# New perpective on time stepping techniques: Beyond strong stability. 

J.-L. Guermond<br>Department of Mathematics<br>Texas A\&M University

Oden Institute Seminar, Feb 2, 2022

## Collaborators and acknowledgments

This work done in collaboration with:

- Alexandre Ern (École Nationale des Ponts \& Chaussées, Paris, France)
Other collaborators
- Bennett Clayton (TAMU, TX)
- Martin Kronbichler (Uppsala, Sweden)
- Matthias Maier (TAMU, TX)
- B. Popov (TAMU, TX)
- Laura Saavedra (Universidad Politcnica de Madrid)
- Madison Sheridan (TAMU, TX)
- Ignacio Tomas (SANDIA, NM)
- Eric Tovar (TAMU, TX)

Support:

## Outline


Introduction
Invariant domains Problems with SSP time stepping Invariant-domain-preserving Explict Runge-Kutta Numerical illustrations Invariant-domain-preserving IMEX

## Cauchy problem

- Cauchy problem

$$
\begin{array}{ll}
\partial_{t} \mathbf{u}+\nabla \cdot(\mathbb{f}(\mathbf{u})+\mathrm{g}(\mathbf{u}, \nabla \mathbf{u}))=\mathbf{S}(\mathbf{u}), & (\mathbf{x}, t) \in D \times \mathbb{R}_{+} \\
u(\mathbf{x}, 0)=\mathbf{u}_{0}(\mathbf{x}), & \mathbf{x} \in D
\end{array}
$$

## Cauchy problem

- Cauchy problem

$$
\begin{array}{ll}
\partial_{t} \mathbf{u}+\nabla \cdot(\mathbb{f}(\mathbf{u})+\mathrm{g}(\mathbf{u}, \nabla \mathbf{u}))=\mathbf{S}(\mathbf{u}), & (\mathbf{x}, t) \in D \times \mathbb{R}_{+} . \\
u(\mathbf{x}, 0)=\mathbf{u}_{0}(\mathbf{x}), & \mathbf{x} \in D .
\end{array}
$$

- $D$ open polyhedral domain in $\mathbb{R}^{d}$.


## Cauchy problem

- Cauchy problem

$$
\begin{array}{ll}
\partial_{t} \mathbf{u}+\nabla \cdot(\mathbb{f}(\mathbf{u})+\mathrm{g}(\mathbf{u}, \nabla \mathbf{u}))=\mathbf{S}(\mathbf{u}), & (\mathbf{x}, t) \in D \times \mathbb{R}_{+} \\
u(\mathbf{x}, 0)=\mathbf{u}_{0}(\mathbf{x}), & \mathbf{x} \in D .
\end{array}
$$

- D open polyhedral domain in $\mathbb{R}^{d}$.
- Field $\mathbf{u}$ takes values in $\mathbb{R}^{m}$; that is, $\mathbf{u}: D \times \mathbb{R}_{+} \rightarrow \mathbb{R}^{m}$


## Cauchy problem

- Cauchy problem

$$
\begin{array}{ll}
\partial_{t} \mathbf{u}+\nabla \cdot(\mathbb{f}(\mathbf{u})+\mathrm{g}(\mathbf{u}, \nabla \mathbf{u}))=\mathbf{S}(\mathbf{u}), & (\mathbf{x}, t) \in D \times \mathbb{R}_{+} \\
u(\mathbf{x}, 0)=\mathbf{u}_{0}(\mathbf{x}), & \mathbf{x} \in D .
\end{array}
$$

- D open polyhedral domain in $\mathbb{R}^{d}$.
- Field $\mathbf{u}$ takes values in $\mathbb{R}^{m}$; that is, $\mathbf{u}: D \times \mathbb{R}_{+} \rightarrow \mathbb{R}^{m}$
$-\mathbb{f} \in \mathcal{C}^{1}\left(\mathbb{R}^{m} ; \mathbb{R}^{m \times d}\right)$, the hyperbolic flux.


## Cauchy problem

- Cauchy problem

$$
\begin{array}{ll}
\partial_{t} \mathbf{u}+\nabla \cdot(\mathbb{f}(\mathbf{u})+\mathrm{g}(\mathbf{u}, \nabla \mathbf{u}))=\mathbf{S}(\mathbf{u}), & (\mathbf{x}, t) \in D \times \mathbb{R}_{+} \\
u(\mathbf{x}, 0)=\mathbf{u}_{0}(\mathbf{x}), & \mathbf{x} \in D .
\end{array}
$$

- D open polyhedral domain in $\mathbb{R}^{d}$.
- Field $\mathbf{u}$ takes values in $\mathbb{R}^{m}$; that is, $\mathbf{u}: D \times \mathbb{R}_{+} \rightarrow \mathbb{R}^{m}$
$-\mathbb{f} \in \mathcal{C}^{1}\left(\mathbb{R}^{m} ; \mathbb{R}^{m \times d}\right)$, the hyperbolic flux.
- $g \in \mathcal{C}^{1}\left(\mathbb{R}^{m} \times \mathbb{R}^{m \times d} ; \mathbb{R}^{m \times d}\right)$, the diffusive/parabolic flux.


## Cauchy problem

- Cauchy problem

$$
\begin{array}{ll}
\partial_{t} \mathbf{u}+\nabla \cdot(\mathbb{f}(\mathbf{u})+\mathrm{g}(\mathbf{u}, \nabla \mathbf{u}))=\mathbf{S}(\mathbf{u}), & (\mathbf{x}, t) \in D \times \mathbb{R}_{+} \\
u(\mathbf{x}, 0)=\mathbf{u}_{0}(\mathbf{x}), & \mathbf{x} \in D .
\end{array}
$$

- D open polyhedral domain in $\mathbb{R}^{d}$.
- Field $\mathbf{u}$ takes values in $\mathbb{R}^{m}$; that is, $\mathbf{u}: D \times \mathbb{R}_{+} \rightarrow \mathbb{R}^{m}$
$-\mathbb{f} \in \mathcal{C}^{1}\left(\mathbb{R}^{m} ; \mathbb{R}^{m \times d}\right)$, the hyperbolic flux.
- $g \in \mathcal{C}^{1}\left(\mathbb{R}^{m} \times \mathbb{R}^{m \times d} ; \mathbb{R}^{m \times d}\right)$, the diffusive/parabolic flux.
- $\mathbf{S} \in \mathcal{C}^{1}\left(\mathbb{R}^{m} ; \mathbb{R}^{m \times d}\right)$, source.


## Cauchy problem

- Cauchy problem

$$
\begin{array}{ll}
\partial_{t} \mathbf{u}+\nabla \cdot(\mathbb{f}(\mathbf{u})+g(\mathbf{u}, \nabla \mathbf{u}))=\mathbf{S}(\mathbf{u}), & (\mathbf{x}, t) \in D \times \mathbb{R}_{+} \\
u(\mathbf{x}, 0)=\mathbf{u}_{0}(\mathbf{x}), & \mathbf{x} \in D
\end{array}
$$

- D open polyhedral domain in $\mathbb{R}^{d}$.
- Field $\mathbf{u}$ takes values in $\mathbb{R}^{m}$; that is, $\mathbf{u}: D \times \mathbb{R}_{+} \rightarrow \mathbb{R}^{m}$
$-\mathbb{f} \in \mathcal{C}^{1}\left(\mathbb{R}^{m} ; \mathbb{R}^{m \times d}\right)$, the hyperbolic flux.
- $\mathrm{g} \in \mathcal{C}^{1}\left(\mathbb{R}^{m} \times \mathbb{R}^{m \times d} ; \mathbb{R}^{m \times d}\right)$, the diffusive/parabolic flux.
- $\mathbf{S} \in \mathcal{C}^{1}\left(\mathbb{R}^{m} ; \mathbb{R}^{m \times d}\right)$, source.
- $\mathbf{u}_{0}$, admissible initial data.


## Cauchy problem

- Cauchy problem

$$
\begin{array}{ll}
\partial_{t} \mathbf{u}+\nabla \cdot(\mathbb{f}(\mathbf{u})+g(\mathbf{u}, \nabla \mathbf{u}))=\mathbf{S}(\mathbf{u}), & (\mathbf{x}, t) \in D \times \mathbb{R}_{+} \\
u(\mathbf{x}, 0)=\mathbf{u}_{0}(\mathbf{x}), & \mathbf{x} \in D
\end{array}
$$

- D open polyhedral domain in $\mathbb{R}^{d}$.
- Field $\mathbf{u}$ takes values in $\mathbb{R}^{m}$; that is, $\mathbf{u}: D \times \mathbb{R}_{+} \rightarrow \mathbb{R}^{m}$
- $\mathbb{f} \in \mathcal{C}^{1}\left(\mathbb{R}^{m} ; \mathbb{R}^{m \times d}\right)$, the hyperbolic flux.
- $g \in \mathcal{C}^{1}\left(\mathbb{R}^{m} \times \mathbb{R}^{m \times d} ; \mathbb{R}^{m \times d}\right)$, the diffusive/parabolic flux.
- $\mathbf{S} \in \mathcal{C}^{1}\left(\mathbb{R}^{m} ; \mathbb{R}^{m \times d}\right)$, source.
- $\mathbf{u}_{0}$, admissible initial data.
- Periodic BCs or $\mathbf{u}_{0}$ has compact support (to simplify BCs)


## Hyperbolicity (recall)

## Definition

The system $\partial_{t} \mathbf{u}+\nabla \cdot(\mathbb{f}(\mathbf{u})=\mathbf{0}$ is said to be hyperbolic if for all unit vector $\mathbf{n} \in \mathbb{R}^{d}$ and all $\mathbf{v}$ in the domain of $\mathbb{f}$
$\mathbb{f}^{\prime}(\mathbf{v}) \mathbf{n}$ is diagonalizable with real eigenvalues.

## Example 1: Navier-Stokes

- Find $\mathbf{u}:=(\rho, \mathbf{m}, E)^{\top}$ so that

$$
\begin{aligned}
& \partial_{t} \rho+\nabla \cdot(\mathbf{v} \rho)=0 \\
& \partial_{t} \mathbf{m}+\nabla \cdot(\mathbf{v} \otimes \mathbf{m}+p(\mathbf{u}) \mathbb{I}-\mathbb{S}(\mathbf{v}))=\mathbf{0} \\
& \partial_{t} E+\nabla \cdot(\mathbf{v}(E+p(\mathbf{u}))-\mathbb{S}(\mathbf{v}) \cdot \mathbf{v}+\mathbf{q}(\mathbf{u}))=0
\end{aligned}
$$

with $\mathbf{v}:=\mathbf{m} / \rho$ : velocity; $p(\mathbf{u})$ : pressure.

## Example 1: Navier-Stokes

- Find $\mathbf{u}:=(\rho, \mathbf{m}, E)^{\top}$ so that

$$
\begin{aligned}
& \partial_{t} \rho+\nabla \cdot(\mathbf{v} \rho)=0, \\
& \partial_{t} \mathbf{m}+\nabla \cdot(\mathbf{v} \otimes \mathbf{m}+p(\mathbf{u}) \mathbb{I}-\Phi(\mathbf{v}))=\mathbf{0}, \\
& \partial_{t} E+\nabla \cdot(\mathbf{v}(E+p(\mathbf{u}))-\mathbb{S}(\mathbf{v}) \cdot \mathbf{v}+\mathbf{q}(\mathbf{u}))=0,
\end{aligned}
$$

with $\mathbf{v}:=\mathbf{m} / \rho$ : velocity; $p(\mathbf{u})$ : pressure.

