A FAST ALGORITHM FOR SOLVING FIRST-ORDER PDES BY
\(L^1\)-MINIMIZATION\(^*\)

JEAN-LUC GUERMOND\(^{†,‡}\), FABIEN MARPEAU\(^†\), AND BOJAN POPOV\(^†\)

Abstract. In this paper, we state a convergence result for an \(L^1\)-based finite element approximation technique in dimension one. The proof of this result is constructive and provides the basis for an algorithm for computing \(L^1\)-based almost minimizers with optimal complexity. Several numerical results are presented to illustrate the performance of the method.

Key words. Finite elements, best \(L^1\)-approximation, viscosity solution, transport, ill-posed problem, HJ equation, Eikonal equation

AMS subject classifications. 65N35, 65N22, 65F05, 35J05

1. Introduction. This paper is concerned with the approximation of first-order PDEs using finite element-based best \(L^1\)-approximations. This type of approximation technique have been introduced by Lavery [12], [13] and further explored in Guermond [8]. Numerical tests reported in these references indicate that \(L^1\)-based minimization techniques can compute the viscosity solution of some first-order PDEs. This fact has been proved in one space dimension for linear first-order PDEs equipped with ill-posed boundary conditions in Lavery [13] and Guermond and Popov [10]. The proofs in the two above references are quite technical and rely essentially on explicit computations of the minimizers. The technicalities therein are such that it is difficult to really understand from these two proofs why the \(L^1\) minimizer performs so well. The first objective of the present work is to revisit [10] and to give a very simple proof of the above statement. Then, based on a constructive argument from the new proof, we propose a fast algorithm for computing \(L^1\)-minimizers. This algorithm involves \(O(N)\) operations where \(N\) is the number of degrees of freedom.

The paper is organized as follows. In \S2 we revisit the one-dimensional ill-posed model problem considered in Guermond and Popov [10], and we give an elementary proof of the fact that \(L^1\)-minimizers converge to the unique viscosity solution of this problem. Based on a local minimization argument unveiled in \S2 we construct in \S3 a fast algorithm for solving the \(L^1\)-minimization problem associated with the one-dimensional ill-posed model problem. In \S4 we generalize the algorithm to nonlinear one-dimensional first-order PDEs. We essentially focus our attention on stationary Hamilton-Jacobi equations. The algorithm is illustrated on various linear and nonlinear test cases.

2. The one-dimensional linear model problem. In this section we restrict ourselves to a model one-dimensional differential equation equipped with a set of ill-posed boundary conditions which has been considered in [10]. Lemma 2.1 which is the main result of this section, will be the basis for the algorithm developed in \S3.
2.1. The continuous problem. Let $\Omega = (0,1)$, $f \in L^1(\Omega)$, $\beta \in C^1(\overline{\Omega})$, and solve for the unique viscosity solution $u \in W^{1,1}(\Omega)$ of

$$
\begin{cases}
 u(x) + \beta(x)u'(x) = f(x), & \text{in } \Omega, \\
 u(0) = 0 & u(1) = 0.
\end{cases}
$$

(2.1)

The boundary conditions are to be understood in the entropy sense as defined by Bardos–le Roux–Nédélec, [1]. We recall that the viscosity solution to (2.1) is obtained by regularizing the PDE by adding $-\epsilon u''$, i.e., it is the limit as $\epsilon \to 0$ of the sequence $(u_\epsilon)_{\epsilon>0}$ defined by

$$
\begin{cases}
 u_\epsilon(x) + \beta(x)u_\epsilon'(x) - \epsilon u_\epsilon''(x) = f(x), & \text{in } \Omega, \\
 u_\epsilon(0) = 0 & u_\epsilon(1) = 0.
\end{cases}
$$

(2.2)

Despite its appearance, the problem (2.1) is not purely formal. It arises when one tries to approximate (2.2) on meshes that are not refined enough. For instance, consider a mesh of typical size h and assume that $\epsilon/h^2 \ll \|\beta\|_{L^\infty}/h$ (i.e., the mesh is not fine enough to resolve boundary layers). Then the discrete counterpart of the second-order term is dominated by the first-order one and the discrete system does not really see the diffusion $-\epsilon u''(x)$. Approximating (2.2) in these circumstances amounts to trying to solve (2.1) with the boundary conditions understood in the classical sense instead of the entropy sense.

To avoid necessary technicalities we further assume that

$$0 < \inf_{x \in \Omega} \beta(x)$$

(2.3)

$$\sup_{x \in \Omega} \beta'(x) < 1.$$

(2.4)

The condition $\beta' \leq 1$ is the one-dimensional counterpart of the condition $\nabla, \beta \leq 1$ which is standard for the multidimensional version of (2.1). The assumption (2.3) implies that the flow associated with β has characteristics flowing from left to right. This in turns implies that the viscosity solution satisfies only the boundary condition $u(0) = 0$; the other boundary condition is discarded. The uniqueness of a viscosity solution to (2.1) in $W^{1,1}(\Omega)$ is well known even under weaker assumptions on β and f. To simplify the notation we define the linear operator

$$L : W^{1,1}(\Omega) \ni v \mapsto v + \beta v' \in L^1(\Omega).$$

(2.5)

2.2. The discrete problem. Let $T_h = \bigcup_{i=0}^n I_i$ be a mesh of Ω composed of $n+1$ cells I_i, $i = 0, \ldots, n$. Let $x_0, x_1, \ldots, x_{n+1}$ be the vertices of this mesh and assume that the enumeration is such that $x_0 = 0$, $x_{n+1} = 1$ and each cell I_i is defined by $I_i = [x_i, x_{i+1}]$. The midpoint of each cell is denoted by $x_{i+\frac{1}{2}} = \frac{x_{i+1} + x_i}{2}$. We set $h_i = x_{i+1} - x_i > 0$, $i = 0, 1, \ldots, n$, and we define $h = \max_i h_i$.

