Quiz 4 (Notes, books, and calculators are not authorized)
Show all your work in the blank space you are given on the exam sheet. Always justify your answer. Answers with no justification will not be graded.

Question 1:

Question 2: Consider $f:[-L, L] \longrightarrow \mathbb{R}, f(x)=|x| x$. (a) Sketch the graph of the Fourier series of f and the graph of f.
$F S(f)$ is equal to the periodic extension of $f(x)$ over \mathbb{R} except at the points $k L, k \in \mathbb{Z}$.

(b) For which values of $x \in \mathbb{R}$ is $F S(f)$ equal to $x|x|$? (Explain)

The periodic extension of $f(x)=x|x|$ over \mathbb{R} is smooth over each interval $[(2 k-1) L,(2 k+1) L], k \in \mathbb{Z}$, but discontinuous at all the points $(2 k+1) L, k \in \mathbb{Z}$. This means that the Fourier series is equal to $x|x|$ over $(-L,+L)$, (recall that $f(x)=|x| x$ is defined only over $[-L, L]$) and equal to the periodic extension of $x|x|$ over each interval $((2 k-1) L,(2 k+1) L), k \in \mathbb{Z}$. Since $f(-L)+f(+L)=0$, the Fourier series is equal to 0 at all the points $(2 k+1) L]$, $k \in \mathbb{Z}$.
(c) Is it possible to obtain $F S(2|x|)$ by differentiating $F S(|x| x)$ term by term? (Explain)

No, it is not legitimate since the Fourier series is discontinuous. The result would be wrong.

Question 3: Let L be a positive real number. Let $\mathbb{P}_{1}=\operatorname{span}\{1, \cos (\pi t / L), \sin (\pi t / L)\}$ and consider the norm $\|f\|_{L^{2}}:=\left(\int_{-L}^{L} f(t)^{2} \mathrm{~d} t\right)^{\frac{1}{2}}$. (a) Compute the best approximation of $h(t)=3+\pi \cos (\pi t / L)+3 \sin (7 \pi t / L)$ in \mathbb{P}_{1}.
The function $h(t)-3-\pi \cos (\pi t / L)=3 \sin (7 \pi t / L)$ is orthogonal to all the members of \mathbb{P}_{1} since the functions $\cos (m \pi t / L)$ and $\sin (m \pi t / L)$ are orthogonal to both $\cos (n \pi t / L)$ and $\sin (n \pi t / L)$ for all $m \neq m$; as a result, the best approximation of h in \mathbb{P}_{1} is $3+\pi \cos (\pi t / L)$. (Recall that the best approximation of h in \mathbb{P}_{1} is such that $\int_{-L}^{L}\left(h(t)-F S_{1}(h)\right) p(t) \mathrm{d} t=0$ for all $p \in \mathbb{P}_{1 .}$.) In conclusion

$$
F S_{1}(h)=3+\pi \cos (\pi t / L)
$$

(b) Compute the best approximation of $2-3 t^{2}$ in \mathbb{P}_{1} with respect to the above norm. (Hint: $\int t^{2} \cos (t) \mathrm{d} t=$ $\underline{\left.2 t \cos (t)+\left(t^{2}-2\right) \sin (t) .\right)}$
We know from class that the truncated Fourier series

$$
F S_{1}(t)=a_{0}+a_{1} \cos (\pi t / L)+b_{1} \sin (\pi t / L)
$$

is the best approximation. Now we compute a_{0}, a_{1}, a_{2}

$$
\begin{aligned}
& a_{0}=\frac{1}{2 L} \int_{-L}^{L}\left(2-3 t^{2}\right) \mathrm{d} t=2-\frac{2 L^{3}}{2 L}=2-L^{2} \\
& a_{1}=\frac{1}{L} \int_{-L}^{L}\left(2-3 t^{2}\right) \cos (\pi t / L) \mathrm{d} t=-\frac{3}{L} \frac{L^{3}}{\pi^{3}} \int_{-\pi}^{\pi} t^{2} \cos (t) \mathrm{d} t=-\frac{3}{L} \frac{L^{3}}{\pi^{3}}(-4 \pi)=12 \frac{L^{2}}{\pi^{2}} \\
& b_{1}=\frac{1}{L} \int_{-L}^{L}\left(2-3 t^{2}\right) \sin (\pi t / L) \mathrm{d} t=0
\end{aligned}
$$

As a result

$$
F S_{1}(t)=2-L^{2}+\frac{12 L^{2}}{\pi^{2}} \cos (\pi t / L)
$$