- Fluxes

$$
\mathbb{f}(\mathbf{u}):=\left(\begin{array}{c}
\mathbf{v} \rho \\
\mathbf{v} \otimes \mathbf{m}+p(\mathbf{u}) \mathbb{I} \\
\mathbf{v}(E+p(\mathbf{u}))
\end{array}\right), \quad \mathrm{g}(\mathbf{u}, \nabla \mathbf{u}):=\left(\begin{array}{c}
0 \\
-\mathbb{S}(\mathbf{v}) \\
-\mathbb{S}(\mathbf{v}) \cdot \mathbf{v}+\mathbf{q}(\mathbf{u})
\end{array}\right) .
$$

## Example 1: Navier-Stokes

- Find $\mathbf{u}:=(\rho, \mathbf{m}, E)^{\top}$ so that

$$
\begin{aligned}
& \partial_{t} \rho+\nabla \cdot(\mathbf{v} \rho)=0, \\
& \partial_{t} \mathbf{m}+\nabla \cdot(\mathbf{v} \otimes \mathbf{m}+p(\mathbf{u}) \mathbb{I}-\mathbb{S}(\mathbf{v}))=\mathbf{0}, \\
& \partial_{t} E+\nabla \cdot(\mathbf{v}(E+p(\mathbf{u}))-\mathbb{S}(\mathbf{v}) \cdot \mathbf{v}+\mathbf{q}(\mathbf{u}))=0,
\end{aligned}
$$

with $\mathbf{v}:=\mathbf{m} / \rho$ : velocity; $p(\mathbf{u})$ : pressure.

- Fluxes

$$
\mathbb{f}(\mathbf{u}):=\left(\begin{array}{c}
\mathbf{v} \rho \\
\mathbf{v} \otimes \mathbf{m}+p(\mathbf{u}) \mathbb{I} \\
\mathbf{v}(E+p(\mathbf{u}))
\end{array}\right), \quad \mathrm{g}(\mathbf{u}, \nabla \mathbf{u}):=\left(\begin{array}{c}
0 \\
-\mathbb{S}(\mathbf{v}) \\
-\mathbb{S}(\mathbf{v}) \cdot \mathbf{v}+\mathbf{q}(\mathbf{u})
\end{array}\right) .
$$

- Possible definitions for $\$$ and $q$ :

$$
\Phi(\mathbf{v})=2 \mu \mathbb{e}(\mathbf{v})+\left(\lambda-\frac{2}{3} \mu\right)(\nabla \cdot \mathbf{v}) \mathbb{I}, \quad \mathbf{q}(\mathbf{u})=-\kappa \nabla e(\mathbf{u}) .
$$

## Example 2: Gray radiation hydrodynamics

- Find $\mathbf{u}:=\left(\rho, \mathbf{m}, E, \mathcal{E}_{\mathrm{R}}\right)^{\top}$ so that

$$
\begin{aligned}
& \partial_{t} \rho+\nabla \cdot(\mathbf{v} \rho)=0, \\
& \partial_{t} \mathbf{m}+\nabla \cdot\left(\mathbf{v} \otimes \mathbf{m}+\left(p(\mathbf{u})+p_{\mathrm{R}}\left(\mathcal{E}_{\mathrm{R}}\right)\right) \mathbb{I}\right)=\mathbf{0}, \\
& \partial_{t} E+\nabla \cdot\left(\mathbf{v}\left(E+p(\mathbf{u})+p_{\mathrm{R}}\left(\mathcal{E}_{\mathrm{R}}\right)\right)\right)-\nabla \cdot\left(\frac{c}{3 \sigma_{\mathrm{t}}} \nabla \mathcal{E}_{\mathrm{R}}\right)=0, \\
& \partial_{t} \mathcal{E}_{\mathrm{R}}+\nabla \cdot\left(\mathbf{v}\left(\mathcal{E}_{\mathrm{R}}+p_{\mathrm{R}}\left(\mathcal{E}_{\mathrm{R}}\right)\right)\right)-\mathbf{v} \cdot \nabla p_{\mathrm{R}}\left(\mathcal{E}_{\mathrm{R}}\right)-\nabla \cdot\left(\frac{c}{3 \sigma_{\mathrm{t}}} \nabla \mathcal{E}_{\mathrm{R}}\right)=\sigma_{\mathrm{a}} c\left(a_{\mathrm{R}} T^{4}-\mathcal{E}_{\mathrm{R}}\right), \\
& \text { with } \mathcal{E}_{\mathrm{R}}: \text { radiation energy; } p_{\mathrm{R}}\left(\mathcal{E}_{\mathrm{R}}\right): \text { radiation pressure; } T(\mathbf{u}) \text { : } \\
& \text { temperature; }
\end{aligned}
$$

## Example 2: Gray radiation hydrodynamics

- Find $\mathbf{u}:=\left(\rho, \mathbf{m}, E, \mathcal{E}_{\mathrm{R}}\right)^{\top}$ so that
$\partial_{t} \rho+\nabla \cdot(\mathbf{v} \rho)=0$,
$\partial_{t} \mathbf{m}+\nabla \cdot\left(\mathbf{v} \otimes \mathbf{m}+\left(p(\mathbf{u})+p_{\mathrm{R}}\left(\mathcal{E}_{\mathrm{R}}\right)\right) \mathbb{I}\right)=\mathbf{0}$,
$\partial_{t} E+\nabla \cdot\left(\mathbf{v}\left(E+p(\mathbf{u})+p_{\mathrm{R}}\left(\mathcal{E}_{\mathrm{R}}\right)\right)\right)-\nabla \cdot\left(\frac{c}{3 \sigma_{\mathrm{t}}} \nabla \mathcal{E}_{\mathrm{R}}\right)=0$,
$\partial_{t} \mathcal{E}_{\mathrm{R}}+\nabla \cdot\left(\mathbf{v}\left(\mathcal{E}_{\mathrm{R}}+p_{\mathrm{R}}\left(\mathcal{E}_{\mathrm{R}}\right)\right)\right)-\mathbf{v} \cdot \nabla p_{\mathrm{R}}\left(\mathcal{E}_{\mathrm{R}}\right)-\nabla \cdot\left(\frac{c}{3 \sigma_{\mathrm{t}}} \nabla \mathcal{E}_{\mathrm{R}}\right)=\sigma_{\mathrm{a}} c\left(a_{\mathrm{R}} T^{4}-\mathcal{E}_{\mathrm{R}}\right)$,
with $\mathcal{E}_{\mathrm{R}}$ : radiation energy; $p_{\mathrm{R}}\left(\mathcal{E}_{\mathrm{R}}\right)$ : radiation pressure; $T(\mathbf{u})$ :
temperature;
$c$ : speed of light; $\sigma_{\mathrm{a}}, \sigma_{\mathrm{t}}$ : absorption and total cross sections; $a_{\mathrm{R}}:=\frac{4 \sigma}{c}$ radiation constant; $\sigma$ the Stefan-Boltzmann constant.


## Example 2: Gray radiation hydrodynamics

- Find $\mathbf{u}:=\left(\rho, \mathbf{m}, E, \mathcal{E}_{\mathrm{R}}\right)^{\top}$ so that
$\partial_{t} \rho+\nabla \cdot(\mathbf{v} \rho)=0$,
$\partial_{t} \mathbf{m}+\nabla \cdot\left(\mathbf{v} \otimes \mathbf{m}+\left(p(\mathbf{u})+p_{\mathrm{R}}\left(\mathcal{E}_{\mathrm{R}}\right)\right) \mathbb{I}\right)=\mathbf{0}$,
$\partial_{t} E+\nabla \cdot\left(\mathbf{v}\left(E+p(\mathbf{u})+p_{\mathrm{R}}\left(\mathcal{E}_{\mathrm{R}}\right)\right)\right)-\nabla \cdot\left(\frac{c}{3 \sigma_{\mathrm{t}}} \nabla \mathcal{E}_{\mathrm{R}}\right)=0$,
$\partial_{t} \mathcal{E}_{\mathrm{R}}+\nabla \cdot\left(\mathbf{v}\left(\mathcal{E}_{\mathrm{R}}+p_{\mathrm{R}}\left(\mathcal{E}_{\mathrm{R}}\right)\right)\right)-\mathbf{v} \cdot \nabla p_{\mathrm{R}}\left(\mathcal{E}_{\mathrm{R}}\right)-\nabla \cdot\left(\frac{c}{3 \sigma_{\mathrm{t}}} \nabla \mathcal{E}_{\mathrm{R}}\right)=\sigma_{\mathrm{a}} c\left(a_{\mathrm{R}} T^{4}-\mathcal{E}_{\mathrm{R}}\right)$,
with $\mathcal{E}_{\mathrm{R}}$ : radiation energy; $p_{\mathrm{R}}\left(\mathcal{E}_{\mathrm{R}}\right)$ : radiation pressure; $T(\mathbf{u})$ :
temperature;
c: speed of light; $\sigma_{\mathrm{a}}, \sigma_{\mathrm{t}}$ : absorption and total cross sections; $a_{\mathrm{R}}:=\frac{4 \sigma}{c}$ radiation constant; $\sigma$ the Stefan-Boltzmann constant.
- Possible definitions:

$$
p_{\mathrm{R}}\left(\mathcal{E}_{\mathrm{R}}\right):=\frac{1}{3} \mathcal{E}_{\mathrm{R}} ; \quad c_{\mathrm{v}} T=e(\mathbf{u}):=\frac{1}{\rho}\left(E-\frac{1}{2} \rho \mathbf{v}^{2}\right) .
$$

## Example 2: Gray radiation hydrodynamics

- Notice non conservative term: $\mathbf{v} \cdot \nabla p_{\mathrm{R}}\left(\mathcal{E}_{\mathrm{R}}\right)$
- Variable $\mathcal{E}_{\mathrm{R}}$ is smooth (due to presence of $\nabla \cdot\left(\frac{c}{3 \sigma_{\mathrm{t}}} \nabla \mathcal{E}_{\mathrm{R}}\right)$ ).
- $\Longrightarrow$ field $\mathcal{E}_{\mathrm{R}}$ is smooth
$\Longrightarrow$ legitimate to perform change of variable $\mathcal{E}_{\mathrm{R}} \rightarrow \widetilde{\mathcal{E}}_{\mathrm{R}}:=\mathcal{E}_{\mathrm{R}}^{\frac{3}{4}}$.
- After some algebra $\rightsquigarrow$ Definition of conservative hyperbolic flux:

$$
\mathbb{f}(\widetilde{\mathbf{u}}):=\left(\begin{array}{c}
\mathbf{v} \rho \\
\mathbf{v} \otimes \mathbf{m}+q(\widetilde{\mathbf{u}}) \mathbb{I} \\
\mathbf{v}(E+q(\widetilde{\mathbf{u}})) \\
\mathbf{v} \widetilde{\mathcal{E}}_{\mathrm{R}}
\end{array}\right) .
$$

with $q(\widetilde{\mathbf{u}}):=p(\widetilde{\mathbf{u}})+\frac{1}{3} \widetilde{\mathcal{E}}_{\mathrm{R}}^{\frac{4}{3}}($ notice that $p(\widetilde{\mathbf{u}})=p(\mathbf{u}))$.

- Hyperbolic flux is made conservative.


## Example 2: Gray radiation hydrodynamics

- Parabolic flux

$$
g(\mathbf{u}, \nabla \mathbf{u}):=\left(\begin{array}{c}
0 \\
\mathbf{0} \\
-\frac{c}{3 \sigma_{\mathrm{t}}} \nabla \mathcal{E}_{\mathrm{R}} \\
-\frac{c}{3 \sigma_{\mathrm{t}}} \nabla \mathcal{E}_{\mathrm{R}}
\end{array}\right) .
$$

- Source

$$
\mathbf{S}(\mathbf{u}):=\left(\begin{array}{c}
0 \\
\mathbf{0} \\
0 \\
\sigma_{\mathrm{a}} c\left(\mathcal{E}_{\mathrm{R}}-a_{\mathrm{R}} T^{4}\right)
\end{array}\right) .
$$

## Existence uniqueness: Scalar equations

- Existence and uniqueness of entropy solutions well understood in any space dimension for any Lipschitz flux.
- Oleinik (1959)
- Vol'pert (1967)
- Kruzkov (1970)


## Approximation: Scalar equations

- Approximation theory for scalar conservation theory well understood in any space dimension.
- Convergence rate deduced from a posteriori estimates:
- Kuznecov (1976),
- Cockburn-Gremaud (1996),
- Bouchut-Perthame (1998),
- Eymard-Gallouet-Herbin (1998),
- Chainais-Hillaret (1999),
- JLG-Popov (2016) ...


