Quiz 5 (Notes, books, and calculators are not authorized)
Show all your work in the blank space you are given on the exam sheet. Always justify your answer. Answers with no justification will not be graded. Here are some formulae that you may want to use:

$$
\begin{align*}
& \mathcal{F}(f)(\omega) \stackrel{\text { def }}{=} \frac{1}{2 \pi} \int_{-\infty}^{+\infty} f(x) e^{i \omega x} d x, \quad \mathcal{F}^{-1}(f)(x)=\int_{-\infty}^{+\infty} f(\omega) e^{-i \omega x} d \omega, \tag{1}\\
& \mathcal{F}(f * g)(\omega)=2 \pi \mathcal{F}(f)(\omega) \mathcal{F}(g)(\omega), \quad \mathcal{F}(f(x-\beta))(\omega)=\mathcal{F}(f)(\omega) e^{i \omega \beta} \tag{2}\\
& \mathcal{F}\left(e^{-\alpha|x|}\right)=\frac{1}{\pi} \frac{\alpha}{\omega^{2}+\alpha^{2}}, \quad \mathcal{F}\left(\frac{2 \alpha}{x^{2}+\alpha^{2}}\right)(\omega)=e^{-\alpha|\omega|}, \quad \sqrt{\frac{\pi}{\alpha}} \mathcal{F}\left(e^{-\frac{x^{2}}{4 \alpha}}\right)=e^{-\alpha \omega^{2}} . \tag{3}
\end{align*}
$$

Question 1: (i) Let f be an integrable function over $(-\infty,+\infty)$. Prove that for all $a, b \in \mathbb{R}$, and for all $\xi \in \mathbb{R}$, $\mathcal{F}\left(\left[e^{i b x} f(a x)\right]\right)(\xi)=\frac{1}{a} \mathcal{F}(f)\left(\frac{\xi+b}{a}\right)$.
The definition of the Fourier transform together with the change of variable $a x \longmapsto x^{\prime}$ implies

$$
\begin{aligned}
\left.\mathcal{F}\left[e^{i b x} f(a x)\right]\right)(\xi) & =\frac{1}{2 \pi} \int_{-\infty}^{+\infty} f(a x) e^{i b x} e^{i \xi x} d x \\
& =\frac{1}{2 \pi} \int_{-\infty}^{+\infty} f(a x) e^{i(b+\xi) x} d x \\
& =\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \frac{1}{a} f\left(x^{\prime}\right) e^{i \frac{(\xi+b)}{a} x^{\prime}} d x^{\prime} \\
& =\frac{1}{a} \mathcal{F}(f)\left(\frac{\xi+b}{a}\right)
\end{aligned}
$$

Question 2: Solve the following integral equation: $\int_{-\infty}^{+\infty} f(y) f(x-y) \mathrm{d} y-2 \pi \frac{4}{x^{2}+4}=0, \forall x \in \mathbb{R}$.
This equation can be re-written using the convolution operator:

$$
f * f-2 \pi \frac{4}{x^{2}+4}=0
$$

We take the Fourier transform and use the convolution theorem (2) together with (3) to obtain

$$
\begin{gathered}
2 \pi \mathcal{F}(f)^{2}-2 \pi e^{-2|\omega|}=0 \\
\mathcal{F}(f)^{2}-e^{-2|\omega|}=0 \\
\mathcal{F}(f)= \pm e^{-|\omega|}
\end{gathered}
$$

Taking the inverse Fourier transform, we obtain two solutions

$$
f(x)= \pm \frac{2}{x^{2}+1}
$$

Question 3: State the shift lemma (Do not prove).
Let f be an integrable function over $\mathbb{R}\left(\right.$ in $\left.L^{1}(\mathbb{R})\right)$, and let $\beta \in \mathbb{R}$. Using the definitions above, the following holds:

$$
\mathcal{F}(f(x-\beta))(\omega)=\mathcal{F}(f)(\omega) e^{i \omega \beta}, \quad \forall \omega \in \mathbb{R}
$$

Question 4: Use the Fourier transform technique to solve $\partial_{t} u(x, t)+\cos (t) \partial_{x} u(x, t)+2 u(x, t)=0, x \in \mathbb{R}, t>0$, with $u(x, 0)=u_{0}(x)$.

Applying the Fourier transform to the equation gives

$$
\partial_{t} \mathcal{F}(u)(\omega, t)+\cos (t)(-i \omega) \mathcal{F}(u)(\omega, t)+2 \mathcal{F}(u)(\omega, t)=0
$$

This can also be re-written as follows:

$$
\frac{\partial_{t} \mathcal{F}(u)(\omega, t)}{\mathcal{F}(u)(\omega, t)}=i \omega \cos (t)-2
$$

Then applying the fundamental theorem of calculus we obtain

$$
\log (\mathcal{F}(u)(\omega, t))-\log (\mathcal{F}(u)(\omega, 0))=i \omega \sin (t)-2 t
$$

This implies

$$
\mathcal{F}(u)(\omega, t)=\mathcal{F}\left(u_{0}\right)(\omega) e^{i \omega \sin (t)} e^{-2 t}
$$

Then the shift lemma gives

$$
\mathcal{F}(u)(\omega, t)=\mathcal{F}\left(u_{0}(x-\sin (t))(\omega) e^{-2 t}\right.
$$

This finally gives

$$
u(x, t)=u_{0}(x-\sin (t)) e^{-2 t}
$$