To construct an approximation to (2.1), we introduce the following approximation space

$$X_h = \{ v_h \in C^0(\overline{\Omega}); \, v_h|_{I_i} \in P_1, \forall I_i \in T_h; \, v_h(0) = v_h(1) = 0 \},$$

(2.6)

where P_1 denotes the set of polynomials of degree at most one. Note that the functions v_h are zero at both ends of the interval Ω; i.e., both boundary conditions in (2.1) are enforced. For every $v \in X_h$, we denote $v_i := v(x_i)$. Upon defining the functional

$$J(v_h) = \int_0^1 |L(u_h)(x) - f(x)| \, dx,$$

(2.7)
we consider the following finite element L^1-minimization problem: Seek $u_h \in X_h$ such that

$$J(u_h) = \min_{v_h \in X_h} J(v_h).$$

To simplify things a little bit more, we use the midpoint rule to approximate the integral over each mesh cell. We then replace the functional J by the following one

$$J_h(v_h) := \sum_{i=0}^{n} h_i \left| L(v_h)(x_{i+\frac{1}{2}}) - f_i \right|,$$

where we have set $f_i := h_i^{-1} \int_{x_i}^{x_{i+1}} f(x)dx$ and $\beta_i := \beta(x_{i+\frac{1}{2}})$. Problem (2.8) is then replaced by the following one: Seek $u_h \in X_h$ such that

$$J_h(u_h) = \min_{v_h \in X_h} J_h(v_h).$$

It is shown in [10] that the sequence $(u_h)_{h>0}$ solving (2.8) converges to the viscosity solution of (2.2) in $W^{1,1}_{loc}(0,1)$ and the rate of convergence is $O(h)$ if f is in $BV(\Omega)$. We want now to offer a new proof of this fact which is significantly simpler than that in [10].

2.3. Convergence analysis. We start with a definition. With each cell I_i we associate the residual over that cell as follows

$$r_i(r,s) = h_i \left(\frac{1}{2}(r+s) + \beta_i h_i^{-1}(s-r) - f_i \right),$$

so that by setting $R_i(v) = r_i(v_i, v_{i+1})$ for all $v \in X_h$, we have

$$J_h(v) = \sum_{i=0}^{n} |R_i(v)|.$$

Let i be an arbitrary integer in $\{0, \ldots n\}$. Define the maps $t_{i,l}$, $l \in \{i, i+1\}$ so that for every $r \in \mathbb{R}$, $t_{i,l}(r)$ and $t_{i,i+1}(r)$ are the unique real numbers solving

$$r_i(t_{i,l}(r), r) = 0; \quad r_i(t_{i,i+1}(r), r) = 0.$$

The role of these maps is clarified by the following lemma.

Lemma 2.1. Assume (2.3), (2.4). Then, there exists $h_0 := 2 \inf_{x \in \Omega} \beta(x)$ so that for all $h < h_0$, for all $i \in \{1, \ldots n\}$, and for all $r, s \in \mathbb{R}$

$$|r_i(t_{i-1,i-1}(r), s)| = \min_{z \in \mathbb{R}} |r_i(r, z)| + |r_i(z, s)|,$$

and the minimum is strict if $r_i(t_{i-1,i-1}(r), s) \neq 0$.

Proof. Define $J_{i-1,i}(z) := |r_{i-1}(r, z)| + |r_i(z, s)|$. The graph of $J_{i-1,i}(z)$ is convex and composed of three linear branches. The functional reaches its minimum at one of the two angular points of the graph, say z_- and z_+ where z_- and z_+ are defined so that $r_{i-1}(r, z_-) = 0$ and $r_i(z_+, s) = 0$. Note that $z_- = t_{i-1,i-1}(r)$ and $z_+ = t_{i,i+1}(s)$.

Let us set

$$\omega_{i-1} = \frac{1}{2} + \beta_{i-1} h_{i-1}^{-1} \quad \omega_i = \frac{1}{2} + \beta_i h_i^{-1},$$

$$\omega'_{i-1} = \frac{1}{2} - \beta_{i-1} h_{i-1}^{-1} \quad \omega'_i = \frac{1}{2} - \beta_i h_i^{-1}.$$
With this set of notation we rewrite \(r_{i-1}(r, z) = h_{i-1}(\omega_{i-1}z + \omega'_1 r - f_{i-1}) \) and \(r_i(z, s) = h_i(\omega_is + \omega'_i z - f_i) \), which implies
\[
 z = \omega_{i-1}^{-1}(f_{i-1} - r\omega'_i), \quad z' = \omega_i^{-1}(f_i - s\omega_i).
\]

To determine whether the minimum of \(J_{i-1,i}(z_\cdot) \) is \(J_{i-1,i}(z_\cdot) = |r_i(z_\cdot, s)| \) with \(J_{i-1,i}(z_\cdot) = |r_{i-1}(r, z_\cdot)| \). Using the above definitions, we infer
\[
 r_{i-1}(r, z_\cdot) = h_{i-1}(\omega_{i-1}^{-1}((f_i - s\omega_i)\omega_{i-1} + \omega'_i \omega_{i-1} r - \omega'_i f_{i-1})
 r_i(z_\cdot, s) = h_i(\omega_i^{-1}((f_i - r\omega'_i)\omega_i + \omega_i \omega_is - \omega_i f_i).
\]

If \(\omega_{i-1}\omega_is - \omega'_i \omega'_ir + f_{i-1} \omega'_i - \omega_{i-1}f_i = 0 \), then \(r_{i-1}(r, z_\cdot) = 0 = r_i(z_\cdot, s) \) and
\[
 \min_{z\in\mathbb{R}} J_{i-1,i}(z) = \min(|r_{i-1}(r, z_\cdot)|, |r_i(z_\cdot, s)|) = 0 \geq |r_i(z_\cdot, s)|,
\]
thus proving the claim. Otherwise, we infer
\[
 |r_{i-1}(r, z_\cdot)| = h_{i-1}|\omega_{i-1}^{-1} h_i^{-1}| \omega_{i-1} |r_i(z_\cdot, s)|,
\]
and we have to examine the ratio \(h_{i-1} \omega_{i-1}/(h_i \omega'_i) \). Observe first that \(\omega'_i \) implies that if \(h < h_0 \), then \(\omega'_i \) is negative. Then the above ratio is larger than 1 if we can establish that \(h_{i-1} \omega_{i-1} + h_0 \omega'_i \) is positive. The above definitions together with the one-sided bound \(\omega_{i-1} \) yield
\[
 h_{i-1} \omega_{i-1} + h_0 \omega'_i = \frac{1}{2} h_{i-1} + \frac{1}{2} h_0 + \beta_{i-1} - \beta_i = \frac{1}{2} (h_{i-1} + h_i) - \int_{x_{i-1/2}}^{x_{i+1/2}} \beta'(x) \, dx
 \geq \frac{1}{2} (1 - \sup_{x\in\Omega} \beta'(x))(h_{i-1} + h_i) > 0.
\]

This immediately implies \(|r_{i-1}(r, z_\cdot)| > |r_i(z_\cdot, s)| \), thus confirming the claim.

