Quiz 5 (Notes, books, and calculators are not authorized)
Show all your work in the blank space you are given on the exam sheet. Always justify your answer. Answers with $\underline{\text { no justification will not be graded. Here are some formulae that you may want to use: }}$

$$
\begin{align*}
& \mathcal{F}(f)(\omega) \stackrel{\text { def }}{=} \frac{1}{2 \pi} \int_{-\infty}^{+\infty} f(x) e^{i \omega x} \mathrm{~d} x, \quad \mathcal{F}^{-1}(f)(x)=\int_{-\infty}^{+\infty} f(\omega) e^{-i \omega x} d \omega, \tag{1}\\
& \mathcal{F}\left(S_{\lambda}(x)\right)=\frac{1}{\pi} \frac{\sin (\lambda \omega)}{\omega}, \quad \text { where } \quad S_{\lambda}(x)=\left\{\begin{array}{ll}
1 & \text { if }|x| \leq \lambda \\
0 & \text { otherwise } .
\end{array} \quad \sqrt{\frac{\pi}{\alpha}} \mathcal{F}\left(e^{-\frac{x^{2}}{4 \alpha}}\right)=e^{-\alpha \omega^{2}} .\right. \tag{2}
\end{align*}
$$

Question 1: Solve the following integral equation (Hint: $\left.x^{2}-3 x a+2 a^{2}=(x-a)(x-2 a)\right)$:

$$
\int_{-\infty}^{+\infty} f(y) f(x-y) \mathrm{d} y-3 \sqrt{2} \int_{-\infty}^{+\infty} e^{-\frac{y^{2}}{2 \pi}} f(x-y) \mathrm{d} y=-4 \pi e^{-\frac{x^{2}}{4 \pi}} . \quad \forall x \in \mathbb{R}
$$

This equation can be re-written using the convolution operator:

$$
f * f-3 \sqrt{2} e^{-\frac{x^{2}}{2 \pi}} * f=-4 \pi e^{-\frac{x^{2}}{4 \pi}}
$$

We take the Fourier transform and use (2) to obtain

$$
\begin{aligned}
2 \pi \mathcal{F}(f)^{2}-2 \pi 3 \sqrt{2} \mathcal{F}(f) \frac{1}{\sqrt{4 \pi \frac{1}{2 \pi}}} e^{-\omega^{2} \frac{1}{4 \frac{1}{2 \pi}}} & =-4 \pi \frac{1}{\sqrt{4 \pi \frac{1}{4 \pi}}} e^{-\omega^{2} \frac{1}{4 \frac{1}{4 \pi}}} \\
\mathcal{F}(f)^{2}-3 \mathcal{F}(f) e^{-\omega^{2} \frac{\pi}{2}}+2 e^{-\omega^{2} \pi} & =0 \\
\left(\mathcal{F}(f)-e^{-\omega^{2} \frac{\pi}{2}}\right)\left(\mathcal{F}(f)-2 e^{-\omega^{2} \frac{\pi}{2}}\right) & =0
\end{aligned}
$$

This implies

$$
\text { either } \mathcal{F}(f)=e^{-\omega^{2} \frac{\pi}{2}}, \quad \text { or } \quad \mathcal{F}(f)=2 e^{-\omega^{2} \frac{\pi}{2}}
$$

Taking the inverse Fourier transform, we obtain

$$
\text { either } \quad f(x)=\sqrt{2} e^{-\frac{x^{2}}{2 \pi}}, \quad \text { or } \quad f(x)=2 \sqrt{2} e^{-\frac{x^{2}}{2 \pi}}
$$

Question 2: (i) Let f be an integrable function on $(-\infty,+\infty)$. Prove that for all $a, b \in \mathbb{R}$, and for all $\xi \in \mathbb{R}$, $\underline{\mathcal{F}}\left(\left[e^{i b x} f(a x)\right]\right)(\xi)=\frac{1}{a} \mathcal{F}(f)\left(\frac{\xi+b}{a}\right)$.
The definition of the Fourier transform together with the change of variable $a x \longmapsto x^{\prime}$ implies

$$
\begin{aligned}
\left.\mathcal{F}\left[e^{i b x} f(a x)\right]\right)(\xi) & =\frac{1}{2 \pi} \int_{-\infty}^{+\infty} f(a x) e^{i b x} e^{i \xi x} d x \\
& =\frac{1}{2 \pi} \int_{-\infty}^{+\infty} f(a x) e^{i(b+\xi) x} d x \\
& =\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \frac{1}{a} f\left(x^{\prime}\right) e^{i \frac{(\xi+b)}{a} x^{\prime}} d x^{\prime} \\
& =\frac{1}{a} \mathcal{F}(f)\left(\frac{\xi+b}{a}\right)
\end{aligned}
$$