## Existence uniqueness: Hyperbolic systems

- Wellposedness known only for data with small total variation in 1D (Glimm (1965), Bianchini-Bressan (2005)).


## Existence uniqueness: Hyperbolic systems

- Wellposedness known only for data with small total variation in 1D (Glimm (1965), Bianchini-Bressan (2005)).
- Partial positive results for special systems in 1D.


## Existence uniqueness: Hyperbolic systems

- Wellposedness known only for data with small total variation in 1D (Glimm (1965), Bianchini-Bressan (2005)).
- Partial positive results for special systems in 1D.
- Negative results: Entropy conditions may not be sufficient for systems Chiodaroli-De Lellis (2015).


## Approximation: Hyperbolic systems

- Approximation theory for systems almost non existent in 1D:

See Bressan's seminar, Jan 8, 2021, (Laboratoire Jacques-Louis Lions)
https://www.ljll.math.upmc.fr/IMG/pdf/
ljll210108bressan.a-2.5mo.pdf

## Approximation: Hyperbolic systems

- Approximation theory for systems almost non existent in 1D: See Bressan's seminar, Jan 8, 2021, (Laboratoire Jacques-Louis Lions)
https://www.ljll.math.upmc.fr/IMG/pdf/
ljll210108bressan.a-2.5mo.pdf
- For the Lax-Friedrichs and the Godunov scheme, convergence is known only for $2 \times 2$ systems in 1D (compensated compactness argument, no convergence rate), Ding-Chen-Luo (1989)


## Approximation: Hyperbolic systems

- Approximation theory for systems almost non existent in 1D: See Bressan's seminar, Jan 8, 2021, (Laboratoire Jacques-Louis Lions)
https://www.ljll.math.upmc.fr/IMG/pdf/
ljll210108bressan.a-2.5mo.pdf
- For the Lax-Friedrichs and the Godunov scheme, convergence is known only for $2 \times 2$ systems in 1D (compensated compactness argument, no convergence rate), Ding-Chen-Luo (1989)
- There are $2 \times 2$ systems in 1D for which the Godunov method yields an unbounded BV norm as the mesh size goes to zero, Bressan-Jenssen-Baiti (2006).


## Approximation: Hyperbolic systems

- Approximation theory for systems almost non existent in 1D: See Bressan's seminar, Jan 8, 2021, (Laboratoire Jacques-Louis Lions)
https://www.ljll.math.upmc.fr/IMG/pdf/ ljll210108bressan.a-2.5mo.pdf
- For the Lax-Friedrichs and the Godunov scheme, convergence is known only for $2 \times 2$ systems in 1D (compensated compactness argument, no convergence rate), Ding-Chen-Luo (1989)
- There are $2 \times 2$ systems in 1D for which the Godunov method yields an unbounded BV norm as the mesh size goes to zero, Bressan-Jenssen-Baiti (2006).
- Very little hope to prove convergence of approximation techniques in two and three dimensions with realistic data. (With current mathematical knowledge.)


## Questions

What can we do?

- What can Numerical Analysis do?


## Questions

What can we do?

- What can Numerical Analysis do?
- Numerous computational fluid dynamics codes developed!


## Questions

What can we do?

- What can Numerical Analysis do?
- Numerous computational fluid dynamics codes developed!
- Planes fly. Nuclear reactors run.


## Questions

What can we do?

- What can Numerical Analysis do?
- Numerous computational fluid dynamics codes developed!
- Planes fly. Nuclear reactors run.
- Engineers do not wait for mathematicians to find answers.


## Questions

Proposed strategy

- Reduce expectations.
- Try to ensure the approximation satisfies "physical bounds"
- Try to ensure the approximation complies with thermodynamics.
- Try to achieve linear complexity with respect the number of degrees of freedom.


## Outline



> Introduction
> Invariant domains Problems with SSP time stepping Invariant-domain-preserving Explict Runge-Kutta Numerical illustrations Invariant-domain-preserving IMEX

## Key assumption: existence of an invariant domain

- Let $\mathbf{u}_{0} \in \mathcal{D}$.
- There exists a set $\mathcal{A} \subsetneq \mathbb{R}^{m}$, convex and depending on $\mathbf{u}_{0}$, so that the "entropy" solution takes values in $\mathcal{A}$ for a.e. $\mathbf{x} \in D$ and $t>0$.

$$
\left(\mathbf{u}_{0}(\mathbf{x}) \in \mathcal{A}, \forall \mathbf{x} \in D\right) \Longrightarrow(\mathbf{u}(\mathbf{x}, t) \in \mathcal{A}, \forall \mathbf{x} \in D, \forall t>0)
$$

- This is a generalization of the maximum principle.


## Examples

- Scalar conservation equations

$$
\left.\mathcal{A}:=\underset{x \in \mathbb{R}}{\operatorname{essinf}} u_{0}(x), \underset{x \in \mathbb{R}}{\operatorname{ess} \sup } u_{0}(x)\right] \quad \text { is a convex subset of } \mathbb{R}
$$

## Examples

- Euler equations with specific entropy $s$

$$
\mathcal{A}:=\left\{\mathbf{u}:=(\rho, \mathbf{m}, E) \in \mathbb{R}^{d+2} \mid \rho>0, E-\frac{1}{2} \frac{\mathbf{m}^{2}}{\rho}>0, s(\mathbf{u}) \geq \underset{\mathbf{x} \in D}{\operatorname{essinf}} s\left(\mathbf{u}_{0}\right)\right\}
$$

- Navier-Stokes equations

$$
\mathcal{A}:=\left\{(\rho, \mathbf{m}, E) \in \mathbb{R}^{d+2} \mid \rho>0, E-\frac{1}{2} \frac{\mathbf{m}^{2}}{\rho}>0\right\}
$$

- $\mathcal{A}$ is convex in both cases.
- Invariant domain for the Euler equations is smaller than that for the Navier-Stokes equations.


## Questions

- Hyperbolic and parabolic operators may have conflicting constraints.


## Questions

- Hyperbolic and parabolic operators may have conflicting constraints.
- Example 1: Navier-Stokes
- Euler: Conserved variables are natural for solving the hyperbolic problem
- Navier-Stokes: primitive variables (velocity, internal energy) are more appropriate for the parabolic part.
- The invariant domain of the Euler part is smaller than the invariant domain of the parabolic part.


## Questions

- Hyperbolic and parabolic operators may have conflicting constraints.
- Example 1: Navier-Stokes
- Euler: Conserved variables are natural for solving the hyperbolic problem
- Navier-Stokes: primitive variables (velocity, internal energy) are more appropriate for the parabolic part.
- The invariant domain of the Euler part is smaller than the invariant domain of the parabolic part.
- Example 2: Gray radiation hydrodynamics
- Euler: Conserved variables $\left(\rho, \mathbf{m}, E, \mathcal{E}_{\mathrm{R}}^{\frac{3}{4}}\right)^{\top}$.
- Parabolic part: $\left(T, \mathcal{E}_{\mathrm{R}}\right)^{\top}$.
- The invariant domain of the Euler part is smaller than the invariant domain of the parabolic part.


## Questions

- How can one reconcile all these constraints?
- How can one construct approximation techniques in time and space that preserve invariant domains?


## Outline



## Introduction <br> Invariant domains

Problems with SSP time stepping
Invariant-domain-preserving Explict Runge-Kutta Numerical illustrations Invariant-domain-preserving IMEX

## SSP (strong stability preserving)

- Approximate $\mathbf{u}(\mathbf{x}, t)$ in space with dofs in $\mathbb{R}^{m \times I}$.
- I : dimension of the approximation vector space (Finite elements ( $C^{0}$ or dG), Finite Volume, Finite Differences, etc.).
- Let $\mathbf{F}: \mathbb{R}^{m \times I} \rightarrow \mathbb{R}^{m \times I}$ be approximation in space of $-\nabla \cdot \mathbb{f}(\mathbf{u})$. (The way this is done does not matter here.)
- Semi-discrete problem: Find $\mathbf{U} \in C^{1}\left([0, T] ; \mathbb{R}^{m \times I}\right)$ s.t.

$$
\mathbb{M} \partial_{t} \mathbf{U}=\mathbf{F}(\mathbf{U}), \quad \mathbf{U}(0)=\mathbf{U}_{0}
$$

$\mathbb{M}$ : mass matrix (invertible)

## SSP (strong stability preserving)

- Assume $\mathbf{U}_{0} \in \mathcal{A}^{\prime}$.


## SSP (strong stability preserving)

- Assume $\mathbf{U}_{0} \in \mathcal{A}^{\prime}$.
- How can one construct time-stepping technique that guarantee $\mathbf{U}^{n} \in \mathcal{A}^{\prime}$, for all $n \geq 0$ ?


## SSP (strong stability preserving)

- Key assumption: (Forward Euler with low-order flux is invariant-domain preserving.) $\exists \Delta t^{*}>0$ s.t. $\forall \Delta t \in\left(0, \Delta t^{*}\right)$ and $\forall \mathbf{V} \in \mathbb{R}^{m \times 1}$

$$
\left(\mathbf{V} \in \mathcal{A}^{\prime}\right) \Longrightarrow\left(\mathbf{V}+\Delta t(\mathbb{M})^{-1} \mathbf{F}(\mathbf{V}) \in \mathcal{A}^{\prime}\right)
$$

$\Leftrightarrow \mathcal{A}^{\prime}$ is invariant by the forward Euler method under the CFL condition $\Delta t \in\left(0, \Delta t^{*}\right)$.

## SSP (strong stability preserving)

- Key assumption: (Forward Euler with low-order flux is invariant-domain preserving.) $\exists \Delta t^{*}>0$ s.t. $\forall \Delta t \in\left(0, \Delta t^{*}\right)$ and $\forall \mathbf{V} \in \mathbb{R}^{m \times I}$

$$
\left(\mathbf{V} \in \mathcal{A}^{\prime}\right) \Longrightarrow\left(\mathbf{V}+\Delta t(\mathbb{M})^{-1} \mathbf{F}(\mathbf{V}) \in \mathcal{A}^{\prime}\right)
$$

$\Leftrightarrow \mathcal{A}^{\prime}$ is invariant by the forward Euler method under the CFL condition $\Delta t \in\left(0, \Delta t^{*}\right)$.

- Key idea by Shu\&Osher (1988)

Use explicit Runge-Kutta methods where the final update is a convex combination of updates computed with the forward Euler method.

## SSP (strong stability preserving)

- Generic form of $s$-stage, explicit Runge-Kutta, strong-stability-preserving methods (SSPRK)

$$
\mathbf{W}^{(i)}:=\sum_{k \in\{0: i-1\}} \alpha_{i k} \mathbf{W}^{(k)}+\beta_{i k} \Delta t \mathbf{F}\left(\mathbf{W}^{(k)}\right), \quad \forall i \in\{1: s\}
$$

- The update at $t_{n+1}$ is given by $\mathbf{U}^{n+1}:=\mathbf{W}^{(s)}$.
- Theory well understood now:
- Kraaijevanger (1991) (amazing paper),
- Spiteri-Ruuth (2002),
- Ferracina-Spijker (2005),
- Higueras (2005).