Assume now that \(r_i(z_\cdot, s) \neq 0 \). Then \(\omega_{i-1} \omega_is - \omega'_i \omega'_ir + f_{i-1} \omega'_i - \omega_{i-1}f_i \neq 0 \) and the above argument implies that
\[
 J_{i-1,i}(z_\cdot) = |r_i(z_\cdot, s)| < |r_{i-1}(r, z_\cdot)| = J_{i-1,i}(z_\cdot),
\]
i.e., the graph of \(J_{i-1,i} \) is strictly monotone on the interval \([z_\cdot, z_\cdot] \). It is clear also that the graph of \(J_{i-1,i} \) is strictly monotone on the two other branches that go to \(-\infty\) and \(+\infty\). As a result the minimum of \(J_{i-1,i} \) at \(z_\cdot \) is strict.

Let us now construct \(u_h \in X_h \) as follows:
\[
 \begin{cases}
 u_h(0) = 0, \\
 u_h(x_i) = t_{i-1,i-1}(u_h(x_{i-1})), \quad 1 \leq i \leq n, \\
 u_h(x_{n+1}) = 0,
 \end{cases}
\]
(2.15)
that means, \(u_h \) is the unique element of \(X_h \) such that \(R_i(u_h) = 0 \) for all \(i = 0, \ldots, n-1 \). The following holds:

Theorem 2.2. Let \(h < 2 \inf_{x\in\Omega} \beta(x) \) and \(u_h \) be defined by (2.15). Then, \(u_h \) uniquely solves the minimization problem (2.10).

Proof. Let \(v \) an arbitrary member of \(X_h \). Assume that \(v \) is different from \(u_h \). Since (2.15) uniquely defines \(u_h \), there is \(i \in \{1, \ldots, n\} \) such that \(v(x_i) \neq t_{i-1,i-1}(v(x_{i-1})) \),
i.e., $r_{i-1}(v_{i-1}, v_i) \neq 0$. Let us define $\tilde{v} \in X_h$ so that $\tilde{v}_l = v_l$ for all $l \neq i$ and set $\tilde{v}_i = t_{i-1,i-1}(v_{i-1})$. Then observe that

$$J_h(v) - J_h(\tilde{v}) = |r_{i-1}(v_{i-1}, v_i)| + |r_i(v_i, v_{i+1})| - |r_i(\tilde{v}_i, v_{i+1})|.$$

If $r_i(\tilde{v}_i, v_{i+1}) = 0$, then $J_h(v) - J_h(\tilde{v}) \geq |r_{i-1}(v_{i-1}, v_i)| > 0$. If $r_i(\tilde{v}_i, v_{i+1}) \neq 0$, then Lemma 2.1 implies $J_h(v) > J_h(\tilde{v})$. In both cases, v is not a minimizer of (2.10). The result is proved.

For completeness, let us finally recall the following result.

Theorem 2.3 (Convergence). Let u be the viscosity solution to (2.1). Let u_h solve (2.10). Then $\lim_{h \to 0} \|u - u_h\|_{W^{1,1}(0, x_n)} = 0$ for all f in $L^1(\Omega)$, and there is c independent of h such that

$$\|u - u_h\|_{W^{1,1}(0, x_n)} \leq ch\|f\|_{BV[0,1]}$$

for all $f \in BV[0,1]$.

Remark 2.1. The conditions (2.5)–(2.6) on the field β imply that the flow associated with β has characteristics flowing from left to right. It is remarkable that the solution to the minimization problem (2.10) is obtained by enforcing the upwind residual to be zero. In some sense, the local L^1-minimizer naturally selects the upwind information.

2.4. Sparsity and L^1 versus L^2

Let us interpret the result of Theorem 2.2 and put it in perspective. Observe that the functional J_h as defined in (2.9) is the sum of $n+1$ residuals. According to (2.10), one striking property of the L^1-minimizer (as defined in (2.10)) is that the residuals $r_0(u_0, u_1), \ldots, r_{n-1}(u_{n-1}, u_n)$ are zero. That is, among the $n+1$ residuals composing J_h, the L^1-minimizer sets n of those to zeros. The residual vector $(r_0(u_0, u_1), \ldots, r_{n-1}(u_{n-1}, u_n), r_n(u_n, u_{n+1}))$ is extremely sparse since only the $(n+1)$-th component, $r_n(u_n, u_{n+1})$, is non zero. This sparsity property has been recognized by Donoho [13, 15] in a more general context and can be used to recover signals from incomplete and inaccurate measurements, cf. Candès, Tao [3].

If instead of computing the L^1-minimizer we compute the L^2-minimizer (say by minimizing $K_h(v) = \sum_{i=0}^n h_i^{-1} r_i(v_i, v_{i+1})^2$), then it is a general fact that the L^2-minimizer yields a dense residual vector, i.e., none of the residual is zero in general. In particular, if there should be a sharp boundary layer in one particular cell (say the last one for instance), then instead of committing a large error in this cell (which the L^1-minimizer would do), the L^2-minimizer spreads out the error over all the cells.

Let us finally recall also that, as proved in Guermond [3], the Least Squares approximation to the ill-posed problem (2.1) does not converge to the viscosity solution in general (see also 3.3.1 for a counter-example).

3. A fast algorithm for solving (2.10) in the linear case

The objective of this section is to show how the result of Lemma 2.4 can be used to construct a fast algorithm for solving (2.10).