Question 3: Consider the telegraph equation $\partial_{t t} u+2 \alpha \partial_{t} u+\alpha^{2} u-c^{2} \partial_{x x} u=0$ with $\alpha \geq 0, u(x, 0)=0, \partial_{t} u(x, 0)=$ $g(x), x \in \mathbb{R}, t>0$ and boundary condition at infinity $u(\pm \infty, t)=0$. Solve the equation by the Fourier transform technique. (Hint: the solution to the $\operatorname{ODE} \phi^{\prime \prime}(t)+2 \alpha \phi^{\prime}(t)+\left(\alpha^{2}+\lambda^{2}\right) \phi(t)=0$ is $\phi(t)=\mathrm{e}^{-\alpha t}(a \cos (\lambda t)+b \sin (\lambda t))$ Applying the Fourier transform with respect to x to the equation, we infer that

$$
\begin{aligned}
0 & =\partial_{t t} \mathcal{F}(u)(\omega, t)+2 \alpha \partial_{t} \mathcal{F}(u)(\omega, t)+\alpha^{2} \mathcal{F}(u)(\omega, t)-c^{2}(-i \omega)^{2} \mathcal{F}(u)(\omega, t) \\
& =\partial_{t t} \mathcal{F}(u)(\omega, t)+2 \alpha \partial_{t} \mathcal{F}(u)(\omega, t)+\left(\alpha^{2}+c^{2} \omega^{2}\right) \mathcal{F}(u)(\omega, t)
\end{aligned}
$$

Using the hint, we deduce that

$$
\mathcal{F}(u)(\omega, t)=\mathrm{e}^{-\alpha t}(a(\omega) \cos (\omega c t)+b(\omega) \sin (\omega c t))
$$

The initial condition implies that $a(\omega)=0$ and $\mathcal{F}(g)(\omega)=\omega c b(\omega)$; as a result, $b(\omega)=\mathcal{F}(g)(\omega) /(\omega c)$ and

$$
\mathcal{F}(u)(\omega, t)=\mathrm{e}^{-\alpha t} \mathcal{F}(g) \frac{\sin (\omega c t)}{\omega c}
$$

Then using (2), we have

$$
\mathcal{F}(u)(\omega, t)=\frac{\pi}{c} \mathrm{e}^{-\alpha t} \mathcal{F}(g) \mathcal{F}\left(S_{c t}\right)
$$

The convolution theorem implies that

$$
u(x, t)=\mathrm{e}^{-\alpha t} \frac{1}{2 c} g * S_{c t}=\mathrm{e}^{-\alpha t} \frac{1}{2 c} \int_{-\infty}^{\infty} g(y) S_{c t}(x-y) \mathrm{d} y .
$$

Finally the definition of $S_{c t}$ implies that $S_{c t}(x-y)$ is equal to 1 if $-c t<x-y<c t$ and is equal zero otherwise, which finally means that

$$
u(x, t)=\mathrm{e}^{-\alpha t} \frac{1}{2 c} \int_{x-c t}^{x+c t} g(y) \mathrm{d} y
$$

Question 4: Find the inverse Fourier transform of $\frac{1}{\pi} \frac{\sin (\lambda \omega}{\omega}$.
Since $\mathcal{F}\left(S_{\lambda}(x)\right)=\frac{1}{\pi} \frac{\sin (\lambda \omega)}{\omega}$, the inverse Forier transform theorem implies that

$$
\mathcal{F}^{-1}\left(\frac{1}{\pi} \frac{\sin (\lambda \omega)}{\omega}\right)(x)= \begin{cases}1 & \text { if }|x|<\lambda \\ \frac{1}{2} & \text { if }|x|=\lambda \\ 0 & \text { otherwise }\end{cases}
$$