## Examples $\left(\right.$ for $\left.\partial_{t} u=L(t, u)\right)$

- $\operatorname{SSPRK}(2,2)$

| $\alpha$ | $\beta$ | $\gamma$ |  |
| :---: | :--- | :--- | :---: |
| 1 |  | 1 |  |
| $\frac{1}{2}$ | $\frac{1}{2}$ | 0 | $\frac{1}{2}$ |

$$
\begin{aligned}
& w^{(1)}:=u^{n}+\Delta t L\left(t_{n}, u^{n}\right) \\
& w^{(2)}:=\frac{1}{2} u^{n}+\frac{1}{2}\left(w^{(1)}+\Delta t L\left(t_{n}+\Delta t, w^{(1)}\right)\right)
\end{aligned}
$$

- $\operatorname{SSPRK}(3,3)$

| $\alpha$ |  | $\beta$ |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 |  |  | 1 |  |
|  |  | 0 |  |  |
| $\frac{3}{4}$ | $\frac{1}{4}$ |  | 0 | $\frac{1}{4}$ |
| $\frac{1}{3}$ | 0 | $\frac{2}{3}$ | 0 | 0 |
| $\frac{2}{3}$ | $\frac{1}{2}$ |  |  |  |

$$
\begin{aligned}
& w^{(1)}:=u^{n}+\Delta t L\left(t_{n}, u^{n}\right), \\
& w^{(2)}:=\frac{3}{4} u^{n}+\frac{1}{4}\left(w^{(1)}+\Delta t L\left(t_{n}+\Delta t, w^{(1)}\right)\right), \\
& w^{(3)}:=\frac{1}{3} u^{n}+\frac{2}{3}\left(w^{(2)}+\Delta t L\left(t_{n}+\frac{1}{2} \Delta t, w^{(2)}\right)\right),
\end{aligned}
$$

## Examples (for $\left.\partial_{t} u=L(t, u)\right)$

- $\operatorname{SSPRK}(4,3)$

| $\alpha$ |  |  | $\beta$ |  |  |  | $\gamma$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  |  |  | $\frac{1}{2}$ |  |  |  |
| 0 | 1 |  |  | 0 | $\frac{1}{2}$ |  |  |
| $\frac{1}{2}$ |  |  |  |  |  |  |  |
| $\frac{2}{3}$ | 0 | $\frac{1}{3}$ |  | 0 | 0 | $\frac{1}{6}$ |  |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | $\frac{1}{2}$ |

$$
\begin{aligned}
& w^{(1)}:=u^{n}+\frac{1}{2} \Delta t L\left(t_{n}, u^{n}\right), \\
& w^{(2)}:=w^{(1)}+\frac{1}{2} \Delta t L\left(t_{n}+\frac{1}{2} \Delta t, w^{(1)}\right), \\
& w^{(3)}:=\frac{2}{3} u^{n}+\frac{1}{3}\left(w^{(2)}+\frac{1}{2} \Delta t L\left(t_{n}+\Delta t, w^{( }\right.\right. \\
& w^{(4)}:=w^{(3)}+\frac{1}{2} \Delta t L\left(t_{n}+\frac{1}{2} \Delta t, w^{(3)}\right),
\end{aligned}
$$

## Problems with SPPRK

Definition (Efficiency ratio)
Let $c_{o s}:=\inf _{i \in\{1: s\}} \inf _{k \in \mathcal{K}_{i}} \alpha_{i k} \beta_{i k}^{-1}$.
Proposition
Under the same CFL constraint, the number of function evaluations of $\operatorname{SSPRK}(s, p)$ is equal to $s / c_{o s} \times$ that of the forward Euler method.

## Examples

- $c_{\text {os }}$ for $\operatorname{SSPRK}(2,2)$ is 1 (instead of $2 \Rightarrow \frac{1}{2}$ efficiency).
- $c_{\text {os }}$ for $\operatorname{SSPRK}(3,3)$ is 1 (instead of $3 \Rightarrow \frac{1}{3}$ efficiency).
- $c_{\text {os }}$ for $\operatorname{SSPRK}(4,3)$ is 2 (instead of $4 \Rightarrow \frac{1}{2}$ efficiency).


## Problems with SPPRK: Efficiency

- SSPRK methods are inefficient!
- The most popular method $\operatorname{SSPRK}(3,3)$ is actually the most inefficient!


## Problems with SPPRK: Accuracy

- Accuracy of SSPRK methods restricted to fourth-order if one insists on never stepping backward in time.


## Problems with SPPRK: extensions to IMEX methods

- The SSPRK paradigm cannot be easily modified to accommodate implicit and explicit sub-steps.
- Two exceptions:
- Parabolic time step restriction $\Delta t \leq c h^{2}$
- Scalar conservation equations that are variations of the heat-equation.


## Problems with SPPRK: extensions to IMEX methods

## Example (Compressible Navier-Stokes)

- Difficulties: conflicting invariant sets and conflicting variables.
- Which invariant domain to preserve?
- Minimum entropy principle is true for Euler.
- Minimum entropy principle is false for NS.
- Which variable should be used?
- "Right variable" for Euler is $\mathbf{u}=(\rho, \mathbf{m}, E)$ (conserved variables).
- "Right variable" for NS is ( $\rho, \mathbf{v}, \boldsymbol{e}$ ) (primitive variables).
- Some advocate "entropy variable" and "entropy stability". Why?
- How to do the explicit-implicit time stepping?
- How linearization should be done in the implicit substeps?
- Most "IMEX" methods cannot make the difference between conserved and primitive variables.
- Most "IMEX" methods cannot be properly linearized and be conservative (no generic theory).
- Difficulty can be overcome by assuming $\Delta t \leq c h^{2}$, Zhang \& Shu (2017).


## Problems with SPPRK: extensions to IMEX methods

- Conjecture: There does not exist any IMEX method that is SSP for general systems. (At the exclusion of scalar conservation equations and under the proper time step restriction).
- Conclusion: One needs a new paradigm.


## Outline



> Introduction
> Invariant domains
> Problems with SSP time stepping
> Invariant-domain-preserving Explict Runge-Kutta Numerical illustrations Invariant-domain-preserving IMEX

## Peep under the hood of SSPRK

- The beauty of SSPRK methods is that the forward Euler sub-step is a black box.
- The black box invokes two fluxes (not just one as one might think):
- Low-order (in space) $\mathbf{F}^{\mathrm{L}}$, low-order mass matrix $\mathbb{M}^{\mathrm{L}}$
- High-order (in space) $\mathbf{F}^{\mathrm{H}}$, low-order mass matrix $\mathbb{M}^{\mathrm{H}}$
- Ideally, one would like to solve

$$
\mathbb{M}^{\mathrm{H}} \partial_{t} \mathbf{U}=\mathbf{F}^{\mathrm{H}}(\mathbf{U})
$$

since the space approximation is accurate, but this method violates the invariant domain property.

## Peep under the hood of SSPRK

Key assumptions

- Assumption 1: (Forward Euler with low-order flux is invariant-domain preserving.) Assume $\exists \Delta t^{*}>0$ so that for all $\Delta t \in\left(0, \Delta t^{*}\right)$ for all $\mathbf{V} \in \mathbb{R}^{m \times I}$

$$
\left(\mathbf{V} \in \mathcal{A}^{\prime}\right) \Longrightarrow\left(\mathbf{V}+\Delta t\left(\mathbb{M}^{\mathrm{L}}\right)^{-1} \mathbf{F}^{\mathrm{L}}(\mathbf{V}) \in \mathcal{A}^{\prime}\right)
$$

- Assumption 2: There exists a nonlinear limiting operator $\ell: \mathcal{A}^{\prime} \times\left(\mathbb{R}^{m}\right)^{\prime} \times\left(\mathbb{R}^{m}\right)^{\prime} \rightarrow\left(\mathbb{R}^{m}\right)^{\prime}$ such that for all $\left(\mathbf{V}, \boldsymbol{\Phi}^{\mathrm{L}}, \boldsymbol{\Phi}^{\mathrm{H}}\right)$

$$
\left(\mathbf{V}+\Delta t\left(\mathbb{M}^{\mathrm{L}}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{L}} \in \mathcal{A}^{\prime}\right) \Longrightarrow\left(\ell\left(\mathbf{V}, \boldsymbol{\Phi}^{\mathrm{L}}, \boldsymbol{\Phi}^{\mathrm{H}}\right) \in \mathcal{A}^{\prime}\right)
$$

Lemma
For all $\mathbf{V} \in \mathcal{A}^{\prime}$ and all $\Delta t \in\left(0, \Delta t^{*}\right)$, we have

$$
\ell\left(\mathbf{V}, \mathbf{F}^{\mathrm{L}}(\mathbf{V}), \mathbf{F}^{\mathrm{H}}(\mathbf{V})\right) \in \mathcal{A}^{\prime}
$$

## Peep under the hood of SSPRK

- Given $\mathbf{U}^{n}$ in the invariant set $\mathcal{A}^{\prime}$ (approximation at time $t^{n}$ ),
- The forward Euler step proceeds as follows:
- Compute low-order flux $\mathbf{F}^{\mathrm{L}}\left(\mathbf{U}^{n}\right)$
- Compute high-order flux $\mathbf{F}^{\mathrm{H}}\left(\mathbf{U}^{n}\right)$
- Compute update $\mathbf{U}^{n+1}$ by limiting

$$
\mathbf{U}^{n+1}:=\ell\left(\mathbf{U}^{n}, \mathbf{F}^{\mathrm{L}}\left(\mathbf{U}^{n}\right), \mathbf{F}^{\mathrm{H}}\left(\mathbf{U}^{n}\right)\right) .
$$

Theorem (IDP Explicit Euler)
Assume $\mathbf{U}^{n} \in \mathcal{A}^{\prime}$. Then $\mathbf{U}^{n+1} \in \mathcal{A}^{\prime}$ for all $\Delta t \in\left(0, \Delta t^{*}\right)$.

## Key idea of invariant-domain-preserving ERK

- Externalize the limiting process at each RK sub-step.


## Details for s-stage ERK method

- Consider Butcher tableau for $s$-stage method

| $c_{1}$ | 0 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $c_{2}$ | $a_{2,1}$ | 0 |  |  |  |
| $c_{3}$ | $a_{3,1}$ | $a_{3,2}$ | 0 |  |  |
| $\vdots$ | $\vdots$ |  | $\ddots$ | $\ddots$ |  |
| $c_{s}$ | $a_{s, 1}$ | $a_{s, 2}$ | $\cdots$ | $a_{s, s-1}$ | 0 |
|  | $b_{1}$ | $b_{2}$ | $\cdots$ | $b_{s-1}$ | $b_{s}$ |

- Rename last line, set $c_{1}=0$ and $c_{s+1}=1$.

| 0 | 0 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $c_{2}$ | $a_{2,1}$ | 0 |  |  |  |
| $c_{3}$ | $a_{3,1}$ | $a_{3,2}$ | 0 |  |  |
| $\vdots$ | $\vdots$ |  | $\ddots$ | $\ddots$ |  |
| $c_{s}$ | $a_{s, 1}$ | $a_{s, 2}$ | $\cdots$ | $a_{s, s-1}$ | 0 |
| 1 | $a_{s+1,1}$ | $a_{s+1,2}$ | $\cdots$ | $a_{s+1, s-1}$ | $a_{s+1, s}$ |

## Details

- Assume $c_{k} \geq 0$ for all $k \in\{1: s+1\}$.
- For sake of simplicity assume $c_{l-1} \leq c_{l}, \forall I \in\{2: s+1\}$, and set

$$
I^{\prime}:=I-1 .
$$

(Otherwise set $I^{\prime}:=\max \left\{k<I \mid c_{l}-c_{k} \geq 0\right\}$.)

