Quiz 4 (Notes, books, and calculators are not authorized)
Show all your work in the blank space you are given on the exam sheet. Always justify your answer. Answers with no justification will not be graded.
Question 1: Let N be a positive integer and let \mathbb{P}_{N} be the set of trigonometric polynomials of degree at most N; that is, $\mathbb{P}_{N}=\operatorname{span}\{1, \cos (x), \sin (x), \ldots, \cos (N x), \sin (N x)\}$. Consider the function $f:[-\pi, \pi] \longrightarrow \mathbb{R}$ defined by $f(x)=\sum_{n=0}^{9} \frac{9}{n^{3}+9} \sin (9 n) \cos (4 n x)$. (a) Compute the Fourier series of f.
The Fourier series of f is of the following form

$$
F S(f)(x)=\sum_{m=0}^{\infty} a_{n} \cos \left(m \pi \frac{x}{\pi}\right)+\sum_{m=1}^{\infty} b_{m} \sin \left(m \pi \frac{x}{\pi}\right)=\sum_{n=0}^{\infty} a_{m} \cos (m x)+\sum_{n=1}^{\infty} b_{m} \sin (m x)
$$

with

$$
a_{0}=\frac{1}{2 L} \int_{-L}^{L} f(x) \mathrm{d} x, \quad a_{m}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(m \pi \frac{x}{L}\right) \mathrm{d} x, \quad b_{m}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(m \pi \frac{x}{L}\right) \mathrm{d} x .
$$

The orthogonality properties of the cosine and sine families implies that

$$
\begin{aligned}
a_{4 n} & =\frac{9}{n^{3}+9} \sin (9 n), \quad \text { and } \quad a_{4 n+1}=a_{4 n+2}=a_{4 n+3}=0, \quad 0 \leq n \leq 9 \\
a_{n} & =0, \quad \forall n \geq 37 \\
b_{n} & =0, \quad \forall n \geq 1
\end{aligned}
$$

In conclusion

$$
F S(f)(x)=\sum_{n=0}^{9} \frac{9}{n^{3}+9} \sin (9 n) \cos (4 n x)
$$

Compute the best L^{2}-approximation of f in \mathbb{P}_{33} over $(-\pi, \pi)$.
We know from class that the best L^{2}-approximation of f in \mathbb{P}_{33} over $(-\pi, \pi)$ is the truncated Fourier series $F S_{33}(f)$:

$$
F S_{33}(f)=\sum_{n=0}^{8} \frac{9}{n^{3}+9} \sin (9 n) \cos (4 n x)
$$

Question 2: Consider $f:[-L, L] \longrightarrow \mathbb{R}, f(x)=|x| \sin \left(\pi \frac{x}{L}\right)$. (a) Sketch the graph of f and the graph of the Fourier series of f.
$F S(f)$ is equal to the periodic extension of $f(x)$ over \mathbb{R} including the points $k L, k \in \mathbb{Z}$ since $f(-)=f(+L)$.

(b) For which values of $x \in \mathbb{R}$ is $F S(f)$ equal to $|x| \sin \left(\pi \frac{x}{L}\right)$? (Explain)

The periodic extension of $f(x)=|x| \sin \left(\pi \frac{x}{L}\right)$ over \mathbb{R} is smooth over each interval $[(2 k-1) L,(2 k+1) L], k \in \mathbb{Z}$ and is continuous at all the points $(2 k+1) L, k \in \mathbb{Z}$. This means that the Fourier series is equal to the periodic extension of f over the entire real line and equal to $f(x)=|x| \sin \left(\pi \frac{x}{L}\right)$ over $[-L,+L]$. Note that f and the periodic extension of f are two different objects. f is defined over $[-L,+L]$ whereas the periodic extension of f is defined over \mathbb{R}.
(c) What is the derivative of $f(x)=|x| \sin \left(\pi \frac{x}{L}\right)$?

If $x \geq 0$ then

$$
f^{\prime}(x)=\sin \left(\pi \frac{x}{L}\right)+x \frac{\pi}{L} \cos \left(\pi \frac{x}{L}\right)=\sin \left(\pi \frac{|x|}{L}\right)+|x| \frac{\pi}{L} \cos \left(\pi \frac{x}{L}\right)
$$

If $x \leq 0$ then

$$
f^{\prime}(x)=-\sin \left(\pi \frac{x}{L}\right)-x \frac{\pi}{L} \cos \left(\pi \frac{x}{L}\right)=\sin \left(\pi \frac{|x|}{L}\right)+|x| \frac{\pi}{L} \cos \left(\pi \frac{x}{L}\right)
$$

(c) Is it possible to obtain $F S\left(f^{\prime}\right)(x)$ by differentiating $F S(f)(x)$ term by term? (Explain)

Yes, it is possible for every $x \in \mathbb{R}$ since the Fourier series of f and f^{\prime} are continuous.
Question 3: Let $f:[0,2 \pi] \longrightarrow \mathbb{R}$ be defined by $f(x)=1+\cos (x)$. (a)Draw the graph of f, the graph of the cosine series of f and the graph of the sine series of f.
Here are the graph of f, the graph of the cosine series of f and the graph of the sine series of f (with $L=2 \pi$).

(b) Let $g:[-2 \pi, 2 \pi] \longrightarrow \mathbb{R}$ be defined by $g(x)=1+\cos (x)$. Is the Fourier series of g equal to the sum of the cosine and sine series of f. Give all the details (a correct picture would be enough).
No. The sine series of f over the interval $[-2 \pi, 0]$ is equal to the odd extension of $f(x)=1+\cos (x)$. The odd extension in question is $f_{\text {odd }}(x)=-1-\cos (x)$ when $x \in[-2 \pi, 0]$. The cosine series of f over the interval $[-2 \pi, 0]$ is equal to the even extension of $f(x)=1+\cos (x)$. The even extension in question is $f_{\text {even }}(x)=1+\cos (x)$ when $x \in[-2 \pi, 0]$. In conclusion the sum of the cosine and sine series of f is equal to 0 over the interval $[-2 \pi, 0]$, which is obviously different from $g(x)=F S(g)(x)=1+\cos (x)$.
Here are the graphs of g, the graphs of $F S(g)$ and the graph of the sum of the cosine and sine series of f (with $L=2 \pi$).