3.1. Short review

The main difficulty we encounter for solving (2.10) is that this is a linear programming problem. To see this we define the $(n+1) \times n$ matrix A and the vector $b \in \mathbb{R}^{n+1}$ so that for all $k \in \{1, \ldots, n+1\}$, $l \in \{1, \ldots, n\}$

$$b_k = h_{k-1} f_{k-1}, \quad \text{and} \quad A_{kl} = \begin{cases} h_{k-1} w_{k-1} & \text{if } l = k-1, \\ h_{k-1} w_{k-1} & \text{if } l = k, \\ 0 & \text{otherwise.} \end{cases}$$

(3.1)
Then (2.10) can be recast as follows: Seek $u \in \mathbb{R}^{n+1}$ and $x \in \mathbb{R}^n$ so that

$$
(u, x) \leftarrow \min_{v \in \mathbb{R}^{n+1}} \sum_{i=1}^{n} v_i \quad \text{subject to} \quad \begin{cases}
Ay - b - v \leq 0, \\
-Ay + b - v \leq 0.
\end{cases}
$$

This problem can be solved by the simplex method, but since the late 1980’s more efficient methods, collectively known as interior point methods, have been developed, see e.g., Nocedal, Wright [16] for a review. This type of technique is used by Yong, Shu-Cherng, Lavery, [17] to solve large scale multi-variate L^1-spline interpolation problems. This is also the approach used by Candès, Tao, Romberg [2] to solve signal recovery problems using ℓ^1-minimization.

Another technique used in Guermond [8] consists of regularizing the absolute value function $x \mapsto |x|$ by $\psi_\varepsilon(x) = \frac{x^2}{|x| + \varepsilon}$, where $\varepsilon > 0$. Then upon introducing the regularized functional

$$
\mathcal{J}_\varepsilon(v_h) = \sum_{i=0}^{n} h_i \psi_\varepsilon(L_h(u_h))(x_{1+\frac{1}{2}}) - f(x_{1+\frac{1}{2}}),
$$

problem (2.10) is replaced by the following: Seek u_h^ε so that

$$
\mathcal{J}_\varepsilon(u_h^\varepsilon) = \min_{v_h \in E_h} \mathcal{J}_\varepsilon(v_h).
$$

Owing to the regularization, \mathcal{J}_ε is twice differentiable (in the Fréchet sense), and the first-order optimality condition for (3.4) is

$$
\sum_{i=0}^{n} h_i D\psi_\varepsilon(L_h(u_h^\varepsilon))(x_{1+\frac{1}{2}}) - f(x_{1+\frac{1}{2}}) L_h(v_h)(x_{1+\frac{1}{2}}) = 0, \quad \forall v_h \in E_h.
$$

The algorithm described in Guermond [8] consists of solving (3.4) using Newton’s method and iteratively driving the parameter ε to zero.

The main drawback we see in the above two methods (interior point methods and regularization) is that they are all based on Newton iterations requiring solving large symmetric linear systems. Although efficient algorithms like conjugate gradient can be applied, the overall complexity does not scale linearly with the size of the system since the matrices change at each Newton iteration and thus are difficult to precondition efficiently. A possible way out could be to use multigrid preconditioning, but we have not explored this trail further.

One possible source of the difficulty mentioned above is that by looking at the algebraic problem (3.1), one loses sight of the PDE origin of the problem, and one does not use the hyperbolicity which is revealed by Theorem 2.2. We explore this venue in the rest of the paper.

3.2. Definition of the algorithm. In view of Lemma 2.1 we propose the following algorithm for solving (2.10):

Then (2.10) can be recast as follows: Seek $u \in \mathbb{R}^{n+1}$ and $x \in \mathbb{R}^n$ so that

\[
(u, x) \leftarrow \min_{v \in \mathbb{R}^{n+1}} \sum_{i=1}^{n} v_i \quad \text{subject to} \quad \begin{cases}
Ay - b - v \leq 0, \\
-Ay + b - v \leq 0.
\end{cases}
\]

This problem can be solved by the simplex method, but since the late 1980’s more efficient methods, collectively known as interior point methods, have been developed, see e.g., Nocedal, Wright [16] for a review. This type of technique is used by Yong, Shu-Cherng, Lavery, [17] to solve large scale multi-variate L^1-spline interpolation problems. This is also the approach used by Candès, Tao, Romberg [2] to solve signal recovery problems using ℓ^1-minimization.

Another technique used in Guermond [8] consists of regularizing the absolute value function $x \mapsto |x|$ by $\psi_\varepsilon(x) = \frac{x^2}{|x| + \varepsilon}$, where $\varepsilon > 0$. Then upon introducing the regularized functional

\[
\mathcal{J}_\varepsilon(v_h) = \sum_{i=0}^{n} h_i \psi_\varepsilon(L_h(u_h))(x_{1+\frac{1}{2}}) - f(x_{1+\frac{1}{2}}),
\]

problem (2.10) is replaced by the following: Seek u_h^ε so that

\[
\mathcal{J}_\varepsilon(u_h^\varepsilon) = \min_{v_h \in E_h} \mathcal{J}_\varepsilon(v_h).
\]

Owing to the regularization, \mathcal{J}_ε is twice differentiable (in the Fréchet sense), and the first-order optimality condition for (3.4) is

\[
\sum_{i=0}^{n} h_i D\psi_\varepsilon(L_h(u_h^\varepsilon))(x_{1+\frac{1}{2}}) - f(x_{1+\frac{1}{2}}) L_h(v_h)(x_{1+\frac{1}{2}}) = 0, \quad \forall v_h \in E_h.
\]

The algorithm described in Guermond [8] consists of solving (3.4) using Newton’s method and iteratively driving the parameter ε to zero.

The main drawback we see in the above two methods (interior point methods and regularization) is that they are all based on Newton iterations requiring solving large symmetric linear systems. Although efficient algorithms like conjugate gradient can be applied, the overall complexity does not scale linearly with the size of the system since the matrices change at each Newton iteration and thus are difficult to precondition efficiently. A possible way out could be to use multigrid preconditioning, but we have not explored this trail further.

One possible source of the difficulty mentioned above is that by looking at the algebraic problem (3.1), one loses sight of the PDE origin of the problem, and one does not use the hyperbolicity which is revealed by Theorem 2.2. We explore this venue in the rest of the paper.

3.2. Definition of the algorithm. In view of Lemma 2.1 we propose the following algorithm for solving (2.10):
Algorithm 1 \(L^1 \)-minimization for \([2,10]\).