## Details

- Let $\mathbf{U}^{n} \in \mathcal{A}^{\prime}$.
- Set $\mathbf{U}^{n, 1}:=\mathbf{U}^{n}$.
- Loop over $I \in\{2: s+1\}$.
- Compute first-order update starting from $\mathbf{U}^{\text {n, } I^{\prime}}$ (think of $I^{\prime}=I-1$ )

$$
\mathbb{M}^{\mathrm{L}} \mathbf{U}^{\mathrm{L}, l}:=\mathbb{M}^{\mathrm{L}} \mathbf{U}^{n, l^{\prime}}+\Delta t\left(c_{l}-c_{l^{\prime}}\right) \mathbf{F}^{\mathrm{L}}\left(\mathbf{U}^{\mathrm{n}, \prime^{\prime}}\right)
$$

- Compute high-order ERK update starting from $\mathbf{U}^{n}$

$$
\mathbb{M}^{H} \mathbf{U}^{\mathrm{H}, l}:=\mathbb{M}^{H} \mathbf{U}^{n}+\Delta t \sum_{k \in\{1: I-1\}} a_{l, k} \mathbf{F}^{\mathrm{H}}\left(\mathbf{U}^{n, k}\right)
$$

## Details

- Let $\mathbf{U}^{n} \in \mathcal{A}^{\prime}$.
- Set $\mathbf{U}^{n, 1}:=\mathbf{U}^{n}$.
- Loop over $I \in\{2: s+1\}$.
- Compute first-order update starting from $\mathbf{U}^{\text {n, } I^{\prime}}$ (think of $I^{\prime}=I-1$ )

$$
\mathbb{M}^{\mathrm{L}} \mathbf{U}^{\mathrm{L}, l}:=\mathbb{M}^{\mathrm{L}} \mathbf{U}^{\mathrm{n}, l^{\prime}}+\Delta t\left(c_{l}-c_{l^{\prime}}\right) \mathbf{F}^{\mathrm{L}}\left(\mathbf{U}^{\mathrm{n}, \prime^{\prime}}\right)
$$

- Compute high-order ERK update starting from $\mathbf{U}^{n}$

$$
\mathbb{M}^{\mathrm{H}} \mathbf{U}^{\mathrm{H}, l}:=\mathbb{M}^{\mathrm{H}} \mathbf{U}^{n}+\Delta t \sum_{k \in\{1: I-1\}} a_{l, k} \mathbf{F}^{\mathrm{H}}\left(\mathbf{U}^{n, k}\right)
$$

- Incompatibility of the starting points $\left(\mathbf{U}^{n, l^{\prime}} \neq \mathbf{U}^{n}\right.$ in general).


## Details

- Let $\mathbf{U}^{n} \in \mathcal{A}^{\prime}$.
- Set $\mathbf{U}^{n, 1}:=\mathbf{U}^{n}$.
- Loop over $I \in\{2: s+1\}$.
- Compute first-order update starting from $\mathbf{U}^{\text {n, } I^{\prime}}$ (think of $I^{\prime}=I-1$ )

$$
\mathbb{M}^{\mathrm{L}} \mathbf{U}^{\mathrm{L}, l}:=\mathbb{M}^{\mathrm{L}} \mathbf{U}^{\mathrm{n}, l^{\prime}}+\Delta t\left(c_{l}-c_{l^{\prime}}\right) \mathbf{F}^{\mathrm{L}}\left(\mathbf{U}^{\mathrm{n}, \prime^{\prime}}\right)
$$

- Compute high-order ERK update starting from $\mathbf{U}^{n}$

$$
\mathbb{M}^{\mathrm{H}} \mathbf{U}^{\mathrm{H}, l}:=\mathbb{M}^{\mathrm{H}} \mathbf{U}^{n}+\Delta t \sum_{k \in\{1: I-1\}} a_{l, k} \mathbf{F}^{\mathrm{H}}\left(\mathbf{U}^{n, k}\right)
$$

- Incompatibility of the starting points ( $\mathbf{U}^{n, \prime^{\prime}} \neq \mathbf{U}^{n}$ in general).
- Subtract ERK update at $t^{n}+c_{l} \Delta t$ from ERK update at $t^{n}+c_{l} \Delta t$

$$
\Longrightarrow \quad \mathbb{M}^{\mathrm{H}} \mathbf{U}^{\mathrm{H}, l}=\mathbb{M}^{\mathrm{H}} \mathbf{U}^{\mathrm{H}, I^{\prime}}+\Delta t \sum_{k \in\{1: l-1\}}\left(a_{l, k}-a_{l^{\prime}, k}\right) \mathbf{F}^{\mathrm{H}}\left(\mathbf{U}^{n, k}\right) .
$$

## Details

- Replace $\mathbf{U}^{\mathrm{H}, I^{\prime}}$ (which is not IDP) by $\mathbf{U}^{\text {n, } I^{\prime}}$ (which is IDP by induction assumption).
- Final scheme

$$
\begin{aligned}
\mathbb{M}^{\mathrm{L}} \mathbf{U}^{\mathrm{L}, l} & :=\mathbb{M}^{\mathrm{L}} \mathbf{U}^{\mathrm{n},,^{\prime}}+\Delta t \underbrace{\left(c_{l}-c_{l^{\prime}}\right) \mathbf{F}^{\mathrm{L}}\left(\mathbf{U}^{\mathrm{n},,^{\prime}}\right)}_{\boldsymbol{\Phi}^{\mathrm{L}}} . \\
\mathbb{M}^{\mathrm{H}} \mathbf{U}^{\mathrm{H}, l} & :=\mathbb{M}^{\mathrm{H}} \mathbf{U}^{\mathrm{n}, \prime^{\prime}}+\Delta t \underbrace{\sum_{k \in\{1: I-1\}}\left(a_{l, k}-a_{l^{\prime}, k}\right) \mathbf{F}^{\mathrm{H}}\left(\mathbf{U}^{n, k}\right)}_{\boldsymbol{\Phi}^{\mathrm{H}}} . \\
\mathbf{U}^{n, l} & :=\ell\left(\mathbf{U}^{n, l^{\prime}}, \boldsymbol{\Phi}^{\mathrm{L}}, \boldsymbol{\Phi}^{\mathrm{H}}\right) .
\end{aligned}
$$

- Set $\mathbf{U}^{n+1}:=\mathbf{U}^{n, s+1}$.


## Details

Theorem
Assume that $\mathbf{U}^{n} \in \mathcal{A}^{\prime}$. Then $\mathbf{U}^{n+1} \in \mathcal{A}^{\prime}$ for all
$\Delta t \in\left(0, \frac{\Delta t^{*}}{\max _{I \epsilon}\{2: s+1\}}\left(c_{1}-c_{1}\right)\right)$.
Corollary
The complexity of the ERK method is optimal if the points $\left\{c_{l}\right\}_{\mid \in\{1: s+1\}}$ are equi-distributed in $[0,1]$.

## Outline



## Introduction <br> Invariant domains <br> Problems with SSP time stepping <br> Invariant-domain-preserving Explict Runge-Kutta

Numerical illustrations
Invariant-domain-preserving IMEX
Numerical illustrations

## Examples (optimal methods)

| 0 | 0 |  |
| :---: | :---: | :---: |
| $\frac{1}{2}$ | $\frac{1}{2}$ | 0 |
| 1 | 0 | 1 |

RK $(2,2 ; 1)$


RK (3, 3; 1 )


RK $(4,3 ; 1)$

## Examples SSPRK (sub-optimal methods)



| 0 | 0 |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 0 |  |  |
| $\frac{1}{2}$ | $\frac{1}{4}$ | $\frac{1}{4}$ | 0 |  |
|  | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{2}{3}$ |  |
| $\operatorname{SSPRK}\left(3,3 ; \frac{1}{3}\right)$ |  |  |  |  |

## Examples: popular RK4 (left) and 3/8 rule (right)

| 0 | 0 |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\frac{1}{2}$ | $\frac{1}{2}$ | 0 |  |  |
| $\frac{1}{2}$ | 0 | $\frac{1}{2}$ | 0 |  |
| 1 | 0 | 0 | 1 | 0 |
| 1 | $\frac{1}{6}$ | $\frac{2}{6}$ | $\frac{2}{6}$ | $\frac{1}{6}$ |
| $\operatorname{RK}\left(4,4 ; \frac{1}{2}\right)$ |  |  |  |  |


| 0 | 0 |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\frac{1}{3}$ | $\frac{1}{3}$ | 0 |  |  |
| $\frac{2}{3}$ | $-\frac{1}{3}$ | 1 | 0 |  |
| 1 | 1 | -1 | 1 | 0 |
| 1 | $\frac{1}{8}$ | $\frac{3}{8}$ | $\frac{3}{8}$ | $\frac{1}{8}$ |
| $\operatorname{RK}\left(4,4 ; \frac{3}{4}\right)$ |  |  |  |  |

## Examples RK5 methods: Equi-distributed (left), Butcher's method (right)



## Convergence tests

- All the tests are done with

$$
\Delta t:=\mathrm{CFL} \times s \times \Delta t^{*},
$$

- $\Rightarrow$ All the methods perform exactly the same number of time steps independently of $s$ (i.e., number of flux evaluations is constant).


## 1D linear transport, 4th-order FD

- 4th-order FD in space.
- Linear transport $D=(0,1)$

$$
\partial_{t} u+\partial_{x} u=0, \quad u_{0}(x):= \begin{cases}\left(4 \frac{\left(x-x_{0}\right)\left(x_{1}-x\right)}{x_{1}-x_{0}}\right)^{6} & x \in\left(x_{0}:=0.1, x_{1}:=0.4\right) \\ 0 & \text { otherwise }\end{cases}
$$

- Local maximum/minimum principle guaranteed at every grid point.
- Global maximum and minimum also exactly enforced.
- All errors computed in $L^{\infty}$-norm.


## 1D linear transport, 4th-order FD

Table: Second-order methods (SSPRK $(2,2)$ behaves badly).

| 1 | CFL $=0.2$ |  |  |  | CFL $=0.25$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | RK(2,2;1) | rate | RK(2,2; $\frac{1}{2}$ ) | rate | RK(2,2;1) | rate | RK(2,2; | rate |
| 50 | 4.72E-02 | - | $1.23 \mathrm{E}-01$ | - | $4.91 \mathrm{E}-02$ | - | 1.30E-01 | - |
| 100 | $2.81 \mathrm{E}-03$ | 4.07 | $1.50 \mathrm{E}-02$ | 3.03 | 4.51E-03 | 3.44 | 4.32E-02 | 1.60 |
| 200 | $1.16 \mathrm{E}-03$ | 1.28 | $1.24 \mathrm{E}-03$ | 3.60 | $2.01 \mathrm{E}-03$ | 1.17 | 2.14E-03 | 4.34 |
| 400 | 3.38E-04 | 1.78 | $3.47 \mathrm{E}-04$ | 1.84 | 5.41E-04 | 1.89 | $5.67 \mathrm{E}-04$ | 1.91 |
| 800 | 8.79E-05 | 1.94 | $9.28 \mathrm{E}-05$ | 1.90 | $1.38 \mathrm{E}-04$ | 1.97 | $1.48 \mathrm{E}-04$ | 1.94 |
| 1600 | $2.22 \mathrm{E}-05$ | 1.98 | $2.33 \mathrm{E}-05$ | 1.99 | $3.47 \mathrm{E}-05$ | 1.99 | 3.78E-05 | 1.97 |
| 3200 | 5.58E-06 | 1.99 | 5.92E-06 | 1.98 | 8.73E-06 | 1.99 | 5.36E-05 | -. 50 |

## 1D linear transport, 4th-order FD

Table: Third-order methods (SSPRK $(3,3)$ behaves badly).

