, \Psi^{\mathsf{H}}), \qquad \forall l \in \{2: s+1\}.$$

(日)、

Key result

Theorem (*s*-stage IDP-IMEX) Assume Assumptions 1 and 2 and

$$\Delta t c_{ ext{eff}} \leq \Delta t^*, \qquad c_{ ext{eff}} := \max_{l \in \{2: s+1\}} (c_l - c_{l'})$$

If $\mathbf{U}^n \in \mathcal{A}^I$, then $\mathbf{U}^{L,n+1} \in \mathcal{A}^I$.

æ

・ロト ・聞ト ・ヨト ・ヨト

Example: Second-order

Heun's method + Crank-Nicolson:

▶ l' = l - 1 for all $l \in \{2:3\}$, and the efficiency ratio is $\frac{1}{2}$.

æ

・ロト ・四ト ・ヨト ・ヨト

Example: Second-order

Explicit and implicit midpoint rules.

▶ l' = l - 1 for all $l \in \{2:3\}$, and the efficiency ratio is 1.

ヘロン ヘロン ヘビン ヘビン

Example: Third-order

 Two-stage, third-order (A-stable) SDIRK method Crouzeix (1975), Norsett (1974)

• with
$$\gamma := \frac{1}{2} + \frac{1}{2\sqrt{3}} \approx 0.78867.$$

• The values for I' are (1, 1, 2). The efficiency ratio is $\frac{1}{3}\gamma \approx 0.26$.

Example: Third-order

► Three-stage, third-order

Important omitted details

- The definition of $\mathbf{G}^{L,lin}$ is problem-dependent.
- Conservation
- Limiting done with the Flux Transport Correction technique Zalezak (1979) if the constraints are not affine
- Limiting done with convex limiting (Guermond, Popov, Tomas (2019)) if the constraints are not affine.

Conclusions

 Every ERK and IMEX methods can be made invariant-domain preserving.