1: Initialize \(v \); initialize array visited(1:n) \(\leftarrow \) false
2: Put cell 0 in current_cell list; Put node 0 in current_node list
3: Put cell \(n \) in current_cell list; Put node \(n + 1 \) in current_node list
4: while (current_cell not empty) do
5: Take \(i_0 \) from current_cell list; Take \(k_0 \) from current_node list
6: Let \(i_1 \) be the cell adjacent to \(i_0 \) and opposite to \(k_0 \)
7: Let \(k_1 \) be the common vertex to \(i_0 \) and \(i_1 \); Let \(k_1 \) be the other node of \(i_1 \)
8: Compute \(v_\leftarrow t_{i_0,i_0}(v_{k_0}) \) and \(v_+ = t_{i_1,k_1}(v_{k_1}) \)
9: Remove cell \(i_0 \) from current_cell; Remove node \(k_0 \) from current_node
10: if \(|r_{i_1}(v_-,v_{k_1})| \leq |r_{i_0}(v_{k_0},v_+)| \) then
11: if \(|r_{i_1}(v_-,v_{k_1})| = |r_{i_0}(v_{k_0},v_+)| \) and \(\text{visited}(k) = \text{true} \) then
12: stop
13: end if
14: Put cell \(i_1 \) in current_cell; put node \(k \) in current_node
15: \(v \leftarrow \bar{v} \); visited(k) \(\leftarrow \) true
16: end if
17: end while

Note that owing Lemma 2.4 the if-statement testing \(|r_{i_1}(v_-,v_{k_1})| \leq |r_{i_0}(v_{k_0},v_+)| \)
in line 10 of Algorithm 1 is not needed if we assume \((2.3) \rightarrow (2.4) \). But this test is actually needed if we replace the restrictive set of assumptions \((2.3) \rightarrow (2.4) \) by the following:

\[
\begin{aligned}
0 < \inf_{x \in \Omega_l} \beta(x) \quad & \text{and} \quad \sup_{x \in \Omega_r} \beta'(x) < 1, \\
\inf_{x \in \Omega_l} \beta(x) < 0 \quad & \text{and} \quad -1 < \inf_{x \in \Omega_r} \beta'(x),
\end{aligned}
\]

(3.6)

where \(\Omega_l = (0, \alpha) \), \(\Omega_r = (\alpha, 1) \) is a (possibly trivial) partition of \(\Omega \), with \(\alpha \in [0,1] \).

Proposition 3.1. Algorithm 1 stops in \(O(\frac{1}{\sqrt{\varepsilon}} n) \) steps and gives the solution to \([2.11]\).

Proof. The most unfavorable case occurs when both cells from current_list move forward until they collide \((\frac{n}{2} + \frac{n}{2}) \) operations); at the collision moment the upwind cell wins owing to Lemma 2.4 thereafter the upwind cell undoes what the other one has done \((\frac{n}{2}) \) operations). When the only cell left in current_list reaches the downwind boundary, the algorithm stops and, owing to Theorem 2.2 the output is the minimizer of \(\min_1 \).

The most favorable case occurs when, due to lucky initialization, the downwind cell (i.e., that moving in the upwind direction) stops at the first test; then only the upwind cell moves forward and the algorithm finishes in \(n \) steps.

Note that the algorithm does not refer to the upwind/downwind notion per se. The local \(L^1 \)-minimization takes care of that naturally.

3.3. Numerical results. To illustrate the above algorithm, we apply it to \([2.11]\). Two situations are considered. In the first one the velocity field is continuous and in the second one it is discontinuous. The unit interval \([0,1]\) is divided into cells of constant size and \(P_1 \) finite elements are used.

3.3.1. Constant advection: ill-posed problem. We set \(\beta := \frac{1}{2} \) and \(f := 1 \) on \([0,1]\). As already mentioned above, the system \([2.11]\) is ill-posed but nevertheless has a unique viscosity solution. As \(\beta \) is positive, this viscosity solution is obtained
by solving the ODE \(u + \frac{1}{2} u' = 1 \) using \(u(0) = 1 \) as initial condition. The viscosity solution is \(u(x) = 1 - e^{-2x} \). The Least-Squares solution to this problem solves the two-point boundary value problem \(u_{LS} - \frac{1}{2} u_{LS}' = 1, \quad u_{LS}(0) = 0, \quad u_{LS}(1) = 0 \). Clearly \(u_{LS}(x) = ae^{2x} + be^{-2x} + 1 \), where \(a = -\frac{1 - e^{-2}}{e^{-2} - 1} \) and \(b = -\frac{e^{2} - 1}{e^{2} - e^{-2}} \).

We compare in figure 3.1 the \(L^1 \)-solution and the Least-Squares solution. The \(L^1 \)-solution is computed using Algorithm 1 on a mesh composed of 30 uniformly distributed cells. Clearly the \(L^1 \)-solution approximates the viscosity solution, and in spite of the irrelevant right-hand boundary condition, it is accurate everywhere in the domain but in the rightmost cell. The \(L^1 \)-minimization recognizes the left-hand boundary condition to be the correct one and propagates it continuously in the interior of the domain. The discontinuity created in the last cell does not perturb the solution anywhere else. Indeed, no oscillations or instabilities of any kind are generated. By contrast, the Least-Square solution suffers from the ill-posedness of the problem and yields an erroneous solution. All these observations confirm the theoretical analysis from Guermond and Popov [10].

3.3.2. Linear discontinuous advection: shock. To mimic what happens when a shock occurs in nonlinear conservation laws, we now consider the following discontinuous advection field

\[
\beta = \begin{cases}
0.1 & \text{if } 0 \leq x \leq \frac{1}{2}, \\
-1 & \text{if } \frac{1}{2} < x \leq 1.
\end{cases}
\]

The characteristic lines associated with this flow are entering the domain at both boundaries, creating a shock at the middle of the domain, cf. Figure 3.2. As above, the \(L^1 \)-algorithm propagates continuously the boundary conditions from both boundaries to the interior of the domain and, therefore, the shock is non-oscillatory and supported in one cell. Note that this phenomenon is independent of the number of cells partitioning the domain (the result for 30 cells is shown on the left of the figure and the result for 100 cells is shown on the right). This validates our method for discontinuous velocity advection problems.
4. Fast Algorithm for Nonlinear Problems. In this section, we extend Algorithm 1 to nonlinear problems. The main difficulty we have to deal with is non-uniqueness of solutions, which possibly lead to multiple numerical local minimizers. We propose a new algorithm to address this issue, and we illustrate its performance on stationary Hamilton-Jacobi equations.

