name:

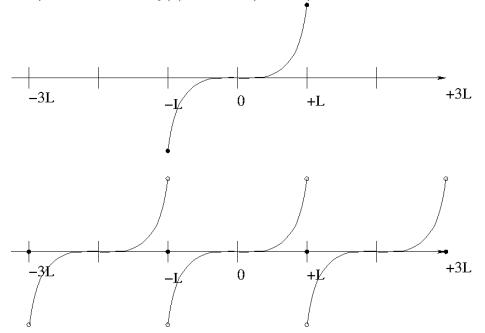
Quiz 4 (Notes, books, and calculators are not authorized)

Show all your work in the blank space you are given on the exam sheet. Always justify your answer. Answers with **no justification will not be graded**.

Question 1:

Question 2: Consider $f : [-L, L] \longrightarrow \mathbb{R}$, f(x) = |x|x. (a) Sketch the graph of the Fourier series of f and the graph of f.

FS(f) is equal to the periodic extension of f(x) over \mathbb{R} except at the points $kL, k \in \mathbb{Z}$.



(b) For which values of $x \in \mathbb{R}$ is FS(f) equal to x|x|? (Explain)

The periodic extension of f(x) = x|x| over \mathbb{R} is smooth over each interval [(2k-1)L, (2k+1)L], $k \in \mathbb{Z}$, but discontinuous at all the points (2k+1)L, $k \in \mathbb{Z}$. This means that the Fourier series is equal to x|x| over (-L, +L), (recall that f(x) = |x|x| is defined only over [-L, L]) and equal to the periodic extension of x|x| over each interval ((2k-1)L, (2k+1)L), $k \in \mathbb{Z}$. Since f(-L) + f(+L) = 0, the Fourier series is equal to 0 at all the points (2k+1)L], $k \in \mathbb{Z}$.

(c) Is it possible to obtain FS(2|x|) by differentiating FS(|x|x) term by term? (Explain)

No, it is not legitimate since the Fourier series is discontinuous. The result would be wrong.

Question 3: Let *L* be a positive real number. Let $\mathbb{P}_1 = \operatorname{span}\{1, \cos(\pi t/L), \sin(\pi t/L)\}$ and consider the norm $\|f\|_{L^2} := \left(\int_{-L}^{L} f(t)^2 dt\right)^{\frac{1}{2}}$. (a) Compute the best approximation of $h(t) = 3 + \pi \cos(\pi t/L) + 3\sin(7\pi t/L)$ in \mathbb{P}_1 .

The function $h(t)-3-\pi\cos(\pi t/L) = 3\sin(7\pi t/L)$ is orthogonal to all the members of \mathbb{P}_1 since the functions $\cos(m\pi t/L)$ and $\sin(m\pi t/L)$ are orthogonal to both $\cos(n\pi t/L)$ and $\sin(n\pi t/L)$ for all $m \neq m$; as a result, the best approximation of h in \mathbb{P}_1 is $3+\pi\cos(\pi t/L)$. (Recall that the best approximation of h in \mathbb{P}_1 is such that $\int_{-L}^{L} (h(t) - FS_1(h))p(t)dt = 0$ for all $p \in \mathbb{P}_1$.) In conclusion

$$FS_1(h) = 3 + \pi \cos(\pi t/L).$$

(b) Compute the best approximation of $2 - 3t^2$ in \mathbb{P}_1 with respect to the above norm. (Hint: $\int t^2 \cos(t) dt = 2t \cos(t) + (t^2 - 2) \sin(t)$.)

We know from class that the truncated Fourier series

 $FS_1(t) = a_0 + a_1 \cos(\pi t/L) + b_1 \sin(\pi t/L)$

is the best approximation. Now we compute a_0 , a_1 , a_2

$$a_{0} = \frac{1}{2L} \int_{-L}^{L} (2 - 3t^{2}) dt = 2 - \frac{2L^{3}}{2L} = 2 - L^{2},$$

$$a_{1} = \frac{1}{L} \int_{-L}^{L} (2 - 3t^{2}) \cos(\pi t/L) dt = -\frac{3}{L} \frac{L^{3}}{\pi^{3}} \int_{-\pi}^{\pi} t^{2} \cos(t) dt = -\frac{3}{L} \frac{L^{3}}{\pi^{3}} (-4\pi) = 12 \frac{L^{2}}{\pi^{2}}$$

$$b_{1} = \frac{1}{L} \int_{-L}^{L} (2 - 3t^{2}) \sin(\pi t/L) dt = 0.$$

As a result

$$FS_1(t) = 2 - L^2 + \frac{12L^2}{\pi^2} \cos(\pi t/L)$$