Quiz 3 (Notes, books, and calculators are not authorized)
Show all your work in the blank space you are given on the exam sheet. Always justify your answer. Answers with no justification will not be graded.

Question 1: Does any of the following expressions solve the Laplace equation inside the rectangle $0 \leq x \leq L, 0 \leq y \leq H$, with the following boundary conditions $\partial_{x} u(0, y)=$ $\frac{15 \pi}{H} \sin \left(\frac{5 \pi y}{H}\right) \cosh \left(\frac{5 \pi L}{H}\right), \partial_{x} u(L, y)=0, u(x, 0)=0, u(x, H)=0$? (justify clearly your answer):

$$
\begin{array}{ll}
u_{1}(x, y)=3 \cos \left(\frac{5 \pi y}{H}\right) \cosh \left(\frac{5 \pi(x-L)}{H}\right), & u_{2}(x, y)=3 \sin \left(\frac{5 \pi y}{H}\right) \cosh \left(\frac{5 \pi(x-L)}{H}\right) \\
u_{3}(x, y)=3 \cos \left(\frac{5 \pi y}{H}\right) \sinh \left(\frac{5 \pi(x-L)}{H}\right), & u_{4}(x, y)=3 \sin \left(\frac{5 \pi y}{H}\right) \sinh \left(\frac{5 \pi(x-L)}{H}\right)
\end{array}
$$

From class, we know that all the above expressions solve the Laplace equation, hence we just need to verify the boundary conditions. We observe that u_{1} and u_{3} do not satisfy the Dirichlet boundary conditions $u(x, 0)=0, u(x, H)=0$; therefore u_{1} and u_{3} must be discarded.

Both u_{2} and u_{4} satify that Dirichlet conditions: $u_{2}(x, 0)=0, u_{2}(x, H)=0$, and $u_{4}(x, 0)=0$, $u_{4}(x, H)=0$. Now we need to check the Neumann conditions.
Note that u_{4} is such that $\partial_{x} u_{4}(L, y)=3 \frac{5 \pi}{H} \sin \left(\frac{5 \pi y}{H}\right) \cosh (0) \neq 0$; a result u_{4} must be discarded as well.
Finally u_{2} is such that $\partial_{x} u_{2}(L, y)=3 \frac{5 \pi}{H} \sin \left(\frac{5 \pi y}{H}\right) \sinh (0)=0$, but $\partial_{x} u_{2}(0, y)=3 \frac{5 \pi}{H} \sin \left(\frac{5 \pi y}{H}\right) \sinh \left(-\frac{5 \pi L}{H}\right)$, which shows that u_{2} is not the solution to our problem either.

In conclusion, none of the proposed solutions solve the problem. The correction solution is

$$
u(x, y)=3 \frac{\cosh \left(\frac{5 \pi L}{H}\right)}{\sinh \left(\frac{-5 \pi L}{H}\right)} \sin \left(\frac{5 \pi y}{H}\right) \cosh \left(\frac{5 \pi(x-L)}{H}\right)
$$

Question 2: The solution of the equation, $\frac{1}{r} \partial_{r}\left(r \partial_{r} u\right)+\frac{1}{r^{2}} \partial_{\theta \theta} u=0$, inside the domain $D=\{\theta \in$ $[0, \pi], r \in[0,2]\}$, subject to the boundary conditions $u(r, 0)=0, u(r, \pi)=0, u(2, \theta)=g(\theta)$ is $u(r, \theta)=\sum_{n=1}^{\infty} b_{n} r^{n} \sin (n \theta)$. What is the solution corresponding to $g(\theta)=5 \sin (2 \theta)+2 \sin (5 \theta)$? (Give all the details.)
The only non-zero terms in the expansion are $a_{2} r^{2} \sin (2 \theta)+b_{5} r^{5} \sin (5 \theta)$. The boundary condition $u(2, \theta)=5 \sin (2 \theta)+2 \sin (5 \theta)=a_{2} 2^{2} \sin (2 \theta)+a_{5} 2^{5} \sin (5 \theta)$ is satisfied if $a_{2}=5 /\left(2^{2}\right)$ and $b_{5}=$ $2 /\left(2^{5}\right)$, i.e.,

$$
u(r, \theta)=5 \frac{r^{2}}{2^{2}} \sin (2 \theta)+2 \frac{r^{5}}{2^{5}} \sin (5 \theta)
$$

Question 3: Consider the square $D=(-1,+1) \times(-1,+1)$. Let $f(x, y)=x^{2}-y^{2}-3$. Let $u \in \mathcal{C}^{2}(D) \cap \mathcal{C}^{0}(\bar{D})$ solve $-\Delta u=0$ in D and $\left.u\right|_{\partial D}=f$. Compute $\min _{(x, y) \in \bar{D}} u(x, y)$ and $\max _{(x, y) \in \bar{D}} u(x, y)$.
We use the maximum principle (u is harmonic and has the required regularity). Then

$$
\min _{(x, y) \in \bar{D}} u(x, y)=\min _{(x, y) \in \partial D} f(x, y), \quad \text { and } \max _{(x, y) \in \bar{D}} u(x, y)=\max _{(x, y) \in \partial D} f(x, y)
$$

A point (x, y) is at the boundary of D if and only if $x^{2}=1$ and $y \in(-1,1)$ or $y^{2}=1$ and $x \in(-1,1)$. In the first case, $x^{2}=1$ and $y \in(-1,1)$, we have

$$
f(x, y)=1-y^{2}-3, \quad y \in(-1,1)
$$

The maximum is -2 and the minimum is -3 . In the second case, $y^{2}=1$ and $x \in(-1,1)$, we have

$$
f(x, y)=x^{2}-1-3, \quad x \in(-1,1) .
$$

The maximum is -3 and the minimum is -4 . We finally can conclude

$$
\min _{(x, y) \in \partial D} f(x, y)=\min _{-1 \leq x \leq 1} x^{2}-4,=-4, \quad \max _{(x, y) \in \partial D} f(x, y)=\max _{-1 \leq y \leq 1}-2-y^{2}=-2
$$

In conclusion

$$
\min _{(x, y) \in \bar{D}} u(x, y)=-4, \quad \max _{(x, y) \in \bar{D}} u(x, y)=-2
$$