4.1. A Model Problem. As in the linear case, we want to use a local minimization argument, but to avoid possible non-uniqueness issues we have to invoke an entropy selection mechanism. To clarify this point let us illustrate it on an example.

Consider the following stationary Hamilton-Jacobi equation

\[H(x, u, u') = 0, \quad \text{in} \ (a, b) \]

with \(u(a) = \alpha, \ u(b) = \beta, \) \((4.1) \)

where \([a, b]\) is a bounded interval, and assume that the Hamiltonian \(H \) satisfies the following properties:

\[|q| \leq c_s (|H(x, v, q)| + |v| + 1), \quad \forall(x, v, q) \in [a, b] \times \mathbb{R} \times \mathbb{R}, \]

\[H(x, v, q) \text{ is uniformly Lipschitz on } [a, b] \times [-R, R] \times \overline{B(0, R)} \text{ for all } R > 0, \]

\((4.2) \)

\((4.3) \)

We assume that \((4.1) \) has a unique viscosity solution \(u \) in \(W^{1,\infty}(a, b) \) which is semi-concave. A typical example is the eikonal equation or any Hamilton-Jacobi equations derived from scalar conservation laws with convex flux, see Evans [7], Kružkov [11], or Lions and Souganidis [15].

It is shown in Guermond and Popov [9] that this problem can be solved by means of a minimization technique in \(L^1 \). More precisely, let \(p > 1 \) be a fixed real number. Define the following functional

\[J(v) = \int_a^b |H(x, v, v')| dx + \sum_{i=0}^n h_i \int_{I_i} (v''(x))^p dx + \sum_{i=1}^n h_{i+\frac{1}{2}}^2 (v')_+^p (x_i), \]

\((4.4) \)

where \(h_{i+\frac{1}{2}} = \frac{1}{2}(h_{i-1} + h_i) \). The symbol \((z)_+ \) denotes the positive part, i.e., \((z)_+ := \frac{1}{2}(|z| + z)\). The jump across cell interfaces is defined by \([\phi](x_i) := \lim_{\epsilon \to 0} \phi(x_i + \epsilon) - \phi(x_i - \epsilon)\). The two extra terms in the right-hand side of \((4.4) \) are referred to as the volume entropy and the interface entropy. It is shown in Guermond and Popov [9] that the function in \(X_h \) that minimizes \(J_h \) converges to the unique viscosity solution to \((4.1) \). Actually, the result proved therein holds for piecewise polynomial approximations of degree one and higher.
We now propose to simplify J_h and to specialize it to piecewise linear approximation by using the midpoint quadrature rule. The new fully discrete functional that we henceforth consider is

$$J_h(v) = \sum_{i=0}^{n} h_i |H(x_{i+\frac{1}{2}}, v(x_{i+\frac{1}{2}}), v'(x_{i+\frac{1}{2}}))| + \sum_{i=1}^{n} h_{i+\frac{1}{2}}^2 (\lfloor v' \rfloor + (x_i))^p. \tag{4.5}$$

The right-hand side is composed of a residual part and an entropy part. We rewrite the functional as follows:

$$J_h(v) = \sum_{i=0}^{n} |r_i(v_i, v_{i+1})| + \sum_{i=1}^{n} E_i(v), \tag{4.6}$$

where for all $v \in X_h$,

$$R_i(v) = h_i H(x_{i+\frac{1}{2}}, \frac{1}{2}(v_i + v_{i+1}), h_i^{-1}(v_{i+1} - v_i)). \tag{4.7}$$

$$E_i(v) = h_{i+\frac{1}{2}}^2 (h_i^{-1}(v_{i+1} - v_i)) - h_{i-\frac{1}{2}}^{-1}(v_i - v_{i-1})^p. \tag{4.8}$$

When the mesh is uniform, the entropy reduces to $E_i(v) = h^2 - p(v_{i+1} - 2v_i + v_{i-1})^p$.

The discrete problem is the following: Seek $u_h \in X_h$ so that

$$J_h(u_h) = \min_{v_h \in X_h} J_h(v_h). \tag{4.9}$$

4.2. Definition of the algorithm. We start by defining the local residual

$$r_i(z, s) = h_i H(x_{i+\frac{1}{2}}, \frac{1}{2}(z + s), h_i^{-1}(s - z)), \quad \forall z, s \in \mathbb{R}. \tag{4.10}$$

Then we define the multi-valued nonlinear functions $t_{i,l}$, $i \in \{0, \ldots, n\}$, $l \in \{i, i+1\}$ so that $r_i(t_{i,l}(z)) = 0$ and $r_i(t_{i,l+1}(s), s) = 0$. Note that due to the possible nonlinear character of the Hamiltonian H, $t_{i,l}(z)$ and $t_{i,l+1}(z)$ are sets and that these sets may be empty.

The algorithm we propose to solve is composed of two phases: (i) initialization; (ii) minimization.

(i) The initialization proceeds from the boundary to the interior and on the way selects a guess of minimal entropy. The steps describing the initialization process are detailed in Algorithm 2.

(ii) The minimization is done locally and is based on Lemma 2.1. This stage reproduces what is done in Algorithm 1. The details are reported in Algorithm 3.

Due to the nonlinearity of the Hamiltonian, problem is no longer convex. The initialization process now becomes important in order to avoid being trapped in local minimums. Initialization can be done in many ways. For instance one could think of a hierarchical or adaptive algorithm that proceeds by successive refinements of the grid. Then the initialization could be done by projecting the coarse solution onto the new grid. Another possibility could be to roughly solve the problem using a more standard L^2-based approximation and to use this approximate solution as initialization. As an alternative, we propose a stand alone L^1-based technique in Algorithm 4.
Algorithm 2 L^1-initialization for (4.9).