|  | CFL $=0.05$ |  |  |  |  | CFL $=0.25$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | RK(3,3;1) | K(3,3; | rat | (4,3;1) |  | RK(3,3;1 |  | K(3 | rate | RK (4,3;1) |  |
| 50 | 5.15E-02 - 4 | $4.76 \mathrm{E}-02$ | - | 5.15E-02 |  | 5.48E-02 | - | $1.55 \mathrm{E}-01$ | - | $6.08 \mathrm{E}-02$ | - |
| 100 | 5.41E-03 3.255 | $5.41 \mathrm{E}-03$ | 3.14 | 5.41E-03 | 3.25 | 5.15E-03 | 3.41 | 6.12E-02 | 1.35 | $6.15 \mathrm{E}-03$ | 3.31 |
| 200 | 3.79E-04 3.83 | 3.79E-04 | 3.83 | $3.79 \mathrm{E}-04$ | 3.83 | 3.92E-04 | 3.72 | 1.07E-03 | 5.84 | 3.83E-04 | 4.01 |
| 400 | 2.27E-05 4.062 | $2.27 \mathrm{E}-05$ | 4.06 | $2.27 \mathrm{E}-05$ | 4.06 | 2.89E-05 | 3.76 | $2.18 \mathrm{E}-04$ | 2.29 | $2.30 \mathrm{E}-05$ | 4.06 |
| 800 | $1.58 \mathrm{E}-063.851$ | $1.58 \mathrm{E}-06$ | 3.85 | $1.58 \mathrm{E}-06$ | 3.85 | 3.20E-06 | 3.18 | 6.41E-05 | 1.77 | $1.59 \mathrm{E}-06$ | 3.85 |
| 1600 | 9.12E-08 4.121 | $1.22 \mathrm{E}-07$ | 3.69 | 8.13E-08 | 4.28 | 8.23E-07 | 1.96 | 1.83E-05 | 1.81 | 8.25E-08 | 4.27 |
| 3200 | $1.52 \mathrm{E}-082.586$ | $6.84 \mathrm{E}-08$ | 0.84 | 5.31E-09 | 3.94 | $2.40 \mathrm{E}-07$ | 1.78 | 5.39E-06 | 1.76 | $5.39 \mathrm{E}-09$ | 3.94 |

## 1D linear transport, 4th-order FD

Table: Fourth-order methods $\operatorname{(SSPRK}(5,4)$ behaves badly).

|  | CFL $=0.05$ |  |  |  |  |  | CFL $=0.1$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  | rate | (4, 4.3 ${ }^{\text {a }}$ |  |  | , |  |  | K(4, 4, ${ }^{3}$ ) | ) rate | RK(5,4; $\frac{1}{2}$ ) |  |
| 50 | 4.32E-02 | - | $4.72 \mathrm{E}-02$ | - | $4.32 \mathrm{E}-02$ |  | $6.35 \mathrm{E}-02$ |  | 5.18E-02 |  | $6.28 \mathrm{E}-02$ |  |
| 100 | 5.41E-03 | 3.00 | 5.40E-03 | 3.13 | $5.41 \mathrm{E}-03$ | 3.00 | $5.36 \mathrm{E}-03$ | 3.57 | $5.20 \mathrm{E}-03$ | 3.31 | $5.66 \mathrm{E}-03$ | 3.47 |
| 200 | 3.79E-04 | 3.84 | 3.79E-04 | 3.83 | $3.79 \mathrm{E}-04$ | 3.83 | $3.79 \mathrm{E}-04$ | 3.82 | 3.79E-04 | 3.78 | $3.79 \mathrm{E}-04$ | 3.90 |
| 400 | 2.27E-05 | 4.06 | $2.27 \mathrm{E}-05$ | 4.06 | $2.27 \mathrm{E}-05$ | 4.06 | $2.27 \mathrm{E}-05$ | 4.06 | 2.59E-05 | 3.87 | 2.27E-05 | 4.06 |
| 800 | 1.58E-06 | 3.85 | $1.58 \mathrm{E}-06$ | 3.85 | $1.58 \mathrm{E}-06$ | 3.84 | $1.58 \mathrm{E}-06$ | 3.84 | 4.05E-06 | 2.68 | $1.58 \mathrm{E}-06$ | 3.85 |
| 1600 | 8.13E-08 | 4.28 | $2.88 \mathrm{E}-07$ | 2.46 | 8.58E-08 | 4.20 | 8.13E-08 | 4.28 | 9.94E-07 | 2.03 | 1.13E-07 | 3.8 |
| 3200 | 5.36E-09 | 3.92 | $6.98 \mathrm{E}-08$ | 2.04 | 8.95E-09 | 3.26 | 4.97E-09 | 4.03 | $2.45 \mathrm{E}-07$ | 2.02 | 2.72E-08 | 2. |

## 1D linear transport, 4th-order FD

Table: Fifth-order methods (least efficient method behaves badly).

| $I$ | $\mathrm{CFL}=0.02$ |  |  |  | $\mathrm{CFL}=0.025$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | RK $\left(6,5 ; \frac{5}{6}\right)$ | rate | $\mathrm{RK}\left(6,5 ; \frac{2}{3}\right)$ | rate | $\operatorname{RK}\left(6,5 ; \frac{5}{6}\right)$ | rate | $\mathrm{RK}\left(6,5 ; \frac{2}{3}\right)$ |  |
|  |  |  |  |  |  |  |  |  |
| 50 | $5.19 \mathrm{E}-02$ | - | $5.19 \mathrm{E}-02$ | - | $5.20 \mathrm{E}-02$ | - | $5.19 \mathrm{E}-02$ |  |
| -2 | - |  |  |  |  |  |  |  |
| 100 | $5.41 \mathrm{E}-03$ | 3.26 | $5.41 \mathrm{E}-03$ | 3.26 | $5.41 \mathrm{E}-03$ | 3.26 | $5.41 \mathrm{E}-03$ |  |
| 300 | $3.79 \mathrm{E}-04$ | 3.83 | $3.79 \mathrm{E}-04$ | 3.83 | $3.79 \mathrm{E}-04$ | 3.84 | $3.79 \mathrm{E}-04$ |  |
| 20.84 |  |  |  |  |  |  |  |  |
| 400 | $2.27 \mathrm{E}-05$ | 4.06 | $2.27 \mathrm{E}-05$ | 4.06 | $2.27 \mathrm{E}-05$ | 4.06 | $2.27 \mathrm{E}-05$ |  |
| 800 | $1.58 \mathrm{E}-06$ | 3.84 | $1.58 \mathrm{E}-06$ | 3.85 | $1.58 \mathrm{E}-06$ | 3.85 | $1.58 \mathrm{E}-06$ |  |
| 3.85 |  |  |  |  |  |  |  |  |
| 1600 | $8.13 \mathrm{E}-08$ | 4.28 | $8.48 \mathrm{E}-08$ | 4.22 | $8.24 \mathrm{E}-08$ | 4.26 | $8.71 \mathrm{E}-08$ |  |
| 4.18 |  |  |  |  |  |  |  |  |
| 3200 | $6.24 \mathrm{E}-09$ | 3.70 | $7.10 \mathrm{E}-09$ | 3.58 | $6.32 \mathrm{E}-09$ | 3.70 | $1.16 \mathrm{E}-08$ |  |
| 2.91 |  |  |  |  |  |  |  |  |

## 2D linear transport, $\mathbb{P}_{1}$ FE (3th-order super-convergent)

- 4th-order FD in space.
- Linear transport $D:=(0,1)^{2}$ with $\boldsymbol{\beta}:=(0.9,1)^{\top}$
$\partial_{t} u+\nabla \cdot(\boldsymbol{\beta} u)=0, \quad u_{0}(\mathbf{x}):= \begin{cases}\left(4 \frac{\left(x-x_{0}\right)\left(x_{1}-x\right)}{x_{1}-x_{0}}\right)^{4} \times\left(4 \frac{\left(y-y_{0}\right)\left(y_{1}-y\right)}{y_{1}-y_{0}}\right)^{4} & x \in D_{0} \\ 0 & \text { oth. }\end{cases}$
with $D_{0}\left\{x_{0} \leq x \leq x_{1}, y_{0} \leq y \leq y_{1}\right\}, x_{0}=y_{0}=0.1, x_{1}=y_{1}=0.4$.
- Local maximum/minimum principle guaranteed at every grid point.
- Global maximum and minimum also exactly enforced.
- All errors computed at $T=0.5$ with $\mathrm{CFL}=0.2$


## 2D linear transport, $\mathbb{P}_{1}$ FE (3th-order super-convergent)

Table: Second- and third-order ERK methods at $C F L=0.2$.

|  | 1 | RK(2,2;1) | rate | RK(2,2; $\frac{1}{2}$ ) | rate | RK(3,3;1) | rate | R | rate | RK ( 4,$3 ; 1$ ) | rate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\varepsilon$ | $51^{2}$ | $2.58 \mathrm{E}-02$ | - | $2.61 \mathrm{E}-02$ | - | 3.27E-02 | - | 3.33E-02 | - | $3.29 \mathrm{E}-02$ | - |
| $\stackrel{\text { ㄴ }}{\text { ¢ }}$ | $101{ }^{2}$ | $1.32 \mathrm{E}-03$ | 4.29 | 1.32E-03 | 4.30 | 7.82E-04 | 5.39 | $1.00 \mathrm{E}-03$ | 5.05 | 8.02E-04 | 5.36 |
| $8^{1}$ | $201{ }^{2}$ | 4.73E-04 | 1.48 | 4.73E-04 | 1.49 | 8.28E-05 | 3.24 | $1.09 \mathrm{E}-04$ | 3.21 | 8.03E-05 | 3.32 |
| $\checkmark$ | $401{ }^{2}$ | $1.26 \mathrm{E}-04$ | 1.90 | $1.26 \mathrm{E}-04$ | 1.90 | $9.44 \mathrm{E}-06$ | 3.13 | 2.41E-05 | 2.17 | 9.33E-06 | 3.11 |
|  | $801{ }^{2}$ | 3.22E-05 | 1.97 | $3.22 \mathrm{E}-05$ | 1.97 | $1.03 \mathrm{E}-06$ | 3.19 | 6.46E-06 | 1.90 | $1.06 \mathrm{E}-06$ | 3.13 |

## Linear transport with non-smooth solutions



Figure: Three solids problem at $T=1$, using $\operatorname{RK}(2,2 ; 1)$ at $\mathrm{CFL}=0.25$. 2D $\mathbb{P}_{1}$ finite elements on non-uniform meshes. From left to right: $I=6561$; $I=24917 ; \quad I=98648 ; \quad I=389860$.

