Quiz 4 (Notes, books, and calculators are not authorized)
Show all your work in the blank space you are given on the exam sheet. Always justify your answer. Answers with no justification will not be graded.

Question 1: Consider $f:[-L, L] \longrightarrow \mathbb{R}, f(x)=x^{4}$. (a) Sketch the graph of the Fourier series of f and the grah of f.
$F S(f)$ is equal to the periodic extension of $f(x)$ over \mathbb{R}.

(b) For which values of $x \in \mathbb{R}$ is $F S(f)$ equal to x^{4} ? (Explain)

The periodic extension of $f(x)=x^{4}$ over \mathbb{R} is piecewise smooth and globally continuous since $f(L)=f(-L)$. This means that the Fourier series is equal to x^{4} over the entire interval $[-L,+L]$.
(c) Is it possible to obtain $F S\left(x^{3}\right)$ by differentiating $\frac{1}{4} F S\left(x^{4}\right)$ term by term? For which values is this legitimate? (Explain)

Yes it is possible since the periodic extension of $f(x)=x^{4}$ over \mathbb{R} is continuous and piecewise smooth. This operation is legitimate everywhere the function $F S\left(x^{3}\right)$ is smooth, i.e., for all the points in $\mathbb{R} \backslash\{2 k-1, k \in \mathbb{Z}\}$ (i.e., one needs to exclude the points $\ldots,-7,-5,-3,-1,+1,+3,+5+$ 7,...

Question 2: Let L be a positive real number. Let $\mathbb{P}_{1}=\operatorname{span}\{1, \cos (\pi t / L), \sin (\pi t / L)\}$ and consider the norm $\|f\|_{L^{2}}:=\left(\int_{-L}^{L} f(t)^{2} \mathrm{~d} t\right)^{\frac{1}{2}}$. (a) Compute the best approximation of $h(t)=$ $\underline{2 \cos (\pi t / L)+7 \sin (3 \pi t / L) \text { in } \mathbb{P}_{1} .}$
The function $h(t)-2 \cos (\pi t / L)=7 \sin (3 \pi t / L)$ is orthogonal to all the members of \mathbb{P}_{1} since the functions $\cos (m \pi t / L)$ and $\sin (m \pi t / L)$ are orthogonal to both $\cos (n \pi t / L)$ and $\sin (n \pi t / L)$ for all $m \neq m$; as a result, the best approximation of h in \mathbb{P}_{1} is $2 \cos (\pi t / L)$. (Recall that the best approximation of h in \mathbb{P}_{1} is such that $\int_{-L}^{L}\left(h(t)-F S_{1}(h)\right) p(t) \mathrm{d} t=0$ for all $p \in \mathbb{P}_{1}$.) In conclusion

$$
F S_{1}(h)=2 \cos (\pi t / L)
$$

(b) Compute the best approximation of $2-3 t$ in \mathbb{P}_{1} with respect to the above norm. (Hint: $\int_{-L}^{L} t \sin (\pi t / L) \mathrm{d} t=2 L^{2} / \pi$.)
We know from class that the truncated Fourier series

$$
F S_{1}(t)=a_{0}+a_{1} \cos (\pi t / L)+b_{1} \sin (\pi t / L)
$$

is the best approximation. Now we compute a_{0}, a_{1}, a_{2}

$$
\begin{aligned}
& a_{0}=\frac{1}{2 L} \int_{-L}^{L}(2-3 t) \mathrm{d} t=2, \\
& a_{1}=\frac{1}{L} \int_{-L}^{L}(2-3 t) \cos (\pi t / L) \mathrm{d} t=0 \\
& b_{1}=\frac{1}{L} \int_{-L}^{L}(2-3 t) \sin (\pi t / L) \mathrm{d} t=\frac{1}{L} \int_{-L}^{L}-3 t \sin (\pi t / L) \mathrm{d} t=-6 \frac{L}{\pi}=-\frac{6 L}{\pi} .
\end{aligned}
$$

As a result

$$
F S_{1}(t)=2-\frac{6 L}{\pi} \sin (\pi t / L)
$$