1: Initialize v with some constant value; define $v_{-1} = v_{n+2} = 0$
2: Initialize array `visited(1:n) = false`
3: Put cell 0 in `current_cell` list; Put node 0 in `current_node` list
4: Put cell n in `current_cell` list; Put node $n+1$ in `current_node` list
5: while `current_cell` not empty do
6: Take i_0 from `current_cell` list; Take k_0 from `current_node` list
7: Let k be the other node of i_0
8: if (visited(k) = true) then
9: Store v and cell index $i_{\text{break}} \leftarrow i_0$; Stop
10: end if
11: $J_{\text{old}} \leftarrow |R_{i_0}(v)| + E_{k_0}(v) + E_k(v)$
12: Compute the set $t_{i_0,k_0}(v_{k_0})$
13: Remove cell i_0 from `current_cell` list; Remove node k_0 from `current_node` list
14: if (current_cell list empty) then
15: Breakdown; Problem is ill-posed; Stop
16: end if
17: if (set $t_{i_0,k_0}(v_{k_0})$ not empty) then
18: $\bar{v} \leftarrow v; \bar{v}_k \leftarrow t_{i_0,k_0}(v_{k_0})$
19: Pick $\tilde{v} \in \bar{v}$ with smallest entropy $E_{k_0}(\tilde{v}) + E_k(\tilde{v})$
20: $J_{\text{new}} \leftarrow |R_{i_0}(\tilde{v})| + E_{k_0}(\tilde{v}) + E_k(\tilde{v})$
21: if ($J_{\text{new}} \leq J_{\text{old}}$) then
22: $v \leftarrow \tilde{v}; \text{visited}(k) = \text{true}$; Let $i_1 \neq i_0$ be s.t. $i_1 \cap i_0 = \{k_0\}$
23: Put cell i_1 in `current_cell` list; Put node k in `current_node` list
24: end if
25: end if
26: end while

At the end of Algorithm 2 we have a field v that satisfies $r_i(v_i, v_{i+1}) = 0$ for all $i \in \{0, \ldots, n\}\setminus\{i_{\text{break}}\}$. The goal of Algorithm 3 is to move around the breakdown cell i_{break} by performing local L^1-minimization until the functional J_h cannot be further minimized.

As pointed out in [9], it is not really important to compute the exact minimizer of (4.9). Actually, in the terminology of [9], computing an almost minimizer is sufficient. An almost minimizer is any sequence $(v_h)_0 > 0$ for which there exists a constant $c > 0$, uniform in h, so that $J_h(v_h) \leq c h$. Almost minimizers are known to converge to the unique viscosity solution of (4.11), see [9]. At the moment we have no proof that Algorithm 2 + Algorithm 3 delivers the minimizer to (4.9), but we conjecture that it does produce almost minimizers.

4.3. Numerical results in the nonlinear case. Two examples of the use of Algorithms 2 and 3 are presented. The first example is the approximation of the eikonal equation which falls into the more general class of Hamilton-Jacobi equations. The second example features a Burgers-like steady-state equation. In both cases we insist on the definition of the entropy functional.

4.3.1. Steady Hamilton-Jacobi equations. We consider first the eikonal equation in one space dimension on the interval $\Omega = (0, 1)$:

$$|u'| = 1 \quad u(0) = 0, \quad u(1) = 0.$$ (4.11)
Algorithm 3 L^1-minimization for (4.9)

Start with initial guess from Algorithm 2: v and i_{break}

loop
 Let I_0 be list of the cells adjacent to i_{break}
 for all $(i_0 \in I_0)$ do
 Let k_0 be the node of i_0 that does not belong to i_{break}
 Let k be the node of $i_{\text{break}} \cap i_0$ and let k' the other node of i_{break}
 $J_{\text{old}} \leftarrow |R_{i_{\text{break}}}(v)| + E_{k_0}(v) + E_k(v) + E_{k'}(v)$
 Compute the set $t_{i_{\text{break}},k'}(v_k')$: nothing done ← true
 if (set $t_{i_{\text{break}},k'}(v_k')$ not empty) then
 $\tilde{v} \leftarrow v$; $\tilde{v}_k \leftarrow t_{i_{\text{break}},k'}(v_k')$
 $J_{\text{new}} \leftarrow |R_{k_0}(\tilde{v})| + E_{k_0}(\tilde{v}) + E_k(\tilde{v}) + E_{k'}(\tilde{v})$
 Pick $\hat{v} \in \tilde{v}$ with smallest functional (i.e., $\hat{v} = \text{argmin} J_{\text{new}}$)
 if $(J_{\text{new}}(\hat{v}) < J_{\text{old}})$ then
 $v \leftarrow \hat{v}$; $i_{\text{break}} \leftarrow i_0$; nothing done ← false; Exit loop on I_0
 end if
 end if
 end for
 if (nothing done=true) then
 Done: Stop
 end if
end loop

the unique viscosity solution is $u(x) = \frac{1}{2} - |x - \frac{1}{2}|$. We show in the left panel of Figure 4.1 the result obtained using Algorithm 2 + Algorithm 3 with 19 uniformly distributed cells. We see that the residual is zero in all cells but the middle one where the derivative of the solution is discontinuous. Actually, since the viscosity solution is piecewise linear, the approximation obtained with 19 uniform cells coincides with the exact solution on $[0, \frac{1}{2} - \frac{1}{38}] \cup \left[\frac{1}{2} + \frac{1}{38}, 1\right]$. Whether the mesh is uniform or not, Algorithm 2 + Algorithm 3 always gives the exact solution to (4.11) if there is a mesh interface at $\frac{1}{2}$.

We now consider the following problem introduced in Cockburn and Yenikaya [4].

$$\frac{1}{\pi^2}(u')^2 + u + |\cos(\pi x)| - \sin(\pi x)^2 = 0, \quad u(0) = -1, \quad u(1) = -1 \quad (4.12)$$
whose viscosity solution is \(u(x) = -|\cos(\pi x)| \). The results obtained using piecewise linear approximation on uniform grids are reported in Figure 4.2. The results for \(n + 1 = 9, 19, \) and 39 cells are shown in the left panel and those obtained with \(n + 1 = 10, 20, \) and 40 cells are shown in the right panel. In all cases the cells are uniformly distributed. The cell where the residual is not zero is clearly apparent when using a odd number of cells.

![Figure 4.2](image)

Figure 4.2. Solution to (4.12) using different resolutions. Left: \(n + 1 = 9, 19, 39 \); Right: \(n + 1 = 10, 20, 40 \).