## Linear transport with non-smooth solutions

Table: Three solids problem at $T=1$ and $\mathrm{CFL}=0.25 .2 \mathrm{D} \mathbb{P}_{1}$ finite elements on non-uniform meshes. Relative error in the $L^{1}$-norm for methods $\operatorname{RK}(2,2 ; 1)$ and $\operatorname{RK}(4,3 ; 1)$.

| $I$ | RK $(2,2 ; 1)$ | rate | RK $(4,3 ; 1)$ | rate |
| :---: | :---: | :---: | :---: | :---: |
| 1605 | $2.45 \mathrm{E}-01$ | - | $2.49 \mathrm{E}-01$ | - |
| 6561 | $1.28 \mathrm{E}-01$ | 0.93 | $1.31 \mathrm{E}-01$ | 0.92 |
| 24917 | $7.34 \mathrm{E}-02$ | 0.81 | $7.49 \mathrm{E}-02$ | 0.84 |
| 98648 | $4.26 \mathrm{E}-02$ | 0.78 | $4.44 \mathrm{E}-02$ | 0.76 |
| 389860 | $2.44 \mathrm{E}-02$ | 0.81 | $2.56 \mathrm{E}-02$ | 0.80 |

## 2D Burgers equation

2D Burgers equation in $D:=(-.25,1.75)^{2}$ :
$\partial_{t} u+\nabla \cdot(\mathbf{f}(u))=0, \quad \mathbf{f}(u):=\frac{1}{2}\left(u^{2}, u^{2}\right)^{\top}, \quad u(\mathbf{x}, 0)=u_{0}(\mathbf{x})$ a.e. $\mathbf{x} \in D$,
with the initial data

$$
u_{0}(\mathbf{x}):= \begin{cases}1 & \text { if }\left|x_{1}-\frac{1}{2}\right| \leq 1 \text { and }\left|x_{2}-\frac{1}{2}\right| \leq 1 \\ -a & \text { otherwise. }\end{cases}
$$

## 2D Burgers equation

Table: Burgers' equation. 2D $\mathbb{P}_{1}$ finite elements on uniform meshes. $T=0.65$ at CFL $=0.25$. Relative error in the $L^{1}$-norm for all the methods.

| $I$ | $\mathrm{RK}(2,2 ; 1)$ | rate | $\mathrm{RK}\left(2,2 ; \frac{1}{2}\right)$ | rate | $\mathrm{RK}(3,3 ; 1)$ | rate | $\mathrm{RK}\left(3,3 ; \frac{1}{3}\right)$ | rate | $\mathrm{RK}(4,3 ; 1)$ | rate |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $51^{2}$ | $7.71 \mathrm{E}-02$ | - | $7.79 \mathrm{E}-02$ | - | $7.71 \mathrm{E}-02$ | - | $8.03 \mathrm{E}-02$ | - | $7.71 \mathrm{E}-02$ | - |
| $101^{2}$ | $3.69 \mathrm{E}-02$ | 1.06 | $3.73 \mathrm{E}-02$ | 1.06 | $3.69 \mathrm{E}-02$ | 1.06 | $3.85 \mathrm{E}-02$ | 1.06 | $3.69 \mathrm{E}-02$ | 1.06 |
| $201^{2}$ | $2.30 \mathrm{E}-02$ | 0.68 | $2.32 \mathrm{E}-02$ | 0.68 | $2.30 \mathrm{E}-02$ | 0.68 | $2.38 \mathrm{E}-02$ | 0.70 | $2.30 \mathrm{E}-02$ | 0.68 |
| $401^{2}$ | $1.24 \mathrm{E}-02$ | 0.90 | $1.24 \mathrm{E}-02$ | 0.90 | $1.24 \mathrm{E}-02$ | 0.90 | $1.27 \mathrm{E}-02$ | 0.90 | $1.24 \mathrm{E}-02$ | 0.90 |
| $801^{2}$ | $6.47 \mathrm{E}-03$ | 0.93 | $6.52 \mathrm{E}-03$ | 0.93 | $6.48 \mathrm{E}-03$ | 0.93 | $6.65 \mathrm{E}-03$ | 0.93 | $6.47 \mathrm{E}-03$ | 0.93 |
| I | $\mathrm{RK}\left(4,4 ; \frac{1}{2}\right)$ | rate | $\mathrm{RK}\left(4,4 ; \frac{3}{4}\right)$ | rate | $\mathrm{RK}(5,4 ; 0.51)$ | rate | $\mathrm{RK}\left(6,5 ; \frac{5}{6}\right)$ | rate | $\mathrm{RK}\left(6,5 ; \frac{2}{3}\right)$ | rate |
| $51^{2}$ | $7.94 \mathrm{E}-02$ | - | $8.15 \mathrm{E}-02$ | - | $7.79 \mathrm{E}-02$ | - | $1.81 \mathrm{E}-01$ | - | $9.29 \mathrm{E}-02$ | - |
| $101^{2}$ | $3.80 \mathrm{E}-02$ | 1.06 | $3.89 \mathrm{E}-02$ | 1.07 | $3.89 \mathrm{E}-02$ | 1.00 | $8.56 \mathrm{E}-02$ | 1.08 | $4.39 \mathrm{E}-02$ | 1.08 |
| $201^{2}$ | $2.36 \mathrm{E}-02$ | 0.69 | $2.40 \mathrm{E}-02$ | 0.70 | $2.47 \mathrm{E}-02$ | 0.66 | $4.78 \mathrm{E}-02$ | 0.84 | $2.72 \mathrm{E}-02$ | 0.69 |
| $401^{2}$ | $1.26 \mathrm{E}-02$ | 0.90 | $1.28 \mathrm{E}-02$ | 0.90 | $1.36 \mathrm{E}-02$ | 0.86 | $2.38 \mathrm{E}-02$ | 1.00 | $1.41 \mathrm{E}-02$ | 0.95 |
| $801^{2}$ | $6.61 \mathrm{E}-03$ | 0.93 | $6.72 \mathrm{E}-03$ | 0.94 | $7.11 \mathrm{E}-03$ | 0.93 | $1.22 \mathrm{E}-02$ | 0.97 | $7.24 \mathrm{E}-03$ | 0.96 |

- Non-SSP methods converge as well as the SSP methods.


## Outline



> Introduction
> Invariant domains
> Problems with SSP time stepping
> Invariant-domain-preserving Explict Runge-Kutta Numerical illustrations

Invariant-domain-preserving IMEX

## The low-order, linearized update

- Let $\mathbf{F}^{\mathrm{L}}$ be low-order approximation of hyperbolic flux.
- Let $\mathbf{G}^{\text {L,lin }}$ be Low-order linearized approximation of parabolic flux plus sources (i.e., approximation of $-\nabla \cdot(\mathrm{g}(\mathbf{u}, \nabla \mathbf{u}))+\mathbf{S}(\mathbf{u}))$.
- Consider the low-order update (IMEX Euler)

$$
\mathbb{M}^{\mathrm{L}} \mathbf{U}^{\mathrm{L}, n+1}=\mathbb{M}^{\mathrm{L}} \mathbf{U}^{n}+\Delta t \mathbf{F}^{\mathrm{L}}\left(\mathbf{U}^{n}\right)+\Delta t \mathbf{G}^{\mathrm{L}, \text { lin }}\left(\mathbf{U}^{n} ; \mathbf{U}^{\mathrm{L}, n+1}\right) .
$$

## The low-order, linearized update

- Assumption 1: (Forward Euler with low-order hyperbolic flux is invariant-domain preserving.) There exists $\Delta t^{*}>0$ such that:
- For every $\Delta t \in\left(0, \Delta t^{*}\right]$, the low-order hyperbolic flux satisfies

$$
\left(\mathbf{V} \in \mathcal{A}^{\prime}\right) \Longrightarrow\left(\mathbf{U}:=\mathbf{V}+\Delta t\left(\mathbb{M}^{\mathrm{L}}\right)^{-1} \mathbf{F}^{\mathrm{L}}(\mathbf{V}) \in \mathcal{A}^{\prime}\right)
$$

- (Backward Euler with low-order, linearized, parabolic flux is invariant-domain preserving.) For all $\Delta t \in\left(0, \Delta t^{*}\right]$ and all $\mathbf{W} \in \mathcal{A}^{\prime}$, the operator $\mathbb{I}-\Delta t\left(\mathbb{M}^{\mathrm{L}}\right)^{-1} \mathbf{G}^{\mathrm{L} \text {,lin }}(\mathbf{W} ; \cdot):\left(\mathbb{R}^{m}\right)^{\prime} \rightarrow\left(\mathbb{R}^{m}\right)^{\prime}$ is bijective and

$$
\left(\mathbf{V} \in \mathcal{A}^{\prime}\right) \Longrightarrow\left(\left(\mathbb{I}-\Delta t\left(\mathbb{M}^{\mathrm{L}}\right)^{-1} \mathbf{G}^{\mathrm{L}, \text { lin }}(\mathbf{W} ; \cdot)\right)^{-1} \mathbf{V} \in \mathcal{A}^{\prime}\right)
$$

Lemma (Low-order IDP Euler IMEX)
Let Assumption 1 hold. Assume that $\mathbf{U}^{n} \in \mathcal{A}^{\prime}$ and $\Delta t \in\left(0, \Delta t^{*}\right]$. Then, $\mathbf{U}^{\mathrm{L}, n+1} \in \mathcal{A}^{\prime}$.

## The high-order, linearized update (one Euler step)

- Assumption 2: There exists two nonlinear limiting operators $\ell^{\text {hyp }}$, $\ell^{\text {par }}: \mathcal{A}^{\prime} \times\left(\mathbb{R}^{m}\right)^{\prime} \times\left(\mathbb{R}^{m}\right)^{\prime} \rightarrow\left(\mathbb{R}^{m}\right)^{\prime}$ s.t. for all $\left(\mathbf{V}, \boldsymbol{\Phi}^{\mathrm{L}}, \boldsymbol{\Phi}^{\mathrm{H}}\right) \in \mathcal{A}^{\prime} \times\left(\mathbb{R}^{m}\right)^{\prime} \times\left(\mathbb{R}^{m}\right)^{\prime}$,

$$
\begin{aligned}
&\left(\mathbf{V}+\Delta t\left(\mathbb{M}^{\mathrm{L}}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{L}} \in \mathcal{A}^{\prime}\right) \Longrightarrow\left(\ell^{\mathrm{hyp}}\left(\mathbf{V}, \boldsymbol{\Phi}^{\mathrm{L}}, \boldsymbol{\Phi}^{\mathrm{H}}\right) \in \mathcal{A}^{\prime}\right), \\
&\left(\mathbf{V}+\Delta t\left(\mathbb{M}^{\mathrm{L}}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{L}} \in \mathcal{A}^{\prime}\right) \Longrightarrow\left(\ell^{\mathrm{par}}\left(\mathbf{V}, \boldsymbol{\Phi}^{\mathrm{L}}, \boldsymbol{\Phi}^{\mathrm{H}}\right) \in \mathcal{A}^{\prime}\right) .
\end{aligned}
$$

## The high-order update (one Euler step)

- Given $\mathbf{U}^{n} \in \mathcal{A}^{\prime}$, the high-order update $\mathbf{U}^{n+1}$ is constructed as follows.
- Step 1: Compute the low-order and high-order hyperbolic updates defined by

$$
\begin{aligned}
\mathbb{M}^{\mathrm{L}} \mathbf{W}^{\mathrm{L}, n+1} & :=\mathbb{M}^{\mathrm{L}} \mathbf{U}^{n}+\Delta t \mathbf{F}^{\mathrm{L}}\left(\mathbf{U}^{n}\right), \\
\mathbb{M}^{H} \mathbf{W}^{\mathrm{H}, n+1}: & =\mathbb{M}^{H} \mathbf{U}^{n}+\Delta t \mathbf{F}^{H}\left(\mathbf{U}^{n}\right) .
\end{aligned}
$$

- Step 2: Compute the hyperbolic fluxes $\boldsymbol{\Phi}^{\mathrm{L}}, \boldsymbol{\Phi}^{\mathrm{H}}$ (details given later) and limit

$$
\mathbf{W}^{n+1}:=\ell^{\mathrm{hyp}}\left(\mathbf{U}^{n}, \boldsymbol{\Phi}^{\mathrm{L}}, \boldsymbol{\Phi}^{\mathrm{H}}\right) .
$$

## The high-order update (one Euler step)

- Step 3: Compute the low-order and high-order parabolic updates defined by

$$
\begin{aligned}
\mathbb{M}^{\mathrm{L}} \mathbf{U}^{\mathrm{L}, n+1}-\Delta t \mathbf{G}^{\mathrm{L}, \text { lin }}\left(\mathbf{U}^{n} ; \mathbf{U}^{\mathrm{L}, n+1}\right) & :=\mathbb{M}^{\mathrm{L}} \mathbf{W}^{n+1}, \\
\mathbb{M}^{\mathrm{H}} \mathbf{U}^{\mathrm{H}, n+1}-\Delta t \mathbf{G}^{\mathrm{H}, \text { lin }}\left(\mathbf{U}^{n} ; \mathbf{U}^{\mathrm{H}, n+1}\right) & :=\mathbb{M}^{\mathrm{H}} \mathbf{W}^{n+1},
\end{aligned}
$$

- Step 4: Compute the parabolic fluxes $\boldsymbol{\Psi}^{\mathrm{L}}, \boldsymbol{\Psi}^{\mathrm{H}}$ (details given later) and limit

$$
\mathbf{U}^{n+1}:=\ell^{\mathrm{par}}\left(\mathbf{W}^{n+1}, \boldsymbol{\Psi}^{\mathrm{L}}, \boldsymbol{\Psi}^{\mathrm{H}}\right)
$$

Lemma (High-order IDP Euler IMEX)
Assume Assumptions 1 and 2. Assume that $\mathbf{U}^{n} \in \mathcal{A}^{\prime}$ and $\Delta t \in\left(0, \Delta t^{*}\right]$. Let $\mathbf{U}^{n+1}$ be defined as above. Then $\mathbf{U}^{n+1} \in \mathcal{A}^{\prime}$.

