Quiz 3 (Notes, books, and calculators are not authorized)
Show all your work in the blank space you are given on the exam sheet. Always justify your answer. Answers with no justification will not be graded.
Question 1: Does any of the following expressions solve the Laplace equation inside the rectangle $0 \leq x \leq L$, $0 \leq y \leq H$, with the following boundary conditions $u(0, y)=0, u(L, y)=3 \sinh \left(\frac{5 \pi L}{H}\right) \sin \left(\frac{5 \pi y}{H}\right), u(x, 0)=0$, $u(x, H)=0$? (justify clearly your answer):

$$
\begin{aligned}
& u_{1}(x, y)=3 \cos \left(\frac{5 \pi y}{H}\right) \cosh \left(\frac{5 \pi(x-L)}{H}\right), \quad u_{2}(x, y)=3 \sin \left(\frac{5 \pi y}{H}\right) \cosh \left(\frac{5 \pi(x-L)}{H}\right), \\
& u_{3}(x, y)=3 \cos \left(\frac{5 \pi y}{H}\right) \sinh \left(\frac{5 \pi x}{H}\right), \quad u_{4}(x, y)=3 \sin \left(\frac{5 \pi y}{H}\right) \sinh \left(\frac{5 \pi x}{H}\right)
\end{aligned}
$$

From class, we know that all the above expressions solve the Laplace equation, hence we just need to verify that the boundary conditions are met. We observe that u_{1} and u_{3} do not satisfy the Dirichlet boundary conditions $u(x, 0)=0$, $u(x, H)=0$; therefore u_{1} and u_{3} must be discarded.

Both u_{2} and u_{4} satisfy that Dirichlet conditions: $u_{2}(x, 0)=0, u_{2}(x, H)=0$, and $u_{4}(x, 0)=0, u_{4}(x, H)=0$. Now we need to check the Neumann conditions.
Note that u_{2} is such that $u_{2}(0, y)=3 \sin \left(\frac{5 \pi y}{H}\right) \cosh \left(\frac{5 \pi(-L)}{H}\right) \neq 0$, which shows that u_{2} is not the solution to our problem either.
Finally $u_{4}(0, y)=3 \sin \left(\frac{5 \pi y}{H}\right) \sinh (0)=0$ and $u_{4}(L, y)=3 \sin \left(\frac{5 \pi y}{H}\right) \sinh \left(\frac{5 \pi L}{H}\right)$; a result u_{4} is the solution.
Question 2: The solution of the equation, $\frac{1}{r} \partial_{r}\left(r \partial_{r} u\right)+\frac{1}{r^{2}} \partial_{\theta \theta} u=0$, inside the domain $D=\left\{\theta \in\left[0, \frac{\pi}{2}\right], r \in[0,2]\right\}$, subject to the boundary conditions $\partial_{\theta} u(r, 0)=0, u\left(r, \frac{\pi}{2}\right)=0, u(2, \theta)=g(\theta)$ is $u(r, \theta)=\sum_{n=0}^{\infty} a_{2 n+1} r^{(2 n+1)} \cos ((2 n+$ 1) θ). What is the solution corresponding to $g(\theta)=5 \cos (3 \theta)+2 \cos (5 \theta)$? (Give all the details.)

The only non-zero terms in the expansion are $a_{3} r^{3} \cos (3 \theta)+a_{5} r^{5} \cos (5 \theta)$. The boundary condition $u(2, \theta)=5 \cos (3 \theta)+$ $2 \cos (5 \theta)=a_{3} 2^{3} \cos (3 \theta)+a_{5} 2^{5} \cos (5 \theta)$ is satisfied if $a_{3}=5 /\left(2^{3}\right)$ and $a_{5}=2 /\left(2^{5}\right)$, i.e.,

$$
u(r, \theta)=5 \frac{r^{3}}{2^{3}} \cos (3 \theta)+2 \frac{r^{5}}{2^{5}} \cos (5 \theta)
$$

Question 3: Consider the triangular domain $D=\{(x, y) ; x \geq 0, y \geq 0,1-x-y \leq 0\}$. Let $f(x, y)=x^{2}-y^{2}-3$. Let $u \in \mathcal{C}^{2}(D) \cap \mathcal{C}^{0}(\bar{D})$ solve $-\Delta u=0$ in D and $\left.u\right|_{\partial D}=f$. Compute $\min _{(x, y) \in \bar{D}} u(x, y)$ and $\max _{(x, y) \in \bar{D}} u(x, y)$.
We use the maximum principle (u is harmonic and has the required regularity). Then

$$
\min _{(x, y) \in \bar{D}} u(x, y)=\min _{(x, y) \in \partial D} f(x, y), \quad \text { and } \max _{(x, y) \in \bar{D}} u(x, y)=\max _{(x, y) \in \partial D} f(x, y)
$$

A point (x, y) is at the boundary of D if and only if $\{x=0$ and $y \in[0,1]\}$ or $\{y=0$ and $x \in[0,1]\}$, or $\{1-y-x=0$ and $x \in[0,1]\}$.
(i) In the first case, $x=0$ and $y \in[0,1]$, we have

$$
f(x, y)=-y^{2}-3, \quad y \in[0,1]
$$

The maximum is -3 and the minimum is -4 .
(ii) In the second case, $y=0$ and $x \in[0,1]$, we have

$$
f(x, y)=x^{2}-3, \quad x \in[0,1] .
$$

The maximum is -2 and the minimum is -3 .
(iii) In the third case, $1-x=y$ and $x \in[0,1]$, we have

$$
f(x, y)=x^{2}-(1-x)^{2}-3=2 x-4, \quad x \in[0,1]
$$

The maximum is -2 and the minimum is -4 .
We finally can conclude

$$
\min _{(x, y) \in \partial D} f(x, y)=-4, \quad \max _{(x, y) \in \partial D} f(x, y)=-2
$$

In conclusion

$$
\min _{(x, y) \in \bar{D}} u(x, y)=-4, \quad \max _{(x, y) \in \bar{D}} u(x, y)=-2
$$

Question 4: Let Ω be an open connected set in \mathbb{R}^{2}. Let u be a real-valued nonconstant function continuous on $\bar{\Omega}$ and harmonic on Ω and of class \mathcal{C}^{2} in Ω. Assume that there exists x_{0} in Ω such $\nabla u\left(x_{0}\right)=0$. Is the point x_{0} a minimum, a maximum, or a saddle point? (explain)

The keyword here is that Ω is open, meaning that the points at the boundary of Ω are not in Ω (it is not possible to punch a hole around the boundary points). The point x_{0} is in Ω, that is x_{0} is not at the boundary. Since u is continuous on $\bar{\Omega}$, harmonic on Ω and of class \mathcal{C}^{2} in Ω, the maximum principle can be applied. The Maximum principle implies that u cannot have either a minimum or a maximum at x_{0}. This means that x_{0} is a saddle point.