Convergence tests for (4.12) are reported in Figure 4.3. The convergence order in the \(W^{1,1} \)-norm is 1 independently of the number of cells. The method is second-order in the \(L^1 \)-norm independently of the number of cells. We observe super-convergence in the maximum-norm when the number of cells is even. This is due to the fact that the breaking point of the graph of the solution coincides with a mesh interface when the mesh is uniform and the number of cells is even.

![Figure 4.3](image)

Figure 4.3. Solution to (4.12) using different resolutions. Left: \(n + 1 = 9, 19, 39 \); Right: \(n + 1 = 10, 20, 40 \).

In order to illustrate how the algorithm behaves with respect to the initialization process we now consider the following equation:

\[
\frac{1}{2}\pi |u'(x)| - |\cos(2\pi x)| = 0, \quad u(0) = 0, \quad u(1) = 0. \tag{4.13}
\]

This is a Hamilton-Jacobi equation with multiple semiconcave solutions. Its only
positive viscosity solution is given by

\[
u(x) = \begin{cases}
\sin(2\pi x) & 0 \leq x \leq \frac{1}{4}, \\
2 - \sin(2\pi x) & \frac{1}{4} \leq x \leq \frac{1}{2}, \\
2 + \sin(2\pi x) & \frac{1}{2} \leq x \leq \frac{3}{4}, \\
\sin(2\pi x) & \frac{3}{4} \leq x \leq 1.
\end{cases}
\] (4.14)

To test the robustness of the algorithm with respect to symmetry breaking, we modify Algorithm 2 so that the initialization process starts from cell 0 and moves inward until breakdown, then restarts from cell \(n + 1\) and moves inward until collision. Two tests are reported in Figure 4.4 using \(n + 1 = 100\) cells. In the first case we start the initialization process by setting \(v(i) = 2.5\) for all \(i \in \{1, \ldots, n\}\) and in the second case we start with \(v(i) = 4\) for all \(i \in \{1, \ldots, n\}\). The results obtained from Algorithm 2 are shown in the top left and top right panels of Figure 4.4. These two initialization fields are clearly different and are discontinuous; the discontinuity occurs in the breakdown cell. These two fields are then fed into Algorithm 3 which then produces the result shown in the bottom panel of Figure 4.4. This solution is independent of the initial data provided it is large enough. More precisely, systematic tests show that if we set \(v(i) = u_{\text{start}}\) for all \(i \in \{1, \ldots, n\}\) with \(u_{\text{start}} \geq 2 = \max_{0 \leq x \leq 1} u_{\text{visc}}(x)\), then Algorithm 3 always produces the viscosity solution.

The observations reported in this sections are being investigated theoretically and will be reported elsewhere.
4.3.2. Stationary Burgers equation. We finish with a simple but very challenging problem. Consider the stationary inviscid Burgers equation:

\[u + \frac{d}{dx} \left(\frac{u^2}{2} \right) = 0; \quad u(0) = -1, \quad u(1) = 1. \]

(4.15)

A similar example is considered in Lavery [13] to illustrate the capability of \(L^1 \)-based techniques to capture shocks. Two-dimensional versions of this problem are considered in Lavery [14] and Guermond [8]. This problem is ill-posed in many respects. To select a meaningful solution we (arbitrarily) introduce an entropy functional proportional to the total variation,

\[E_i(v) = h_{i-\frac{1}{2}}(v_i - v_{i-1})_+ + h_{i+\frac{1}{2}}(v_{i+1} - v_i)_+, \quad i \in \{1, \ldots, n\}, \]

(4.16)

with obvious modifications at \(i = 0 \) and \(i = n+1 \). We want to minimize the following functional:

\[J_h(v) = \sum_{i=0}^{n} h_{i+\frac{1}{2}}[\frac{1}{2}(v_i + v_{i+1}) + h_{i+\frac{1}{2}}(v_i - v_{i-1})] + \sum_{i=0}^{n+1} E_i(v). \]

(4.17)

The approximate minimizer obtained using Algorithm 2 + Algorithm 3 with \(n+1 = 100 \) cells is shown in the left panel of Figure 4.5. The solution exhibits a shock at \(x = \frac{1}{2} \). This result is consistent with those from [8, 13, 14].

Unfortunately, this solution is not the viscosity solution to (4.15). Actually, the algorithm performs exactly as it should, but the entropy (4.16) is not that which yields the viscosity solution. We have not yet figured out which entropy should be used to select the viscosity solution, but by analyzing the limit of the viscous-regularized problem, one infers that an approximation of the viscosity solution should look like what is shown in the right panel of Figure 4.5. In other words, the viscosity solution is

\[u_{\text{visc}}(x) = 0, \quad \forall x \in (0, 1). \]

(4.18)

It exhibits two boundary layers at both ends of the interval \([0, 1]\). Although (4.15) looks hyperbolic at first sight, \(u_{\text{visc}} \) is the result of an internal equilibrium that accounts for two boundary layers. As a result, \(u_{\text{visc}} \) cannot be obtained by solving initial value problems starting from the boundary of \(\Omega \). In some sense, this problem resembles more an elliptic problem than an hyperbolic one. In other word, even with the correct entropy, it is impossible to minimize \(J_h(v) \) in two sweeps involving only local operations. Any minimization technique for solving this problem should involve global exchange of information.

Figure 4.5. Stationary Burgers’ equation. (Left): \(L^1 \)-solution with entropy (4.16); (Right): Approximate viscosity solution, 100 cells.
5. Conclusion. We have given a simple proof of the fact that L^1-minimization selects the viscosity solution of the linear first-order PDE equipped with ill-posed boundary conditions. The new approach helped us to construct a $O(N)$ algorithm for computing global L^1-minimizers (or almost minimizers) using sequences of local l_1-minimizations. We have extended the algorithm to stationary Hamilton-Jacobi equations. In these cases an appropriate entropy must be added to the functional to ensure convergence to the viscosity solution. The functional to be minimized is then non-smooth and non-convex. Our numerical results show that the algorithm seems to be able to select the viscosity solution of Hamilton-Jacobi equations with convex Hamiltonians. Proving that this is indeed the case is a challenging exercise, which is the topic of ongoing research.

REFERENCES