## The high-order update (IMEX)

- Key idea: Consider low-order and high-order updates and limit.
- Set $\mathbf{U}\left(t^{n}\right)=\mathbf{U}^{n}$ (with the induction assumption $\mathbf{U}^{n} \in \mathcal{A}$ )
- For $t \in\left(t^{n}, t^{n+1}\right)$ solve

$$
\begin{aligned}
& \mathbb{M}^{\mathrm{L}} \partial_{t} \mathbf{U}=\underbrace{\mathbf{F}^{\mathrm{L}}(\mathbf{U})}_{\text {Explicit }}+\underbrace{\mathbf{G}^{\mathrm{H}, \text { lin }}\left(\mathbf{U}^{n} ; \mathbf{U}\right)}_{\text {Implicit }}, \\
& \mathbb{M}^{\mathrm{H}} \partial_{t} \mathbf{U}=\underbrace{\mathbf{F}^{\mathrm{H}}(\mathbf{U})+\mathbf{G}^{\mathrm{H}}(\mathbf{U})-\mathbf{G}^{\mathrm{H}, \text { lin }}\left(\mathbf{U}^{n} ; \mathbf{U}\right)}_{\text {Explicit }}+\underbrace{\mathbf{G}^{\mathrm{H}, \text { lin }}\left(\mathbf{U}^{n} ; \mathbf{U}\right)}_{\text {Implicit }} .
\end{aligned}
$$

## The high-order update (IMEX)

- Explicit Butcher tableau

| 0 | 0 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $c_{2}$ | $a_{2,1}^{\mathrm{e}}$ | 0 |  |  |  |
| $c_{3}$ | $a_{3,1}^{\mathrm{e}}$ | $a_{3,2}^{\mathrm{e}}$ | 0 |  |  |
| $\vdots$ | $\vdots$ | $\ddots$ | $\ddots$ | $\ddots$ |  |
| $c_{s}$ | $a_{s, 1}^{\mathrm{e}}$ | $a_{s, 2}^{\mathrm{e}}$ | $\cdots$ | $a_{s, s-1}^{\mathrm{e}}$ | 0 |
| 1 | $a_{1+1,1}^{\mathrm{e}}$ | $a_{s+1,2}^{\mathrm{e}}$ | $\cdots$ | $a_{s+1, s-1}^{\mathrm{e}}$ | $a_{s+1, s}^{\mathrm{e}}$ |

- Implicit Butcher tableau

$$
\begin{array}{c|ccccc}
0 & 0 & & & & \\
c_{2} & a_{2,1}^{i} & a_{2,2}^{\mathrm{i}} & & & \\
c_{3} & a_{3,1}^{\mathrm{i}} & a_{3,2}^{\mathrm{i}} & a_{3,3}^{\mathrm{i}} & & \\
\vdots & \vdots & \ddots & \ddots & \ddots & \\
c_{s} & a_{s, 1}^{\mathrm{i}} & a_{s, 2}^{\mathrm{i}} & \cdots & a_{s, s-1}^{i} & a_{s, s}^{i} \\
\hline 1 & a_{s+1,1}^{i} & a_{s+1,2}^{\mathrm{i}} & \cdots & a_{s+1, s-1}^{i} & a_{s+1, s}^{i}
\end{array}
$$

## Hyperbolic update

- Let $I \in\{2: s+1\}$
- Compute $\mathbf{W}^{\mathrm{L}, l}$ and $\mathbf{W}^{\mathrm{H}, l}$

$$
\begin{aligned}
\mathbb{M}^{\mathrm{L}} \mathbf{W}^{\mathrm{L}, l} & :=\mathbb{M}^{\mathrm{L}} \mathbf{U}^{n, l^{\prime}}+\Delta t\left(c_{l}-c_{l^{\prime}}\right) \mathbf{F}^{\mathrm{L}}\left(\mathbf{U}^{n, l^{\prime}}\right), \\
\mathbb{M}^{\mathrm{H}} \mathbf{W}^{\mathrm{H}, l} & :=\mathbb{M}^{\mathrm{H}} \mathbf{U}^{n, l^{\prime}}+\Delta t \sum_{k \in\{1: I-1\}}\left(a_{l, k}^{\mathrm{e}}-a_{l^{\prime}, k}^{\mathrm{e}}\right) \mathbf{F}^{\mathrm{H}}\left(\mathbf{U}^{\mathrm{n}, k}\right) .
\end{aligned}
$$

- Use hyperbolic limiter

$$
\mathbf{W}^{n, I}:=\ell^{\text {hyp }}\left(\mathbf{U}^{\mathrm{L}, I}, \Phi^{\mathrm{L}}, \Phi^{\mathrm{H}}\right), \quad \forall I \in\{2: s+1\}
$$

## Parabolic update

- Let $I \in\{2: s+1\}$
- Compute $\mathbf{U}^{\mathrm{L}, l}$ and $\mathbf{U}^{\mathrm{H}, l}$
$\mathbb{M}^{\mathrm{L}} \mathbf{U}^{\mathrm{L}, l}:=\mathbb{M}^{\mathrm{L}} \mathbf{W}^{\mathrm{n}, I^{\prime}}+\Delta t\left(c_{l}-c_{l^{\prime}}\right) \mathbf{G}^{\mathrm{L}, \text { lin }}\left(\mathbf{U}^{n} ; \mathbf{U}^{\mathrm{L}, l}\right)$,
$\mathbb{M}^{\mathrm{H}} \mathbf{U}^{\mathrm{H}, l}:=\mathbb{M}^{\mathrm{H}} \mathbf{W}^{\mathrm{n}, \prime^{\prime}}+\Delta t \mathrm{a}_{l, \mathrm{G}}^{\mathrm{i}}, \mathbf{G}^{\mathrm{H}, \text { lin }}\left(\mathbf{U}^{n} ; \mathbf{U}^{\mathrm{H}, l}\right)$
$+\sum_{k \in\{1: l-1\}} \Delta t\left\{\left(a_{l, k}^{\mathrm{e}}-a_{l^{\prime}, k}^{\mathrm{e}}\right) \mathbf{G}^{\mathrm{H}}\left(\mathbf{U}^{n, k}\right)+\left(a_{l, k}^{\mathrm{i}}-a_{l^{\prime}, k}^{\mathrm{i}}-a_{l, k}^{\mathrm{e}}+a_{l^{\prime}, k}^{\mathrm{e}}\right) \mathbf{G}^{\mathrm{H}, \operatorname{lin}}\left(\mathbf{U}^{n} ; \mathbf{U}^{n, k}\right)\right\}$.
- Notice $\Delta t\left(c_{l}-c_{l^{\prime}}\right)>0$, but $\Delta t a_{l, l}^{\mathrm{i}} \geq 0$ (i.e., $a_{s+1, s+1}^{\mathrm{i}}=0$ ).
- Use hyperbolic limiter

$$
\mathbf{U}^{n+1}:=\ell^{\text {hyp }}\left(\mathbf{W}^{\mathrm{L}, I}, \Psi^{\mathrm{L}}, \Psi^{\mathrm{H}}\right), \quad \forall I \in\{2: s+1\} .
$$

## Key result

Theorem (s-stage IDP-IMEX)
Assume Assumptions 1 and 2 and

$$
\Delta t c_{\mathrm{eff}} \leq \Delta t^{*}, \quad c_{\mathrm{eff}}:=\max _{l \in\{2: s+1\}}\left(c_{l}-c_{l^{\prime}}\right)
$$

If $\mathbf{U}^{n} \in \mathcal{A}^{\prime}$, then $\mathbf{U}^{\mathrm{L}, n+1} \in \mathcal{A}^{\prime}$.

## Example: Second-order

- Heun's method + Crank-Nicolson:

| 0 | 0 |  | 0 | 0 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 0 | 1 | $\frac{1}{2}$ | $\frac{1}{2}$ |
| 1 | $\frac{1}{2}$ | $\frac{1}{2}$ |  | 1 | $\frac{1}{2}$ |

- $I^{\prime}=I-1$ for all $I \in\{2: 3\}$, and the efficiency ratio is $\frac{1}{2}$.


## Example: Second-order

- Explicit and implicit midpoint rules.

| 0 | 0 |  |
| :--- | :--- | :--- |
| $\frac{1}{2}$ | $\frac{1}{2}$ | 0 |
| 1 | 0 | 1 |


| 0 | 0 |  |
| :--- | :--- | :--- |
| $\frac{1}{2}$ | 0 | $\frac{1}{2}$ |
| 1 | 0 | 1 |

- $I^{\prime}=I-1$ for all $I \in\{2: 3\}$, and the efficiency ratio is 1 .


## Example: Third-order

- Two-stage, third-order (A-stable) SDIRK method Crouzeix (1975), Norsett (1974)

| 0 | 0 |  |  |
| :---: | :---: | :---: | :---: |
| $\gamma$ | $\gamma$ | 0 |  |
| $1-\gamma$ | $\gamma-1$ | $2-2 \gamma$ | 0 |
| 1 | 0 | $\frac{1}{2}$ | $\frac{1}{2}$ |


| 0 | 0 |  |  |
| :---: | :---: | :---: | :---: |
| $\gamma$ | 0 | $\gamma$ |  |
| $1-\gamma$ | 0 | $1-2 \gamma$ | $\gamma$ |
| 1 | 0 | $\frac{1}{2}$ | $\frac{1}{2}$ |

- with $\gamma:=\frac{1}{2}+\frac{1}{2 \sqrt{3}} \approx 0.78867$.
- The values for $I^{\prime}$ are $(1,1,2)$. The efficiency ratio is $\frac{1}{3} \gamma \approx 0.26$.


## Example: Third-order

- Three-stage, third-order

| 0 | 0 |  |  |
| :---: | :---: | :---: | :---: |
| $\frac{1}{3}$ | $\frac{1}{3}$ | 0 |  |
| $\frac{2}{3}$ | 0 | $\frac{2}{3}$ | 0 |
| 1 | $\frac{1}{4}$ | 0 | $\frac{3}{4}$ |


| 0 | 0 |  |  |
| :---: | :---: | :---: | :---: |
| $\frac{1}{3}$ | $\frac{1}{3}-\gamma$ | $\gamma$ |  |
| $\frac{2}{3}$ | $\gamma$ | $\frac{2}{3}-2 \gamma$ | $\gamma$ |
| 1 | $\frac{1}{4}$ | 0 | $\frac{3}{4}$ |

- With $\gamma:=\frac{1}{2}+\frac{1}{2 \sqrt{3}} \approx 0.78867$.
- We have $I^{\prime}=I-1$ for all $I \in\{2: 4\}$, and the efficiency is 1 .


## Important omitted details

- The definition of $\mathbf{G}^{\mathrm{L}, \text { lin }}$ is problem-dependent.
- Conservation
- Limiting done with the Flux Transport Correction technique Zalezak (1979) if the constraints are not affine
- Limiting done with convex limiting (Guermond, Popov, Tomas (2019)) if the constraints are not affine.


## Conclusions

- Every ERK and IMEX methods can be made invariant-domain preserving.

